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Introduction and motivations

Study thermal QCD up to electroweak scale non perturbatively (NP)

• Early evolution of Universe

• Properties of Quark gluon plasma

• Intrinsic theoretical interest

• Non-perturbative renormalization

• . . . . . .
1 10 100

T/Tc

0

1

2

3

4

5

6

7

8
s/T3

p/T4

ε /T4

SB

[LG, Pepe 17]

2 / 12



Introduction and motivations
Why NP up to the electroweak scale?

Because the various (analytic) approximations are heavily limited:

• Matching coefficients of EFTs
computable in PT only up to
finite order

• Perturbative expansion has a very
poor convergence rate

• EFTs must be finally solved and
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For the SU(3) Yang–Mills theory, the NP contribution is still ∼ 50%
of the sum of all other interacting terms at T ∼ 68 GeV 3 / 12



Effective field theories at large T : EQCD
• Physics at energies E � πT is described by a 3-dimensional
effective gauge theory dubbed Electrostatic QCD (EQCD)

SEQCD=
1
g2

E

∫
d3x

{
1
2

Tr [FijFij ] + Tr [(DjA0)(DjA0)] + m2
E

Tr
[
A2

0
]}

+. . .

where the fields are the Matsubara zero-modes of 4D gauge field

• The 4D temporal component A0 behaves as a 3D scalar field of
mass mE in the adjoint representation of the gauge group

• When the QCD coupling g2 is small, perturbative matching gives

m2
E

=
3
2
g2T 2 + . . . and g2

E
= g2T + . . .

and at asymptotically hight T, three energy scales develop

g2
E

π
� mE � πT
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Effective field theories at large T : MQCD

• For Physics at energies E = O(g2
E

), the scalar field can be
integrated out, and one is left with Magnetostatic QCD (MQCD)

SMQCD =
1
g2

E

∫
d3x

{
1
2

Tr [FijFij ]

}
+ . . .

• This is a 3D Yang–Mills theory which needs to be solved NP. All
dimensionful quantities proportional to appropriate power of g2

E

• As a result, at asymptotically high T the mass gap developed by
thermal QCD is proportional to g2

E
= g2T + . . .

• Quarks have very heavy masses M = πT (1 + g2

6π2 + . . . ), and can
be considered, in first approximation, as static fields
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Renormalization
Hadronic renormalization scheme is not a viable option because

Mhadron � T

Accommodating 2 very different scales on a lattice is too expensive

Way to go is the NP renormalization of the coupling:

• Define the renormalized g2

NP, e.g. SF or GF couplings

• Define quark masses NP by WIs

[Lüscher et al 91]
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Figure 6: Sketch of the space-time manifold on which the lattice theory is set up. C and
C′ are the boundary values of the gauge field. The irregular lines represent the trajectory
of a quark anti-quark pair, which is created at time 0 through the operator Oa [eq. (21)].

5.3 How large are the chiral symmetry violations?

In principle the error term on the right-hand side of the PCAC relation eq. (19)
provides an estimate of the size of chiral symmetry violation in lattice QCD. The
renormalization factors in the expressions for the renormalized improved axial cur-
rent and the associated pseudo-scalar density,

(AR)aµ = ZA(1 + bAamq){Aa
µ + cAa∂̃µP a},

(PR)a = ZP(1 + bPamq)P
a,

are however not known at this point and a straightforward calculation of the error
term is hence not possible.

