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Topological phase transitions

PHASES OF MATTER TOPOLOGICAL PHASES OF MATTER

Different phases are 
characterized by

different sorts of symmetry

Existence of a (local) order 
parameter “m”

m=0           disordered phase

m≠0                ordered phase

Higher symmetry

Lower symmetry

No symmetry breaking mechanisms
Robust and insensitive to perturbations and impurities

Quantized and robust foundamental properties
(Chern number/Zak phase/number of edge states)



Su-Schrieffer-Heeger model 
(with periodic boundary conditions)

Introduced in 1979, to describe the increase of electrical conductivity of polyacetylene polymer. 

It is a quantum mechanical tight binding model, that describes the hopping of spinless electrons in a chain 
with two alternating types of bonds, Jodd and Jeven.

Undergoes a topological phase transition as a function of Jodd/Jeven

Quantized Berry phase integrated over the Brillouin zone (polarization, winding number)



Su-Schrieffer-Heeger model 
(with open boundary conditions)

Jodd/Jeven

Jodd>Jeven

Jodd<Jeven Topological non-trivial phase

Topological trivial phase

Jo

Je

Jo

Je



Disorder and Topology

UNCORRELATED 
DISORDER (in 1D) 

CORRELATED 
DISORDER (in 1D) 

Full localization of wavefunctions (insulating phase)

Reentrant topological phases

Existence of a «mobility edge» 
(localization/delocalization transition)

Induce topological phases transitions



*G. Lindblad - ON THE GENERATORS OF QUANTUM DYNAMICAL SEMIGROUPS 

Based on the following requests:

- Markov (no memory effect)

- Trace preserving (                                  )

- Completely positive (                                    )

Lindblad master equation

PHYSICAL DERIVATION

tracing out bath degree of freedom

Based on the following approximations:

- Born (small system-bath coupling)

- Markov (no memory effects)

- Rotating wave (no high oscillating terms)

MATHEMATICAL DERIVATION

Markovian CPT/Krauss map

*H.-P. Breuer · F. Petruccione - THE THEORY OF OPEN QUANTUM SYSTEMS 



Lindblad master equation

Liouvillian
(coherent evolution)

Lindbladian
(incoherent evolution)

Lindblad jump operators

Jump

Drift



Je

Lindblad master equation

Jo

We inject and drain electrons from the boundaries of the system

and focus on transport properties and occupations numbers at the NESS

*G. Benenti, G. Casati, T. Prosen, D. Rossini, and M. Znidaric, Phys. Rev. B 80, 035110 (2009)
*A. Nava, M. Rossi, and D. Giuliano, Phys. Rev. B 103, 115139 (2021)



Je

SSH – Clean Limit

Jo

If the chemical potential is set to 0 the spectrum of the Hamiltonian is invariant under the “chiral operator”

μ=0



At each odd bond of the chain we may have single electron hopping Jo either equal to 1, or to 
(1−W), with probability respectively given by σ and 1 − σ

Je=1

SSH – Correlated bond disorder

Jo=1

Jo=1-W

This kind of disorder preserves the chiral invariance



We randomly assign to the chemical potential at both sites of each elementary cell (that is, two 
consecutive odd and even sites) either one of two selected values: 0 or W

SSH – Dimer disorder

μ=0

This kind of disorder breaks the chiral invariance

μ=W

μ=W



SSH – partecipation ratio

• The most effective way of probing the disorder-induced localization in one-dimensional systems is 
through dc current transport measurements

• In the linear response regime, the current is proportional to the zero-energy transmission coefficient T
across the chain and is therefore exponentially suppressed with L

• However, due to the presence of the dimerization gap, the SSH chain is insulating even in the absence of 
disorder

• It has been proposed to look at the normal- and at the inverse-participation ratio

• In the thermodynamic limit, NPR = 0 corresponds to localization of all the states, while IPR = 0 
corresponds to all the states being delocalized.



