Lattice determination of the topological susceptibility slope χ' of $2d \ \mathbb{CP}^{N-1}$ models at large N

Istituto Nazionale di Fisica Nucleare

Speaker: CLAUDIO BONANNO INFN FIRENZE Claudio.bonanno@fi.infn.it

SM&FT2022 THE XIX WORKSHOP ON STATISTICAL MECHANICS AND NON PERTURBATIVE FIELD THEORY

Frontiers in Computational Physics

Bari (Italy), December 19-21, 2022 Dipartimento di Fisica Università di Bari "Aldo Moro", INFN Sezione di Bari

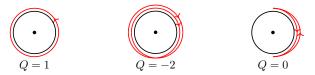
TALK BASED ON:

C. Bonanno, "Lattice determination of the topological susceptibility slope χ' of 2d CP^{N-1} models at large N", arXiv:2212.02330 [hep-lat]

The topological susceptibility slope χ'

In gauge theories, the **integer** topological charge $Q = \int d^d x q(x) \in \mathbb{Z}$ is a quantity corresponding to the number of windings of the gauge field around the group manifold

at $x \to \infty$:



Let us consider the **momentum expansion** of the Topological Charge Density Correlator up to $\mathcal{O}(p^4)$:

$$\widetilde{G}(p^2) = \int d^d x \, e^{ip \cdot x} \, \langle q(x)q(0) \rangle = \chi - \chi' p^2 + \mathcal{O}(p^4),$$
$$\chi = \int d^d x \, \langle q(x)q(0) \rangle = \frac{\langle Q^2 \rangle}{V}, \qquad \chi' = \frac{1}{2d} \int d^d x |x|^2 \, \langle q(x)q(0) \rangle \,.$$

LO term \rightarrow well-known topological susceptibility (see next talk by F. D'Angelo).

NLO term \rightarrow topological susceptibility slope χ' , subject of this talk.

Physical relevance of the susceptibility slope χ'

Interesting implications of χ' in QCD and QCD-like theories

- U(1)_A anomaly: Witten-Veneziano mechanism relates η' mass to the large-N limit of the top. susceptibility χ_{YM} of SU(N) pure-gauge theories. This relation holds if |χ'_{YM}| ≪ χ_{YM}/m²_{η'} in the large-N limit (Di Vecchia & Veneziano, Nucl. Phys. B 171, 253, 1980)
- Proton "spin": in QCD the chiral limit of χ'_{QCD} is related to the spin-polarized proton matrix element of the axial current J^a_{5,μ} (Shore & Veneziano, Phys. Lett. B 244, 75, 1990)
 - Lower dim. theories: in 2d CP^{N-1} models, it is possible to compute the large-N limit of χ' analytically within the 1/N expansion scheme:

$$\chi' = -\frac{3}{10\pi} \frac{1}{N} + 1.53671 \frac{1}{N^2} + \mathcal{O}\left(\frac{1}{N^3}\right)$$

(Campostrini & Rossi, Phys. Lett. B 272, 305, 1991)

Only preliminary lattice attempts to compute χ' (Boyd, Alles, D'Elia & Di Giacomo, 1997 [hep-lat/9711025]). Recently revived by QCD Sum Rule (Narison, 2022 [arXiv:2111.02873])

 \longrightarrow Goal: determine χ' on the lattice with state-of-the-art techniques.

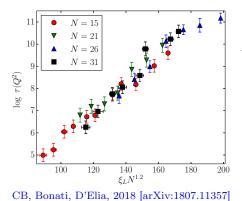
We start by investigating the simpler case of lattice $2d \ CP^{N-1}$ models at large N. Main issues to be addressed: **topological freezing** and **impact of smoothing**. C. Bonanno Lattice determination of χ' of $2d \ CP^{N-1}$ models at large N 19/12/22 2/9

Critical Slowing Down and Topological Freezing

Approaching the continuum limit $a \to 0$ ($\xi_L = \xi/a \to \infty$), Monte Carlo Markov Chains experience a **Critical Slowing Down** (CSD) when local updating algorithms (e.g., heat-bath) are employed.

 \mathbf{CSD} = autocorrelation time $\tau(\mathcal{O})$, i.e., number of updating steps to generate two gauge configurations with uncorrelated values of \mathcal{O} , grows with $1/a \sim \xi_L$.

For topological quantities, \mathbf{CSD} is particularly severe, further worsens increasing N.



Numerical evidence that $\tau(Q^2)$ diverges as $\sim \exp N$ at fixed ξ_L and vice-versa.

Adopted solution: Parallel Tempering on Boundary Conditions.

Proposed for $2d \text{ CP}^{N-1}$ models (Hasenbusch, 2017 [1706.04443]) and employed to study topology and θ -dependence in these theories (Berni, CB, D'Elia, 2019 [1911.03384]).