Now let us define an unrenormalized current quark mass through

m =
〈{∂̃µAa

µ + cAa∂∗µ∂µP a}Oa〉
2〈P aOa〉 , (23)

where Oa is the operator introduced above. The PCAC relation then implies

m =
ZP(1 + bPamq)

ZA(1 + bAamq)
mR + O(a). (24)

24

• Avoid zero-temperature subtraction in renormalization of fields
by adopting shifted boundary conditions, e.g. Equation of State
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Renormalization

• Relate g2(µhadron) to Mhadron NP

• Determine running of g2(µ) NP

• Compute g2(µ) for µ up to
electroweak scale

• For each value of T , renormalize
thermal QCD by requiring

ḡ2
SF(g2

0 , aµ) = ḡ2
SF(µ)

with aµ� 1 and T ∼ µ
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• Last condition fixes the dependence of the bare g2
0 on a, for

values of a at which µ and T can be easily accommodated
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Lattice setup
• Wilson (T0–T8) and Lüscher–Weisz (T9–T11) actions for gluons

• NP O(a)-improved Wilson quarks

• Four lattice spacings for each T ,
L0/a = 4, 6, 8 and 10

• Shifted boundary conditions

• Restriction to zero topology
thanks to the high temperature

T ḡ2
SF(µ = T

p
2) T (GeV)

T0 � 164.6(5.6)
T1 1.11000 82.3(2.8)
T2 1.18446 51.4(1.7)
T3 1.26569 32.8(1.0)
T4 1.3627 20.63(63)
T5 1.4808 12.77(37)
T6 1.6173 8.03(22)
T7 1.7943 4.91(13)
T8 2.0120 3.040(78)

Table 2: Values of the SF couplings corresponding to the lines of constant physical tempera-
ture that we consider.

B Temperature values and lines of constant physics

In this appendix we discuss in detail how the 12 temperatures T0, . . ., T11 have been cho-
sen, and how for each temperature the various lattice spacings and the corresponding bare
parameters have been fixed so as to define lines of constant physics.

Either for quarks or gluons we remind that shifted boundary conditions, always with
⇠ = (1, 0, 0), have been enforced in the compact direction so that T = 1/(

p
2L0). The tem-

perature values T0, . . ., T8 and T9, . . ., T11 have then been fixed by specifying the values of the
Schrödinger functional (SF) and the gradient flow (GF) finite-volume couplings respectively
by using the results of Refs. [32–35].

B.1 High temperatures

The temperature values T0, . . . , T8 are fixed from the results in Refs. [32, 34, 35] by imposing
the relation

T =
1

L0

p
2

=
µp
2

, (33)

where µ is the renormalization scale of the Schrödinger functional (SF) coupling ḡ2
SF(µ) de-

termined in a box with linear extension LSF
0 = 1/µ and SF boundary conditions enforced, i.e.

L0 = LSF
0 . From Ref. [39] we obtain

ḡ2
SF(µ0) = 2.0120 ) µ0 = 4.30(11) GeV = T8

p
2 , (34)

where the contribution from the charm and bottom quarks can be safely neglected given the
current level of precision on the combination of the pion and kaon decay constants used to
fix the overall scale [47], see Ref. [48] for more details. Given T8, the higher values of the
temperature can be inferred through the relation

ln

✓
µ

µ0

◆
=

Z ḡSF(µ)

ḡSF(µ0)

dg

�SF(g)
, (35)

which readily follows from integrating the definition of the �-function. By using the results
of Ref. [34], the non-perturbative �-function of the SF coupling can be parameterized over
the range of couplings of interest as (cf. Eq. (2.34) of Ref. [35])

�SF(ḡ) = �ḡ3
3X

n=0

bnḡ2n, ḡ2 2 [0, 2.45] , (36)

16

T ḡ2
GF(µ = T/

p
2) T (GeV)

T9 2.7359 2.833(68)
T10 3.2029 1.821(39)
T11 3.8643 1.167(23)

Table 5: Values of the GF couplings corresponding to the lines of constant physical temper-
ature that we consider.

were the coe�cients c
L/a
i , i = 1, 2, 3, are given in Ref. [50]. The rest of the expression

corresponds to the two-loop critical mass,

am2lp
cr (g2

0, a/L0) =
�
am(0)

cr + �am(0)
cr (a/L0)

�
+
�
am(1)

cr + �am(1)
cr (a/L0)

�
g2
0 + am(2)

cr g4
0 , (39)

where
am(0)

cr = 0 , am(1)
cr = �0.270075349459 , am(2)

cr = �0.039772 , (40)

are the asymptotic coe�cients in the limit L0/a ! 1 while Table 3 contains the coe�cients
due to cuto↵ e↵ects. The interpolated values for cr = 2 amcr + 8 as well as those for csw

obtained from Eq. (39) and Eq. (31) respectively are reported in Table 4 and are indicated

with 
(W )
cr and c

(W )
sw .