SSH – Mobility Edge

*P. H. Guimaraes, G. T. Landi, and M. J. de Oliveira, Phys. Rev. E 94, 032139 (2016)

• Driving the chain to the large-bias limit allows for using charge transport to probe the localization 
transition even for the insulating system

• Instead, once the system is driven toward the NESS, the stationary current keeps finite as L increases
even if the system is gapped

• On turning on the disorder, the current is suppressed, due to the strong localization effect of random 
disorder in onedimensional systems, thus signaling the onset of the delocalization/localization transition 
in the electronic states in the chain

• The existence of a “Mobility edge” is indeed "naturally" revealed by the stationary current maintaining a 
finite value, even on increasing L



SSH – Mobility Edge in clean limit

*P. H. Guimaraes, G. T. Landi, and M. J. de Oliveira, Phys. Rev. E 94, 032139 (2016)

• In absence of disorder

Analytical

Lindblad



SSH – Mobility Edge disorder L=20

Bond dirsorder Dimer dirsorder

W W

Je/Jo Je-Jo
Jo+Jo



SSH – Mobility Edge disorder L=80

Bond dirsorder Dimer dirsorder

W W

Je/Jo Je-Jo
Jo+Jo



SSH – Topology

*S.-N. Liu, G.-Q. Zhang, L.-Z. Tang, and D.-W. Zhang, Physics Letters A 431, 128004 (2022)

• When the system is at equilibrium, the onset of the topological phase corresponds to a nonzero value of 
the winding 

• Alternative physical quantities sensible to the onset of nontrivial topology have been proposed. The 
DAWN has been proposed in the presence of disorder described by a potential that preserve chiral 
invariance

• The DAWN does not work if the disorder does not anticommute with the chiral operator



SSH – Even-Odd occupance

• We introduce

• The EOD measures the net average occupancy of the odd sites minus the one of the even sites of the chain 

Topological Trivial



SSH – Even-Odd occupance

• We introduce

• The EOD measures the net average occupancy of the odd sites minus the one of the even sites of the chain 



SSH – Topological/trivial transition L=80

Bond dirsorder

W

Je/Jo

Je/Jo=1.5

Je/Jo=0.5

W

E

E

Topological

Trivial



SSH – Topological/trivial transition L=80

Dimer dirsorder

W

Je-Jo
Jo+Jo

Je-Jo
Jo+Jo

=0.95

Je-Jo
Jo+Jo

=-0.25

Topological

Trivial



Conclusions

• We have applied the Lindblad equation method to derive the phase diagram of an open SSH chain 
connected to two external baths in the large bias limit, in the presence of bond and of dimer disorder

• Biasing the external baths has allowed us to stabilize a non-equilibrium steady state, characterized by a 
steady current 

• A simple transport measurement, combined with an appropriate scaling analysis, maps out the 
localization/delocalization transition in the disordered chain

• The even-odd differential occupancy allows to distinguish between topologically trivial and nontrivial 
phases even in presence of chiral invariance breaking disorder



THANK YOU



SSH – NPR vs Current

Bond dirsorder Dimer dirsorder

W W

Je/Jo Je-Jo
Jo+Jo


	Diapositiva 1: Lindblad master equation approach to the topological phase transition in the disordered Su-Schrieffer-Heeger model  - The fate of the mobility edge and the topological phase  in presence of correlated - (non) chiral disorder
	Diapositiva 2: Topological phase transitions
	Diapositiva 3: Su-Schrieffer-Heeger model  (with periodic boundary conditions)
	Diapositiva 4: Su-Schrieffer-Heeger model  (with open boundary conditions)
	Diapositiva 5: Disorder and Topology
	Diapositiva 6: Lindblad master equation
	Diapositiva 7: Lindblad master equation
	Diapositiva 8: Lindblad master equation
	Diapositiva 9: SSH – Clean Limit
	Diapositiva 10: SSH – Correlated bond disorder
	Diapositiva 11: SSH – Dimer disorder
	Diapositiva 12: SSH – partecipation ratio
	Diapositiva 13: SSH – Mobility Edge
	Diapositiva 14: SSH – Mobility Edge in clean limit
	Diapositiva 15: SSH – Mobility Edge disorder L=20
	Diapositiva 16: SSH – Mobility Edge disorder L=80
	Diapositiva 17: SSH – Topology
	Diapositiva 18: SSH – Even-Odd occupance
	Diapositiva 19: SSH – Even-Odd occupance
	Diapositiva 20: SSH – Topological/trivial transition L=80
	Diapositiva 21: SSH – Topological/trivial transition L=80
	Diapositiva 22: Conclusions
	Diapositiva 23: THANK YOU
	Diapositiva 24: SSH – NPR vs Current

