Random Field Ising model, dimensional reduction and supersymmetry

Marco Picco*
Sorbonne Université and CNRS
Laboratoire de Physique Théorique et Hautes Energies

21/12/2022

^{*}In collaboration with N. Fytas (Coventry Univ., UK), V. Martín-Mayor (Madrid Univ., Spain), G. Parisi (Roma Univ., Italy), and N. Sourlas (ENS Paris, France)

Introduction

New results

Back in 4D

Conclusions

Introduction

The random-field Ising model (RFIM)

Introduction

New results

Back in 4D

Conclusions

- RFIM is an old story starting in the 70's.
- It has been studied starting from the mean field theory, with perturbative renormalisation group, numerical simulations, etc.
- Generalization of the ferromagnetic Ising model, J>0 and $S_x=\pm 1$:

$$\mathcal{H}^{(RFIM)} = -J \sum_{\langle x,y \rangle} S_x S_y - \sum_x h_x S_x = E_J + E_{RF}$$

with $\{h_x\}$ a random variable (quenched disorder), with zero mean and dispersion σ .

- E_J is just the ordinary Ising model. Without the random magnetic field, the model will be ordered at small temperature for D > 1.
- E_{RF} will try do destroy the ferromagnetic order. For a large enough σ , the spins will be aligned with the random field, such that $S_x = h_x/|h_x|$.

The random-field Ising model (RFIM)

Introduction

New results

Back in 4D

Conclusions

- Ferromagnetic transition as we vary σ , from a ferromagnetic phase at small σ to a paramagnetic phase at large σ .
- Relevant dimensions : $3 \le D \le 6$ $D_{ld} > 2 \text{ Imry \& Ma (1975) and } D = 6 \text{ the upper critical dimension for RFIM.}$
- Mean Field Hamiltonian

$$\mathcal{H}^{MF} = \int d^D r [(\nabla S(r))^2 + tS^2(r) + \lambda S^4(r) - H(r)S(r)]$$

Average of the random field done by introducing a replicated system :

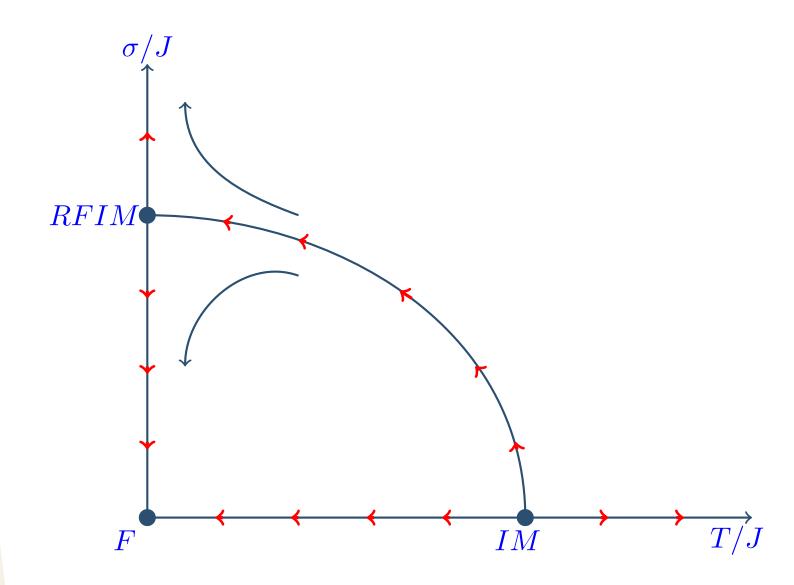
$$\mathcal{H}^{MF} = \int d^D r [\sum_a ((\nabla S_a(r))^2 + t S_a^2(r) + \lambda S_a^4(r)) - \sigma \sum_{a,b} S_a(r) S_b(r)]$$
 with $\langle H(r) \rangle = 0$ and $\langle H(r) H(r') \rangle = \sigma \delta(r - r')$

RG fixed point & phase diagram

Introduction

New results

Back in 4D



Mean Field for the RFIM

Introduction

New results

Back in 4D

- Propagator: $(k^2\delta_{a,b} \sigma M_{a,b})^{-1} \rightarrow \frac{\delta_{a,b}}{k^2} \frac{\sigma M_{a,b}}{k^2(k^2 n\sigma)}$
- Then, two propagators :
 - lack a diagonal one corresponding to $G_{xy}^{(\mathrm{dis})} = \overline{\langle S_x S_y \rangle}$ and $\simeq 1/k^4$.
 - lack a a non diagonal one corresponding to $G_{xy}^{({
 m con})} = \overline{\langle S_x S_y \rangle} \overline{\langle S_x \rangle \langle S_y \rangle}$ and $\simeq 1/k^2$.
- Bellow the upper critical dimension, each propagator will have an anomalous dimension.
- The RFIM bellow the upper critical dimension is characterized by three quantities, ν and the anomalous dimensions η and $\bar{\eta}$ for the two propagators.

