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Thermal averages: why quantum?

In order to characterize the phase diagram of lattice QFT models, we are
interested in computing thermal averages of observables O over a Gibbs
ensamble at temperature T , i.e.

⟨O⟩T = Tr[Oe−H/kT ]/Z .

Often this is possible via the path-integral formulation and Monte Carlo
techniques, but in many cases one incurs in the so called sign problem:

Euclidean action S ̸∈ R =⇒ weight ≯ 0 in the path-integral.

Unlike traditional Monte Carlo, quantum computing shows no sign problem:

It is possible to efficiently simulate at finite baryon density and with a
topological θ term, both extremely valuables for phenomenology.
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Computing Gibbs ensembles

Many approaches have been proposed, to mention a few:
> quantum metropolis methods; [B. Terhal, D. Di Vincenzo (2000)]

> quantum simulated annealing; [R. D. Somma et al. (2008)]

> approaches based on variational methods; [J. Whitfield et al. (2011)]

> many others. . .
In [GC et al., PRD 101 (2020) 7], we focused our analysis on the Quantum
Metropolis Sampling (QMS) algorithm, first introduced in [K. Temme et al.,

Nature 471 (2011) 87], showing its application to a system affected by sign
problem and analyzing sources of systematical errors.
Here we extend the discussion by considering another algorithm, in the
simulated annealing class, called the Quantum-Quantum Metropolis
Algorithm (Q2MA), first introduced in [M.-H. Yung and A. Aspuru-Guzik, Proc.

Natl. Acad. Sci. USA 109 (2012) 754]. In particular:

We analyze and compare the effects of systematical errors on the results
given by both QMS and Q2MA algorithms. [soon to be published]
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Output of QMS and Q2MA algorithm

Denoting eigenpairs as (Ek , |ψk⟩), the output is

QMS (Metropolis class) Q2MA (Simulated annealing class)

> Generate sequence of eigenstates
· · · → |ψki ⟩ →

∣∣ψki+1

〉
→ · · ·

sampled with probability
pk ≃ e−βEk/Z for each |ψk⟩;

> ρQMS = 1
M

∑M
i=1 |ψki ⟩ ⟨ψki |

> Generate coherent encoding of
thermal state (CETS):
|α⟩ ≃

∑
k

√
e−βEk/Z (β) |ψk⟩ ⊗ |ψ∗

k⟩;
> ρQ2MA ≃

∑
k

e−βEk

Z(β) |ψk⟩ ⟨ψk |

In practice, both algorithms prepare states which get destroyed after each
measurement.

We studied algorithm-specific systematical errors with our Simulator for
Universal Quantum Algorithms (SUQA), completely neglecting quantum
noise.
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Quantum Metropolis Sampling: general idea

[ K. Temme et al., Nature 471, (2011) 87, arXiv:0911.3635 [quant-ph]].

Philosophy: sample a Gibbs ensamble of energy eigenstates, i.e., weighted
as ρ(β) ∝ e−βH , via a quantum-driven Markov Chain which satisfies a
properly modified version of Detailed Balance.

Resources:
The global state of the QMS algorithm is encoded in four registers:
> state of the system (n qubits); (digitalization)
> energy before MC step (r qubits); (incommensurability)
> energy after MC step (r qubits); (as above)
> acceptance (1 qubit).

=⇒ basis elements:
∣∣acc ,Enew ,E old , ψ

〉
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Quantum-Quantum Metropolis Algorithm: general idea

[M.-H. Yung and A. Aspuru-Guzik, Proc. Natl. Acad. Sci. USA 109 (2012) 754]

Philosophy: start with infinite temperature (β0 = 0) state α0 and “lower
the temperature” by ∆β = β/na for na times (annealing steps), via
appropriate projections Π(∆β): |α0⟩

Π−→ |α1⟩
Π−→ · · · Π−→ |αna⟩, with Π in-

volving two quantum phase estimations (QPE): besides energy differences,
a Szegedy operator embeds a Markov matrix and requires a separate QPE.

Resources:
The global state of the Q2MA algorithm is encoded in four registers:
> system state (n qubits); (digitalization)
> dual copy of system state (n qubits); (digitalization)
> energy difference for QPE (r qubits); (incommensurability)
> ancilla for annealing step acceptance (1 qubit).