B.2 Low temperatures

The lower temperature values T9, T10 and T11 are fixed analogously to the higher ones but
from the gradient flow (GF) coupling. The temperature is fixed by imposing that

T =
1

L0

p
2

=
p

2µ , (41)

where µ is the renormalization scale of the GF coupling ḡ2
GF(µ) defined in a box with spatial

and temporal extensions satisfying LGF = LGF
0 = 1/µ, i.e. L0 = LGF

0 /2.
In order to determine the physical values of the temperature, we start from the result

(cf. Eqs. (15)-(16) and Tables I-II of Ref. [39]),

ḡ2
GF(µhad,1) = 11.31 ) µhad,1 = 196.9(3.2) MeV , (42)

where µhad,1 is inferred from the experimental value of a combination of the pion and kaon
decay constant as for µ0. The value of the temperatures corresponding to the couplings of
interest can then be inferred through the relation,

ln

✓
µ

µhad,1

◆
=

Z ḡGF(µ)

ḡGF(µhad,1)

dg

�GF(g)
, (43)

where

µ
dḡGF(µ)

dµ
= �GF(ḡGF) . (44)

Using the results of Ref. [33], the non-perturbative �-function of the GF coupling can be
parameterized over the range of couplings of interest as (cf. Eq. (2.36) of Ref. [35])

�GF(ḡ) = � ḡ3

P2
n=0 pnḡ2n

, ḡ2 2 [2.1, 11.3] , (45)

19

• The linear extension of spatial directions is L/a = 288, i.e.
20 < LT < 50. Finite volume effects negligible given the mass
gap. Explicitly checked at the highest and lowest temperature
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Screening mass definition
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From the two-point correlators [O = {S ,P,Vµ,Aµ}]

CO(x3) = a3
∑

x0,x1,x2

〈Oa(x)Oa(0)〉

screening masses are defined as

amO(x3) = arcosh
[
CO(x3 + a) + CO(x3 − a)

2CO(x3)

]
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Continuum limit
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The tree-level improved definitions

mO → mO −
[
mfree

O − 2πT
]

have been extrapolated to the continuum linearly in (a/L0)2
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Results for mesonic screening masses
Effective theory + NLO matching predict

mPT
O = 2πT (1 + pPT

2 g2)

where pPT
2 = 0.03274. In particular mP and mv are degenerate

NP Results can be fitted by a quartic
polynomial in

1
ĝ2(T )

≡ 9
8π2 ln

2πT
ΛMS

+
4

9π2 ln

(
2 ln

2πT
ΛMS

)

where for our purpose this is a function
of T designed to coincide with the NLO
inverse coupling in the MS scheme
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Masses non-degenerate even at electroweak scale!
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Discussion and interpretation

Pseudoscalar mass:

mP

2πT
= 1 + pPT

2 ĝ2 + p3 ĝ
3 + p4 ĝ

4

p3=0.0038(22) and p4=−0.0161(17)

Pseudoscalar-vector mass difference:

(mV −mP)

2πT
= s4 ĝ

4

s4 = 0.00704(14)

An effective ĝ4 term explain the
difference with PT in both cases
over 2 orders of magnitude in T !
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Conclusions and Outlook

Possible to simulate thermal QCD for T up to the electroweak scale

First NP results compatible with
effective field theory expectations
but not with NLO matching
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The strategy proposed here opens the way to study many other
properties of thermal QCD in the high temperature regime:

- Equation of State
- Baryon masses
- Transport coefficients
- .....