RFIM & PRG

Introduction

New results

Back in 4D

Conclusions

- The RFIM in D < 6 can be considered with the Perturbative Renormalization Group (PRG).
- The PRG can be carried out at all orders in $\epsilon = 6 D$ and predicts for all critical exponents and at each order

$$\alpha^{RFIM,D} = \alpha^{IM,D-2} \rightarrow \text{Dimensional reduction}$$

(Aharony, Imry, and Ma, 1976 and Young, 1977).

- In particular, $\eta = \bar{\eta}$.
- Another prediction of the PRG is the universality: RFIM with different random fields distribution are in the same universality class.

Dimensional reduction versus sharp reality

Introduction

New results

Back in 4D

Conclusions

 Parisi & Sourlas PRL 43, 744 (1979): the dimensional reduction is explained by a hidden supersymmetry in the Random Field Ising model.

Supersymmetry → Dimensional reduction.

- Failure: The 3D RFIM orders while the 1D IM does not!
- 4D and 5D RFIM?
- Recent works suggested that dimensional reduction and supersymmetry is restored for $D \simeq 5$: Tissier, Tarjus (2011) with Functional renormalization group studies. Similar predictions by S. Hikami (2018) using bootstrap computations.

Introduction

New results

Back in 4D

Conclusions

New results

Computational scheme

Introduction

New results

Back in 4D

Conclusions

N.G. Fytas, V. Martín-Mayor, M. P., and N. Sourlas, PRL **116**, 227201 (2016), Phys. Rev. E 95, 042117 (2017), J Stat Phys (2018) 172: 665-672

- We consider a D dimensional hyper-cubic lattice with periodic boundary conditions and energy units J=1.
- Gaussian distribution and Poissonian distribution : check for Universality.
- Optimization methods: Graph theoretical algorithms that calculate ground states of the model in polynomial time, avoiding equilibration problems: $L_{\rm max}^D = \{192^3, 64^4, 28^5\}$.
- Extensive averaging over 10 million samples.
- Re-weighting extrapolation: From a single simulation we extrapolate the mean value of observables to nearby parameters of the disorder distribution.

Observables

Introduction

New results

Back in 4D

Conclusions

- Order-parameter density: $m = \frac{1}{L^D} \sum_x S_x$.
- Disconnected propagator : $\overline{\langle S_x S_y \rangle} \sim \frac{1}{r^{D-4+\bar{\eta}}} \to \chi_k^{(\mathrm{dis})} = L^D \overline{\langle |m_k|^2 \rangle}_k$.
- Connected propagator :

$$\frac{\overline{\partial \langle S_x \rangle}}{\partial h_y} \sim \frac{1}{r^{D-2+\eta}} \to \chi_k^{(\text{con})} = \frac{1}{L^D} \sum_{x,y} e^{ik \cdot (x-y)} \frac{G_{xy}^{(\text{con})} + G_{yx}^{(\text{con})}}{2}.$$

Binder ratio and Correlation lengths (con and dis)

$$U_4 = rac{\overline{\langle m^4
angle}}{\overline{\langle m^2
angle}^2} \; ; \; \xi^\# = rac{1}{2 \sin(\pi/L)} \sqrt{rac{\chi^\#_{(0,\cdots)}}{\chi^\#_{(2\pi/L,0,\cdots)}}} - 1 \; .$$

• Dimensionless quantities : $U_4(L, \sigma)$; $\xi^{(dis)}(L, \sigma)/L$ and $\xi^{(con)}(L, \sigma)/L$.

