The Exodus to GPU. The case of
scientific analysis for the Euclid
mission.

Alessandro Renzi (UniPD and INFN)

A discourse about the challenge for cosmology data analysis using HPC

Outline

* The Euclid Mission

* Status of Software in the scientific analysis of Euclid mission data
e Why GPU matters? — The problem of modern HPC

* My solution: the Julia Programming Language

» Advantages/Disadvantages of Julia

e Julia vs commonly used languages for numerical computing

* A couple of examples of Julia usage and philosophy

* Training to GPU usage with Julia

The Euclid Mission

The mission would map the Large-Scale
Structures (LSS) of the Universe and
can be used for study fundamental

- o .

~ The Eutlid-Cénsortium

. g . Af o) ‘ 1 . .
' k & P ' & _ : N physics from cosmology, especially the
» . P - s o » y i ¥ . . .
o B 16 L b an e wall Dark Energy (which is related to
' countries-+ S e o expansion acceleration of the Universe)
) More than Be-BON @ 06— and some properties of neutrinos (sum
v # oz Vot > .
-12(t)._ e/l of masses, number of species,
INSHtUtes/1 . Y BTSN hierarchy).
abS"’ ’ & 5 s = e L ucy)
: T comns N UF
.Morethan :* ce e
CG ™= """ I1&66C
1200 WPAEY i T am e
@ ® 2 o
mef“bf?rs o o DEEmm
PN ®irap S B) o
Qoc iss 9 e a1
O | maem) B = vnn
BN el K v=me i =
gy B W——us
< &~ e
L - = < =0 O e
g www.euclid-ec.org : @M Wi

" An artist vigw of the Euclid satellite — courtesy ESA - Séi.esa.int/euclid ! :
e ; ' " val 3/20

The Status of Computing in Euclid

* The Science Ground Segment (SGS) is responsible for:
 archiving and public dissemination of data collected by Euclid
* development and run of the pipeline for the extraction of products for science

* The scientific exploitation of Euclid products is entrusted to the individual
Science Working Groups (SWG) who, at the moment, must use (own)
computing resources external to SGS for the scientific analysis

* | am part of the INFN group in Euclid, and we have organized ourselves for
the scientific analysis of the Euclid data

* Euclid's data are images, and their study, from the point of view of
cosmology, is basically an analysis of the correlations in these images
compared to the model's simulated cosmology. These considerations
strongly constrain the hardware needed for the analysis of these data

* We need HPC for Euclid data analysis!

Status of Software for the scientific analysis of
Euclid mission data

* Simulations [rarely used/modified by “standard user”] -> N-body codes (e.g. Gadget, Ramses, etc,)
* Very stable
* Vanilla versions in general publicly available with MPI+threads
* Heavily optimized -> hard to modify
* Extremely high computational demands
* Most used software have no public GPU code

* Software to analyze maps and catalogs [heavily used rarely modified] (e.g. nbodykit, healpix, etc.)
* Medium stable (reduced stability due to algorithmic or theoretical advancement)
* Many threads-only parallelism, sometimes MPI-only or MPl+threads
* Medium optimization (mostly homebrewed), small needs of modification
* From high to low computational demands (depends on the analysis)
* Most used software have no public GPU code

* “Theory” software [heavily used/modified] (CAMB and CLASS)
* Vanilla version very stable
* Threads-only
* Highly optimized for use with MCMC -> hard to modify
* High computational demands in use with MCMC
* No public GPU code

* Right now, new codes are produced to analyze data, and we (my group) are producing new codes too!

Why GPU matters? — The problem of modern HPC
- The CINECA’s Leonardo use case

Technical Information

Leonardo will be built from Atos’ BullSequana XH2000 supercomputer nodes, each withl four NVIDIA Tensor Core GPUs and a single Intel
CPU. It will also use NVIDIA Mellanox HDR 200Cb/s InfiniBand connectivity, with smart in-network computing acceleration engines that
enable extremely low latency and high data throughput to provide the highest Al and HPC application performmance and scalability.

Leonardo will feature nearly

14 000 NVIDIA Ampere architecture-based GPUs.

It will deliver 10 exaflops of FP16 Al performance. NVIDIA

Ampere architecture GPUs can accelerate over 1,800 applications such as Quantum Espresso for material science, SPECFEM3D for geoscience
and MILC for quantum physics by up to 70x, making previous big challenge simulations almost real-time tasks.

