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Introduction
Quantum computing and the sign problem (I)

▶ Numerical solutions for interesting physical problems are
hindered by the infamous sign problem

▶ A noteworthy example is QCD at finite density. In lattice
QCD expectation values

⟨O⟩ = 1

Z

∫
DU O[U] e−S[U]

are computed by importance sampling, sampling gauge
configurations ∝ e−S .

At finite density S is complex: the theory is affected by a sign
problem which hinders the investigation of the QCD phase
diagram.
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Introduction
Quantum computing and the sign problem (II)

▶ Quantum computing has been proposed as a possible solution
to tackle the sign problem.

Here we are interested in the application of quantum
computing for calculating thermal averages.

▶ Quantum algorithms useful for our case:

▶ Quantum Metropolis Algorithm [K. Temme et al., 2011]

▶ Quantum-Quantum Metropolis Algorithm [M. H. Yung et al., 2012]

QMA seems to be advantageous (yesterday talk by G. Clemente)

▶ Idea: sample the energy eigenstates |ψi ⟩ according to the
Boltzmann weight e−βH using a quantum Markov chain.
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The quantum Metropolis algorithm
QMA in a nutshell (I)

▶ Required quantum registers:

Global state: |acc ,Ef ,Ei , ψ⟩
▶ System state, n qbits
▶ Energy at previous and next step, r + r qbits
▶ Acceptance, 1 qbit

▶ Steps (continues...):

1. Start from eigenstate |ψi ⟩ of energy Ei

|0, 0, 0, ψi ⟩

2. Measure energy Ei

|0, 0, 0, ψi ⟩ → |0, 0,Ei , ψi ⟩ (QPE)
Measure Ei

3. Metropolis proposal

|0, 0,Ei , ψi ⟩ → C |0, 0,Ei , ψi ⟩ =
∑

p α
c
ip |0, 0,Ei , ψp⟩
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The quantum Metropolis algorithm
QMA in a nutshell (II)

▶ Steps (...continued):

4. Metropolis accept-reject step [f (∆Epi ) = exp(−β∆Epi )]∑
p α

c
pi |0, 0,Ei , ψp⟩ →

∑
p α

c
ip |0,Ep ,Ei , ψp⟩ (QPE)

→
∑

p α
c
ip(

√
f (∆Epi )|1⟩+

√
1− f (∆Epi )|0⟩)⊗ |Ep ,Ei , ψp⟩ (W)

Measure acc

If acc = 1, measure Ep to obtain the new eigenstate. If acc = 0, the state
has to be reverted to the previous eigenstate.

No cloning theorem → try to revert the state
[we might fail, reset chain after Nmax attempts]

5. Measure observable

Measuring non-H-commutating observables destroys equilibration
→ some extra rethermalization steps are needed.

6. Iterate

▶ Sources of systematics: finite number of qbits for energy/state
representation, thermalization/rethermalization, Trotterization for
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Quantum simulation for the Hubbard model
The Hubbard model

▶ QMA applied to a frustrated triangle using a simulator

[G. Clemente et al., 2020]

▶ Now we consider the one-dimensional Hubbard model as a
prototype for more complex theories

H = −t
∑
⟨i ,j⟩σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ

t term ↔ interaction between fermions at different sites

U term ↔ interaction between fermions with different spin

µ is the chemical potential

▶ The theory is affected by a sign problem.
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Quantum simulation for the Hubbard model
Mapping the Hubbard model to a quantum computer

▶ Mapping the physical state requires 2 qbits per site:

occupation number of a given fermionic mode ↔ qbit state

▶ The Hamiltonian dynamics is encoded by anti-commutating
operators, but can be mapped to a quantum computer using
the Jordan-Wigner representation. This yields

H = −t

N−2∑
j=0

+
2N−2∑
j=N

 (σ−
j σ

+
j+1 + σ−

j+1σ
+
j )

+
U

4

N−1∑
j=0

(1j − σz
j )(1j+N − σz

j+N)− µ

2N−1∑
j=0

(1j − σz
j ) ,

were σ± = 1
2 (σ

x ± iσy ).
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Quantum simulation for the Hubbard model
Numerical results (I)

▶ We have considered the 2 sites case, i.e. the minimal case
that preserves the full structure of the Hamiltonian.