Finite-size scaling

Introduction

New results

Back in 4D

Conclusions

Close to a critical point, a dimensionless quantity behaves as :

$$g(L,\sigma) = F_g(L^{1/\nu}(\sigma - \sigma_c)) + \mathcal{O}(L^{-\omega}) \cdots$$
(1)

with $F_g(x)$ some universal function and ω the leading irrelevant correction $\to \sigma_c, \omega, 1/\nu$

- We fit simultaneously several data sets: 2 field distributions and up to 3 crossing points: $Z^{(x)}$, where Z = G, or P and x = (con), (dis), or U_4 .
- Estimation of ω using joint fits for several magnitudes.
- Individual extrapolation of all other observables fixing ω .
- Determination of the number of corrections to include is rather subtle and needs to be done case by case.

Non-monotonic behavior and universality

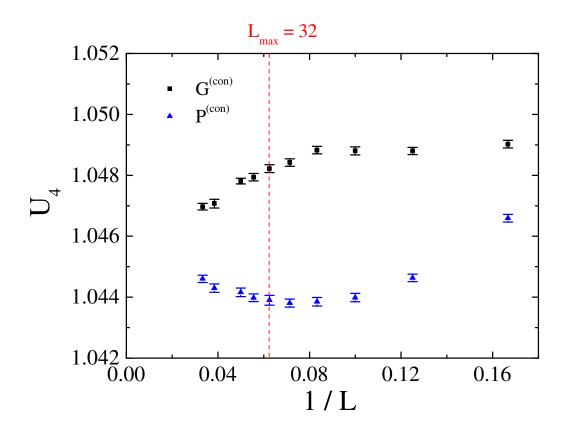
Introduction

New results

Back in 4D

Conclusions

 U_4 for the 4D RFIM.



Higher-order corrections are necessary: $g_L = g^* + a_1 L^{-\omega} + a_2 L^{-2\omega} + \cdots$

Results for the 4D RFIM

Introduction

New results

Back in 4D

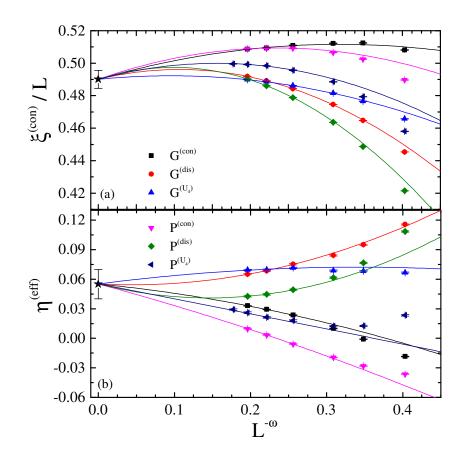
$$\omega = 1.30(9)$$
; $\xi^{\text{(con)}}/L = 0.6584(8)$; $\eta = 0.1930(13) \neq 0.25 = \eta^{\text{(2DIM)}}$

Results for the 5D RFIM

Introduction

New results

Back in 4D



$$\omega = 0.66(15) \sim 0.82966(9) = \omega^{(3D \text{ IM})}$$

 $\eta = 0.055(15) \sim 0.036298(2) = \eta^{(3D \text{ IM})}$

Summary of results for $3 \le D < 6$

Introduction

New results

Back in 4D

	3D RFIM	4D RFIM	5D RFIM	2D IM	3D IM	MF
ν	1.38(10)	0.8718(58)	0.626(15)	1	0.629971 (4)	1/2
η	0.5153(9)	0.1930(13)	0.055(15)	0.25	0.036298(2)	0
$ar{\eta}$	1.028(2)	0.3538(35)	0.052(30)	0.25	0.036298(2)	0
$\Delta_{\eta,\bar{\eta}} = 2\eta - \bar{\eta}$	0.0026(9)	0.0322(23)	0.058(7)	0.25	0.036298(2)	0
β	0.019(4)	0.154(2)	0.329(12)	0.125	0.326419(3)	1/2
γ	2.05(15)	1.575(11)	1.217(31)	1.875	1.237075(10)	1
θ	1.487(1)	1.839(3)	2.00(2)	2	2	2
α	-0.16(35)	0.12(1)		173	i e	1177
α (from hyperscaling)	-0.09(15)	0.12(1)	0.12(5)	0	0.110087 (12)	0
$\alpha + 2\beta + \gamma$	2.00(31)	2.00(3)	2.00(11)	2	2.000000 (28)	2
$\sigma_{\rm c}(G)$	2.27205(18)	4.17749(6)	6.02395(7)	(m)	.=	(-)
$\sigma_{\rm c}(P)$	1.7583(2)	3.62052(11)	5.59038(16)	-	(#	32
U_4	1.0011(18)	1.04471(46)	1.103(16)			
$\xi^{(con)}/L$	1.90(12)	0.6584(8)	0.4901(55)			
$\xi^{(\mathrm{dis})}/L$	8.4(8)	2.4276(70)	1.787(8)			
ω	0.52(11)	1.30 (9)	0.66(+15/-13)		0.82966(9)	0

^{*} In D=4, RFIM different from IM in D=2 and $2\eta-\bar{\eta}\neq 0$

^{*} Within our numerical resolution: 5D RFIM \rightarrow 3D IM

Supersymmetry?