3rd Gen Intel Xeon Scalable processors (lce Lake) are optimized to perform computationally intensive workloads in high-performance
computing systems like Leonardo. The follow-on processor to Intel's Ice Lake server processors is Sapphire Rapids, which will enable exascale

computing with advanced|built-in Al acceleration capabilities.

e More than 136 BullSequana XH2000 Direct Liquid cooling racks

250 PFLOPs HPL Linpack Performance (Rmax)
10 ExaFLOPS of FP16 Al performance

«|3456 servers equipped with Intel Xeon Ice Lake and NVIDI
« 1536 servers with Intel Xeon Sapphire processors

5PB of High Performance storage
100PB of Large Capacity Storage

A‘Ampere architecture GPUs

6/20

Why GPU matters? — The problem of modern HPC
- Machine Learning optimized hardware

* Even the CPU partition in Leonardo is optimized for ML!

* The transition to GPU and ML optimized hardware is happening for all
the big computational centers in the world (see the Top500 list for an
overview of the new computational systems)

* Energy power issues are real: the switch to energy efficient hardware
will last for many year to come

* Software right now must be modified and optimized to gain the most from
those new computing hardware

* GAIN from using GPU-optimized code
* GAIN from using ML-oriented algorithms

My solution: the Julia Programming Language

* This is the time where codes must be heavily modified to follow the GPU transition

. xVedcan catch the ball and choose the best tools «today» to deal with the difficulty of optimizing new
ardware

e Juliais the right tool the right moment
e With Julia we don’t have to choose any more between minimizing human vs CPU time, we can have both!

* Nowadays PhD students and postdoc learn Python and use external tools to increase the
computational efficiency of it

* Most of the time Python is used as glue, so a developer of a particular code should learn multiple languages
or rely on code made by other more expert groups

* Even considering only compiled languages, every field has its own set of libraries and solutions (reinventing
the wheel) that maybe are not even “the best”
* Think about algorithms and not about hardware or optimization!
e With Julia we could concentrate on producing good code, and later think on how optimize
* An unoptimized code in Julia is still as fast as a standard compiled language

* Julia has bL)Ii|t-in “environments” capabilities (use of containers only for very specialized
operations

Julia - A due warning

* | am not a Julia evangelist
* | decided to use Julia after a couple of years of thoughts and trials

e About 2 years ago (version 1.5-1.6, and later 1.7) for me Julia was promising but not
ready for real world, stable, HPC use cases!

* | have still some concerns

* My goal for this talk is to show you some interesting features of Julia and
suggest that it is ready for HPC power use

* I'll try to be as objective as possible

* In my opinion the advantages of adopting Julia for numerical and data
computing outweighs the disadvantages

* All my considerations came from the use case of cosmological data analysis
(for Euclid), different fields could reach different conclusions based on their
specific case

Julia - Advantages

High-performance GPU programming in a high-level language (https://juliagpu.org/) -> Multiple GPU support already present!
Fast

* Julia was designed from the beginning for high performance. Julia programs compile to efficient native code for multiple platforms via LLVM

Reproducible
* Reproducible environments make it possible to recreate the same Julia environment every time, across platforms, with pre-built binaries

Composable
* Julia uses multiple dispatch as a paradigm, making it easy to express many object-oriented and functional programming patterns

General
* Julia provides asynchronous I/O, metaprogramming, debugging, logging, profiling, a package manager, and more.

Built-in linear algebra:

* Let Uppercase arrays and lowercase scalars

¢ define a simple function f(x,y)=x+y

e c=a*b/[scalar]

e C=A.*b]larray]

e c=f(a,b) [scalar]

* C=f(A,b) [error]

e C=f(A,B) [array]

e C=f.(Ab)[array]

* C=f.(a,b) [array]

State-of-the-art capable ML algorithms!

As easy to learn and use as python!

The interface standardization of Julia is stable with respect to change of hardware (-> What happens if in 10 years from now we
will need to change again hardware?)

https://juliagpu.org/

Julia - Disadvantages

e Language features stability (from the download page):

* Almost everyone should be downloading and using the latest stable release of Julia. Great care is taken not to break compatibilitY
with older Julia versions, so older code should continue to work with the latest stable Julia release. You should only be using the long-
term support (LTS) version of Julia if you work at an organization which implementing or certifying upgrades is prohibitively expensive
and there is no need for new language features

e Julia is continuously evolving (see previous point)

* Backward-compatibility is strongly encouraged but not forced on packages of
language I()keep in mind however that the python 2 -> 3 switch was a lesson for
everyone!

* Julia support on big computational centers could be low or absent right now
* Particular care is needed with MPI or GPU drivers

* Julia is very mature on CUDA, but less so on Intel, AMD and Apple hardware

* People in general (students in particular) don’t like to learn new/multiple
languages...