Recently implemented also in 4d SU(N) pure-gauge theories (CB, Bonati, D'Elia, 2021 [2012.14000]; CB, D'Elia, Lucini, Vadacchino, 2022 [2205.06190])

Parallel Tempering on Boundary Conditions

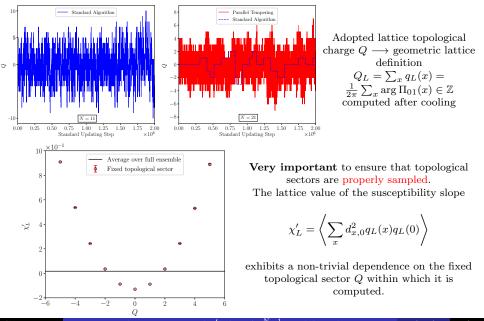
The Algorithm

 $\mathbf{C}.$

- consider a collection of N_r lattice replicas
- $\bullet\,$ replicas differ for boundary conditions on small sub-region: the defect
- each replica is updated with standard methods
- after updates, propose swaps among configurations via Metropolis test

	The Defect					• Links crossing the defect: $\beta \to \beta \cdot c(r)$.
•	•	•	•	•	•	• Periodic: $c = 1$. Open: $c = 0$.
•	•	•	•	•	•	Interpolating replicas: $0 < c(r) < 1$.
•	•	•	•	•	•	• Thanks to swaps, configuration does <i>random walk</i>
•	•	•	→•	•	•	through replicas \implies Faster decorrelation of Q in open replica is transferred to the periodic one.
•	•	•	→•	•	•	
•	•	•	→•	•	•	• Observables are computed on periodic replica \rightarrow easier to have finite-size effects under control (no boundary
•	•	•	≁	•	•	effects on the correlator).
Bonanno Lattice determination of χ' of 2d CP ^{N-1} models at large N 19/12/22 4						

Improvement at large N



C. Bonanno

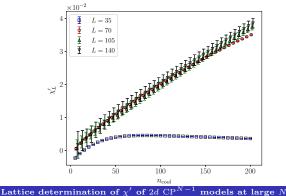
Lattice determination of χ' of $2d \ CP^{N-1}$ models at large N

19/12/22 5/9

Smoothing

- Smoothing algorithms damp short-distance fluctuations up to a smoothing radius ۲ $r_s \propto \sqrt{\text{amount of smoothing}}$
- Leaves global topological charge Q unaltered \implies typically amount of smoothing not ۲ critical for susceptibility $\chi \propto \langle Q^2 \rangle$
- Smoothing modifies short-distance behavior of Topological Charge Density • Correlator \implies quantities like χ' exhibit a non-trivial dependence on the amount of smoothing

Example below: smoothing method = cooling, $\chi'_L(n_{\text{cool}})$ for several lattice sizes (N = 11)



C. Bonanno

Double extrapolation

Strategy to compute χ' (following the steps of Altenkort et al., 2020 [arXiv:2012.08279])

1 Continuum limit at fixed smoothing radius r_s

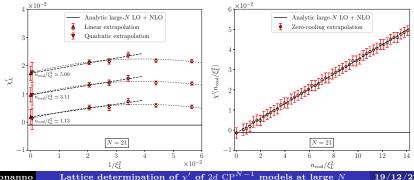
• consider determinations of χ'_L with same value of $n_{\rm cool}/\xi_L^2 \propto (r_s/\xi)^2$

•
$$\chi'(n_{\text{cool}}/\xi_L^2) = \chi'_L \big|_{n_{\text{cool}}/\xi_L^2} + c_1/\xi_L^2 + \dots$$

Zero-smoothing-limit $r_s \rightarrow 0$

- gradient flow formalism predicts (Altenkort et al., 2020 [arXiv:2012.08279]) $\langle q(x)q(0)\rangle(\tau_{\text{flow}}) = \langle q(x)q(0)\rangle + c_1\tau_{\text{flow}} + c_2\tau_{\text{flow}}^2 + \dots$
- numerical equivalence between cooling and gradient flow: $n_{\rm cool} \propto \tau_{\rm flow}$ (Bonati, D'Elia, 2014 [arXiv:1401.2441])

• We can expect
$$\implies \chi'(n_{\text{cool}}/\xi_L^2) = \chi' + c_1 n_{\text{cool}}/\xi_L^2 + \dots$$

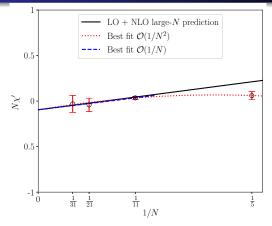


C. Bonanno

Lattice determination of χ' of 2d CP

19/12/227/9

Large-N limit of χ' (after double extrapolation)



Best fits:

Analytic:

$$N\chi' = -\frac{3}{10\pi} + 1.53671\frac{1}{N} + \mathcal{O}\left(\frac{1}{N^2}\right) \qquad N\chi' = -\frac{3}{10\pi} + 1.44(18)\frac{1}{N}$$

$$N\chi' = -\frac{3}{10\pi} + 1.97(37)\frac{1}{N} - 5.9(2.6)\frac{1}{N^2}$$

Coefficients grow in abs. value with alternating sign, similarly to what happens to χ and b_2 (Berni, CB, D'Elia, 2019 [arXiv:1911.03384]) \implies no surprise, 1/N series is asymptotic C. Bonanno Lattice determination of χ' of $2d \ \mathbb{CP}^{N-1}$ models at large N 19/12/22 8/9

Summary & Conclusions

- Combining state-of-the-art algorithms (Parallel Tempering on Boundary Conditions) and numerical techniques (double continuum + zero-smoothing extrapolations) it is possible to reliably determine topological susceptibility slope χ' from lattice Monte Carlo simulations
- results obtained for $2d \ CP^{N-1}$ models in the large-N limit are in perfect agreement with analytic predictions obtained with the 1/N expansion

Future Outlooks

- Currently in progress: investigation of χ' in SU(3) pure-gauge theory, in view of a study of its large-N limit
- Near future: investigation of χ' in full QCD (trickier computation, now χ' is no more a Renormalization-Group Invariant)