Introduction

New results

Back in 4D

Conclusions

N.G. Fytas, V. Martín-Mayor, G. Parisi, M. P., and N. Sourlas, PRL **122**, 240603 (2019).

- So far, we have checked about dimensional reduction which seems to exists between D=5 RFIM and D=3 IM.
- What about supersymmetry predicted by Parisi and Sourlas (1979)? Dimensional reduction is a consequence of supersymmetry, not the other way around !!!
- Dimensional reduction was measured on the exponents. We can also consider $U_4, \xi/L$. These quantities are associated to boundary conditions, which are not the same in 3D and 5D.
- We consider measurements in 5D with the geometry :

$$L_x = L_y = L_z = L \; ; \; L_t = L_u = RL \; ; \; R \ge 1$$
 (2)

and look for the limit $R \to \infty$

Supersymmetry?

Introduction

New results

Back in 4D

Conclusions

- The correction limit is to take $R \to \infty$ before the thermodynamic limit, $L \to \infty$.
- This corresponds to restoring a partial supersymmetry O(2,2) in place of the original supersymmetry O(D,2), which was broken by the boundary conditions.
- We consider the disconnected correlation function

$$G_{(x_1,u);(x_2,u)}^{(dis)} = \overline{\langle S_{x_1,u} S_{x_2,u} \rangle} ,$$
 (3)

with x_1 or x_2 the 3 dimensional part and u the 2 dimensional part.

Supersymmetry prediction

$$G_{(x_1,u);(x_2,u)}^{(\text{dis})} = \mathcal{Z}G_{x_1;x_2}^{\text{3d Ising}} \tag{4}$$

with Z a position-independent normalization constant.

Supersymmetry?

Introduction

New results

Back in 4D

Conclusions

In practice, we first define a Fourier transform as :

$$\chi_k^{\text{(dis)}} = \frac{1}{L^{D-2}} \sum_{x_1, x_2} e^{ik \cdot (x_1 - x_2)} \overline{G_{(x_1, u_1); (x_2, u_2)}^{\text{(dis)}}}$$
(5)

• Compute a correlation length (\mathcal{Z} disappeared !!!).

$$\xi^{(\text{dis})} = \frac{1}{2\sin(\pi/L)} \sqrt{\frac{\chi^{(\text{dis})}_{(0,0,0)}}{\chi^{(\text{dis})}_{(2\pi/L,0,0)}} - 1} . \tag{6}$$

Similar argument also for the Binder ratio :

$$U_4(L) = \frac{\langle m_u^4 \rangle}{\overline{\langle m_u^2 \rangle}^2} \ . \tag{7}$$

Check of Supersymmetry

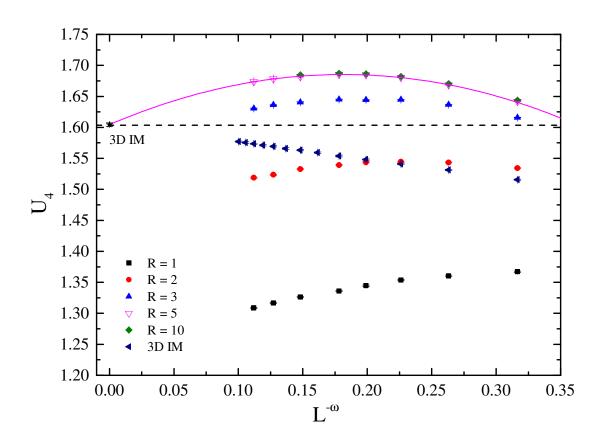
Introduction

New results

Back in 4D

Conclusions

 $U_4(L,R)$ vs. $L^{-\omega}$ for various R values, as computed in the D=5 RFIM.



Similar results for other quantities. Strong support for restoration of supersymmetry for D=5 (and not for D=4).