Julia vs Modern Fortran

* Julia is Modern Fortran, but better (or at least, for many different
reasons, do the same things as Fortran, but has a larger and growing
community)

* Even if Fortran is rapidly catching-up (in my opinion) it is late on the
new paradigm shift (LFortran is very promising but it is still in heavy
development)

Julia vs C++

* There are no classes in Julia. Instead, there are structures (mutable or immutable),
containing data but no methods.

* InJulia, indexing of arrays, strings, etc. is 1-based not 0-based (in general), they can even
be customized!

 Julia arrays are column major (Fortran ordered)

* Julia values are not copied when assigned or passed to a function
* However, by convention, functions that modify their arguments have a ! at the end of the name

* Arrays “framework” is a feature of the language -> no reasons to work with flattened
array

 Effort to standardize packages through common interfaces (e.g. see later AbstractFFTs)

* A note about C++: so far so “good”, but new competitors are coming, i.e. Carbon and
Rust

Julia vs Python

 Julia has performances comparable to those of C/C++/Fortran

* Don’t need to rely on external packages to be speed-effective (see python numpy, numba, etc.) —
Standard language and decorators are usable out of the box

* Array “framework” is Julia standard core features (including parallel operations)
* InJulia you don’t need to write vectorized code for performance reasons!

* Julia can be used as an interpreted language exactly as python but without losing performances
(uses LLVM to compile)

e Julia could be a “glue language” but it is not necessary
* Most of Julia (standard) packages are written in pure Julia (debugging and profiling is easier!)
* Plots have a common interface with different backends (including matplotlib)

* In general, there is a strong effort in Julia to have common interface for different packages doing
seme thing (in contrast, the Python math module has asin, acos, and atan methods. NumPy has
arcsin, arccos, and arctan.)

* Machine learning and general modern data analysis tools as rich as python

Julia example 1 — Custom array indeces

A final application: Fourier transforms

There are many more things you can do with custom indices. As one last illustration, consider the Discrete Ta ke N fr‘o m
Fourier Transform, which is defined on a periodic domain. Typically, it's rather difficult to emulate a periodic WYINAT

domain with arrays, because arrays have finite size. However, it's possible to define indexing objects which htt pS / / J u I Ia l d ng .0 rg/ b I Og/ 20 1 7/ 04/ Offset-
possess periodic behavior. Here we use the FFTViews package, demonstrating the technique on a simple ar ray S /

sinusoid:

julia> using FFTViews

julia> a = [sin(2n*x)+8.1 for x in linspace(®,1,16)}];

We can also check the amplitude at the Fourier-peak, and explore the periodicity of the result:
julia> afft = FFTView(fft(a))
FFTViews.FFTView{Complex{Float64},1,Array{Complex{Float64},1}} with indices FFTViews.URange(@,15):

1.6+0.0im

1.498-7.530981im julia» afft[1]
-@.288537+08.696591m 1.4938046017247872 - 7.53097769363728im
-@.236488+0.35393im
'9'222514*'9'22261‘}“ julia» afft[-1] # negative frequencies are 0K
=ELZALERRRCLIL A 1.4988@46817247872 + 7.53897769363728im
-@.214217+08.8887316im
-9.212937+0.0423558im .
-8.712557+48. Bim julia» afft[64+41] # look Ma, it's ;l':'-"_:;_:
-@.712937-8.84235581m 1.4980846017247872 - 7.53@97769363728im
-@.214217-0.8887316im
-8.216932-8.144951im julia> length(indices{afft,1}) # but we still know how big it is
-8.222614-8.222614im 16
-B.236488-0.353931im
-@.288537-0.69659im

1.498+7.530981im

Given the periodicity of 2+, the commonly-used f+tshift function (e.g., fftshift(fft(a))) can be
replaced by afft[-8:7]. While very simple, these techniques make it surprisingly more pleasant to deal with

Now, as every student of Fourier transforms learns, the o-frequency bin holds the sum of the values in a:) . .
what can sometimes become complex and error-prone index gymnastics.

julia> afft[e] 15/20

1.6000020000088003 + @.81im

Julia example 2 — Interface standardization of
common humerical computations

* AbstractFFTs.|l
* A general framework for fast Fourier transforms (FFTs) in Julia.

* From the package description: This package is mainly not intended to be used
directly. Instead, developers of packages that implement FFTs (such as FFTW.jl
or FastTransforms.jl) extend the types/functions defined in AbstractFFTs. This
allows multiple FFT packages to co-exist with the same underlying fft(x) and

plan_fft(x) interface.