=⇒ basis elements: |acc ,∆E , ψ′, ψ⟩ (first two regs traced out)
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Sources of systematical errors or performance criticalities

Common to both algorithms
> Digitalization artifacts: representing physics of continuum d.o.f. with a

finite number of qubits n;
> Energy representation with finite number of qubits r :

incommensurable differences in energy =⇒ energy (phase-)estimation
always inexact with a finite number of qubits in the energy register;

> Finite Trotter step-size in the phase-estimation procedure.
QMS specific Q2MA specific

> Rethermalization steps between
(destructive) measurements;

> Threshold in number of reversal
attempts in case of reject.

> Finite number of annealing steps;
> Finite QPE resolution for

Szegedy projection.
> Finite QPE resolution for

Szegedy projection.

We considered a simple toy model devoid of the first three (common)
sources of systematical errors: the Frustrated Triangle.
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Minimal Model with Sign Problem: the Frustrated Triangle

Hamiltonian for an antiferromagnetic (J > 0) Ising triangle

H = J(σx ⊗ σx ⊗ 1 + σx ⊗ 1 ⊗ σx + 1 ⊗ σx ⊗ σx),

The path-integral with a finite number N of layers with 3-qubits states |αi ⟩
in the computational basis reads:

Z [β] = Tr
[
e−βH

]
=

∑
{αi}

N∏
i=1

⟨αi+1| e−
βH
N |αi ⟩ ,

where T ≡ e−
βH
N is the transfer matrix.

Here the sign-problem comes from non positive off-diagonal elements in
the transfer matrix (e.g. ⟨011| e−

βH
N |000⟩ < 0).

Useful as testbed to study algorithm-specific systematical errors: no dis-
cretization required (8 system states), exact energy representation (two
distinct energy levels) and no trotter error.
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Results ideal case: QMS energy discrepancy

Denoting by {Ei}Ni=1 the measurements of the energy for a sample of size
N, the quantities Ē ≡ 1

N

∑
i Ei

dEne ≡ |Ē − ⟨E ⟩exact|
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0.0001
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e
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Q2MA
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Results ideal case: QMS rho discrepancy (trace distance)

dTrD ≡ 1
2
Tr |ρ̄− ρexact|
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Both energy and trace distance errors vanish exponentially with the num-
ber of (re-)thermalization steps for QMS, while as a power law for Q2MA.
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Slightly non-ideal case: wrong energy range

What happens if we perform an inexact energy QPE (choosing different
range and qubit number)?

Quantum phase-estimation (QPE) requires fixing a uniform grid of 2r levels
in a certain range.

Considering exact eigenvalues [Em,EM ] and a deformation parameter δ we
considered two grid prescriptions:
> fixed (extrema) grid with range [Em − δ,EM + δ]: by increasing r ,

resolution increases, but inner grid points move;
> refined grid with range [Em − δ,EM + δ + (EM − Em + 2δ)(1 − 21−r )]:

new grid points at r + 1 are inserted between old ones at r (with some
offshot on the right).
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Non-ideal phase-estimation for QMS

QMS results of energy thermal average for Frustrated Triangle β = 0.25
and δ = 0.1:

Results stabilize as function of rethermalization steps, but systematical
error persists for wrong range QPE, no clear trend for small number of
energy qubits.
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Non-ideal phase-estimation for QMS: close-up

Close-up on convergence of the energy probability distribution for sufficient
number of energy qubits:
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Summary and Perspectives

To sum up:
> the sign problem, and the role of Quantum Computing as a solution,

have been discussed;
> we briefly overviewed the QMS [K. Temme et al. (2011)] and the Q2MA

[M.-H. Yung and A. Aspuru-Guzik (2012)] algorithms, comparing sources of
systematical errors;

> in the minimal systematical error case, the QMS shows advantage
with exponential convergence, unlike power law convergence of Q2MA.