Introduction

New results

Back in 4D

Conclusions

Back in 4D

Introduction

New results

Back in 41

- It was argued by Brézin and De Dominicis (1998) that there exists additional interactions which become relevant as one decreases the dimension bellow the upper critical dimension D=6.
- Recently, Kaviraj, Rychkov, Trevisani (2020, 2021) considered again the problem of the existence of relevant operators starting from the upper critical dimension.
- Claim: there exists two operators which become relevant around $d_c=4.5$:
 "We thus predict that for d< d the Parisi-Sourlas fixed point is
 - "We thus predict that for $d < d_c$ the Parisi-Sourlas fixed point is destabilized, and the RFIM transition is described by another, non-supersymmetric, fixed point ..."
- In our results, we claimed to observe universality for the 4D RFIM and the absence of dimensional reduction. This was for Random fields with a Gaussian or Poissonian distribution by adjusting a single parameter σ , the variance of the distribution.

Introduction

New results

Back in 4.D

- Can we redo it while adjusting the parameters corresponding to these two operators, thus with three parameters? And what are these operators on the lattice?
- Brézin and De Dominicis (1998) argued that one of the relevant operators couples to the fourth cumulant of the distribution of the random fields (the kurtosis).
- Goal: finding the distribution for Random Fields such that the coupling to the two operators is fine-tuned to zero.
- Just changing the kurtosis (K_4) gives no new result if $K_4 > 3$ while a small change for $K_4 < 3$ but we flow back to the Gaussian case. $(K_4 = 3 \text{ for the Gaussian and } 6 \text{ for Poissonian}).$
- K_4 corresponds to one operator. One expects that the second operator couples with the sixth cumulant, K_6 .

Introduction

New results

Back in 41

- Changing together K_4 and K_6 , we observe a new behaviour for small values of these parameters.
- Good new: probably a new universality class with small K_4 and K_6 .
- Good new : K_4 and K_6 control the cross over. Other cumulants are not relevant.
- Bad new : $(K_4, K_6) \simeq (1, 1)$ which is the bimodal distribution and is a mess. In particular, degeneracy of the ground states.
- Ongoing work : determine precisely the value of K_4 , K_6 for the unstable fixed point. Check dimensional reduction and SUSY.

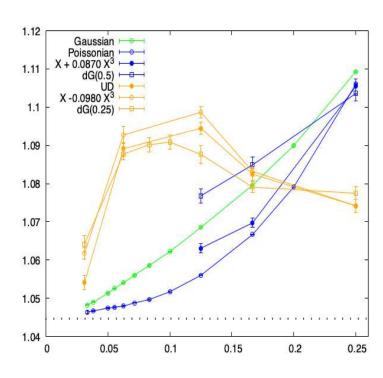
Introduction

New results

Back in 4.D

Conclusions

U_4 vs 1/L :



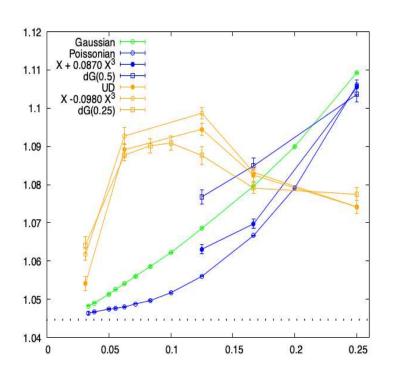
Introduction

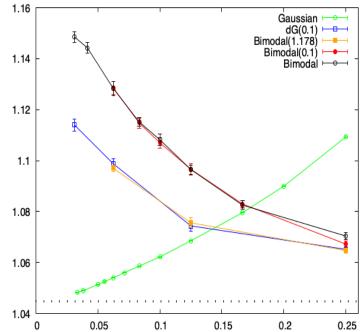
New results

Back in 4.D

Conclusions

U_4 vs 1/L :





Introduction

New results

Back in 4D

Conclusions

Conclusions

Introduction

New results

Back in 4D

Conclusions

- 1. We have developed powerful numerical and finite-size scaling tools for the study of the RFIM (hopefully useful for other disordered systems).
- 2. We have shown universality in the RFIM.
- 3. We provided high-accuracy estimates for various universal ratios and the whole set of critical exponents and relevant dimensions $D = \{4, 5\}.$

Our estimates for the critical exponents indicate that dimensional reduction seems to be at play at, or close to, D=5.

- 4. All the predictions of supersymmetry are satisfied between the D=5 RFIM and the D=3 Ising model with a good precision.
- 5. D = 4 is still (or again) a work in progress.