The normalization convention for your FFT should be that it computes yr = S: exp(—2mi - ‘:T) for a transform of

ol o w s . . . e) R e R . . , . gk
length n, and the "backwards" (unnormalized inverse) transform computes the same thing but with exp(-42mi - I— .
b, I L K, o \ n r

16/20

Julia example 3 - Using CUDA

using CUDA

a = CuArray([1,2])
2-element CuArtay{Int64, 1, CUDA.Mem.DeviceBuffer}:
1
2

b = Array(a)
2-element Vector{Int64}:
1
2

copyto!(b, a)
2-element Vector{Int64}:
1
2

—> You could install CUDA with Julia artifacts!!!

a = CuArray{Float32}(undef, (1,2));

a .= b

1x2 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:

b.@ b.0

map(sin, a)

1x2 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:

-0.958924 -0.958924

a = CUDA.ones(2,3)

2x3 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
1.0 1.0 1.0
1.6 1.0 1.0

reduce(+, a)
6.0f0

mapreduce(sin, =, a; dims=2)

2x1 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:

0.59582335
0.59582335

17/20

Training to GPU usage with Julia

* Nice thing: you don’t need it! (knowing that device memory and node
memory are different is enough!)

#include <stdio.h>
#include <cuda.b>
#include <cuda_runtime h>
#mnclude <curand kernelh>

#define N 512

_ global void add(int *a, int *b. int *c){
int tid = blockIdx x; // handle the data at this index

using CUDA

mx;ﬁﬂmybm@ ¥x_d CUDA.fill(1.0fD, N} # a vector stored on the GPU filled with 1.0 (Float32)
} y_d = CUDA.fill(2.0f0, N) # a vector stored on the GPU filled with 2.0
int main()

{

int a[N], b[N]. o[N. i;

int *dev_a. *dev_b. *dev_c;

cudaMalloc((void**)&dev_c. N¥sizeof{int));
cudaMalloc((void* *)&dev_b. N*sizeof{int)):
cudaMalloc((void**)&dev_a. N¥sizeof{int));
for(i=0; i < N; i++)
{
a[i] = -i:
b[i] = i*i*i;
1
cudaMemcpy(dev_a, a, N*sizeof{int), cudaMemcpyHostToDevice):

sudaemepy(der_b.b. Nisizeoflind. cudaMemcpyHiostToDerice) - If you are not convinced, try to sum some arrays using
e emep(c do N oot ey Deric oo, multiple GPU with any language of your choice vs Julia!
for(i=0; i < N; i++)

printf{"%ed + %d = %dn", a[i], b[i]., c[i]);

CUDA. copyto!(y d, y)

cudaFree(dev_c);
cudaFree(dev_b);

cudaFree(dev_a); 1 8/2 O

return 0;

Training to GPU usage with Julia

Sum using CUDA kernel:

function gpu_addi!(y, x)
for i = 1:1ength(y)
@inbounds y[i] #= x[i]
end
return nothing
end

FILL (y_d, 2)
fdcuda gpu_addi!(y_d, x_d)
@test all(Array(y_d) .== 3.0f0)

19/20

Thanks for the attention!
How to train your GPU: 10.000 foot view

B,

‘ < um B
C/IC++
= 0penACC
/' Data-parall
- 4

O o
_ 9] - 1)
]jU|Ia[>
AbstractArrays CuArrays.jl CUDAnNative.jl

20/20

	Slide 1: The Exodus to GPU. The case of scientific analysis for the Euclid mission.
	Slide 2: Outline
	Slide 3: The Euclid Mission
	Slide 4: The Status of Computing in Euclid
	Slide 5: Status of Software for the scientific analysis of Euclid mission data
	Slide 6: Why GPU matters? – The problem of modern HPC  The CINECA’s Leonardo use case
	Slide 7: Why GPU matters? – The problem of modern HPC  Machine Learning optimized hardware
	Slide 8: My solution: the Julia Programming Language
	Slide 9: Julia - A due warning
	Slide 10: Julia - Advantages
	Slide 11: Julia - Disadvantages
	Slide 12: Julia vs Modern Fortran
	Slide 13: Julia vs C++
	Slide 14: Julia vs Python
	Slide 15: Julia example 1 – Custom array indeces
	Slide 16: Julia example 2 – Interface standardization of common numerical computations
	Slide 17: Julia example 3 - Using CUDA
	Slide 18: Training to GPU usage with Julia
	Slide 19: Training to GPU usage with Julia
	Slide 20: Thanks for the attention!