Work in progress:
> we are applying these algorithms and systematical analysis beyond toy

systems;
> in particular, implementing codes for non-abelian gauge systems, for

which some modifications are in order, and the phase estimation
requires preservation of gauge-invariance. [NuQS Collaboration, PRD 11,

114501 (2019)]

Thank you for the attention!
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Additional slides
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QMS: sketch of the algorithm

Initialization: prepare |0⟩acc |0⟩Enew |0⟩Eold |ψk⟩syst. with |ψk⟩ eigenstate.

Phase estimation (PE) on E old : |0, 0, 0, ψk⟩
Φ(old)

−−−→ |0, 0,Ek , ψk⟩
M. Troyer and U. J. Wiese (2005) (Trotterization)
Quantum Metropolis trial: draw classically and apply an unitary operator
C to the state qubits followed by a PE on Enew

|0, 0,Ek , ψk⟩
C−→

∑
p

x
(C)
k,p |0, 0,Ek , ψp⟩

Φ(new)

−−−−→
∑
p

x
(C)
k,p |0,Ep,Ek , ψp⟩ .

Acceptance evaluation: apply an appropriate operator W (Ep,Ek) to the
acceptance qubit ∑

p

x
(C)
k,p |0,Ep,Ek , ψp⟩

W−→

∑
p

x
(C)
k,p

(
f (∆Ep,k) |1⟩+

√
1 − f (∆Ep,k) |0⟩

)
⊗ |Ep,Ek , ψp⟩ ,

where f (∆Ep,k) ≡ min
(
1, e−β(Ep−Ek )/2

)
.
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C to the state qubits followed by a PE on Enew

|0, 0,Ek , ψk⟩
C−→

∑
p

x
(C)
k,p |0, 0,Ek , ψp⟩

Φ(new)

−−−−→
∑
p

x
(C)
k,p |0,Ep,Ek , ψp⟩ .

Acceptance evaluation: apply an appropriate operator W (Ep,Ek) to the
acceptance qubit ∑

p

x
(C)
k,p |0,Ep,Ek , ψp⟩

W−→

∑
p

x
(C)
k,p

(
f (∆Ep,k) |1⟩+

√
1 − f (∆Ep,k) |0⟩

)
⊗ |Ep,Ek , ψp⟩ ,

where f (∆Ep,k) ≡ min
(
1, e−β(Ep−Ek )/2

)
.
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QMS: sketch of the algorithm (cont.d)

accept/reject: measure on the acceptance qubit; two possibilities:
> 1 means accept: we proceed with measuring on the Enew register, so

we obtain a new eigenstate on the state register.
> 0 means reject: we need to revert the system to the initial state by

trying to project back until Enew == E old . (threshold on reversal
steps)

Energy measures are taken at each MC step, without cost.
Measuring non-H-commuting observables breaks the chain: a certain
number of rethermalization steps are required.
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Fluctuation behavior of inexact phase estimation

Energy estimate for an eigenstate with exact energy 1√
2
.
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num. qbits
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>
-E

ex
ac

t)/
σ

(E
)

Error decreases as 2−(num. qbits), while the discrepancy stays of the same
order of magnitude of the error.
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Phase estimation: QMS with incommensurable levels

Energy levels: 0, 1
2 , 1√

2
and 3

4 .

0 0,2 0,4 0,6 0,8 1
E

0

0,1

0,2
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0,4

0,5

p
(E

)

exact
r = 2
r = 3
r = 4
r = 5

The measured energy distribution seems to converge to the exact result
for increasing energy qbits.
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Reversal steps in the QMS algorithm

0 20 40 60
reverting steps

0

0,1

0,2

0,3

0,4

p
β = 0.1

β = 0.5

β = 1.0

The typical number of steps needed for reverting back the state is relatively
small. Small β behave worse.
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The Frustrated Triangle: transfer matrix

From the Hamiltonian:

H = J(σx ⊗ σx ⊗ 1 + σx ⊗ 1 ⊗ σx + 1 ⊗ σx ⊗ σx),

straightforward calculations bring us to the following formula for the
transfer matrix:

e−
βH
N =

1
4

[(
e−3βJ

N + 3e+
βJ
N

)
1 +

(
e−3βJ

N − e+
βJ
N

) H

J

]
.

Clearly,
(
e−3βJ

N − e+
βJ
N

)
< 0 for βJ > 0; this is the origin of the sign

problem.
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