▶ Quantum registers:

2 · 2 qbits (system) + 2 · 7 qbits (energy) + 1 qbit (acceptance)

▶ Hadamard gates were used as unitary operators for the Metropolis
proposal.
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Quantum simulation for the Hubbard model
Numerical results (II)

▶ The simulations have been repeated at different β.

Numerical results are in agreement with the exact results.

8/18



Quantum simulation for the Hubbard model
Sources of systematics

Thermalization steps Trotter steps

Tolerance bins
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Hamiltonian evolution on IBM Quantum hardware
IBM Quantum Hardware

▶ As part of the INFN-CERN agreement we had access to a
27-qbit premium IBM machine (ibmq kolkata).

▶ relaxation time ≈ 100µs, gate time ≈ 400ns, cx err ≈ 10−2

But notice the high variability in the qbit quality metrics.

→ circuits with O(100) circuit depth and number of cx gates

▶ QMA circuit depth too large to run on current generation machines,
but we can test the Hamiltonian evolution which is a key ingredient
of the QPE and the QMA
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Hamiltonian evolution on IBM Quantum hardware
Hamiltonian evolution operator

▶ Hamiltonian evolution operator decomposed to native gates

▶ No all-to-all connectivity, a series of swap gates is required to
apply 2-qbit gates between unconnected qbits.

On ibmq kolkata with an optimal selection of the qbits the
evolution operator requires 2 swap gates per Trotter step.

Each trotter step: circuit depth ≈ 30, number of cx gates
≈ 20. Evolution performed using 4 Trotter steps at each t.
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Hamiltonian evolution on IBM Quantum hardware
Error mitigation strategies - ZNE (I)

Noise is present due to unintended interaction between the qbits
and the environment. Quantum error mitigation strategies:

▶ Zero noise extrapolation [K. Temme et al., 2017]

▶ General error mitigation [M. S. Jattana et al., 2020]

▶ Self-mitigation [S. A. Rahman et al., 2022]

▶ . . .

1. Zero noise extrapolation

Artificially inflate noise by replacing a subset of cx gates with
a larger odd number of cx gates, then extrapolate the results
in the limit of zero noise.
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Hamiltonian evolution on IBM Quantum hardware
Error mitigation strategies - ZNE (II)
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Hamiltonian evolution on IBM Quantum hardware
Error mitigation strategies - GEM (I)

2. General error mitigation

Postulate the existence of a 2N × 2N calibration matrix M such
that MV = E , where E are the exact data and V are the data
from the machine.

The columns of M can be reconstructed by running a calibration
circuit starting from all the 2N possible initial states for the qbits.

Calibration circuit: 2 trot. step for dt + 2 trot. steps for −dt.

We tested 2 possible workarounds to address the scalability
concerns:

▶ Use only partial information. Start from the identity matrix
and reconstruct only a few columns.

▶ Construct N 2× 2 calibration matrices for the individual qbits
and then build a tensored 2N × 2N calibration matrix out of
those.

14/18



Hamiltonian evolution on IBM Quantum hardware
Error mitigation strategies - GEM (II)
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Hamiltonian evolution on IBM Quantum hardware
Error mitigation strategies - SM

3. Self-mitigation

Describe the noise by a global incoherent depolarizing noise
model, ϵ(ρ) = (1− p)ρ+ p I

2N
.

The parameter p can be estimated by running a parner circuit with
known ouputs. Randomized compiling is used to convert coherent
noise to incoherent noise.

Partner circuit: 2 trot. step for dt + 2 trot. steps for −dt.
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Conclusions

In conclusion:

▶ we have applied the Quantum Metropolis algorithm to the
one-dimensional Hubbard model using a simulator and we were able
to recover the expected results at different β

▶ using the same model as a test bench we tested and compared the
effectiveness of various quantum error mitigation strategies on real
hardware

▶ we found it hard to keep systematic uncertainties under control with
Zero-noise extrapolation

▶ General error mitigation is more reliable and works better than ZNE;
the workarounds that we tested to lessen the scalability concerns do
not seem too detrimental to the final results

▶ Self-mitigation works better than GEM
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Thank you for listening!
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