

From classical to quantum Markov chains: known and new results

Daniele Amato

University of Bari and INFN daniele.amato@ba.infn.it

Joint work with P. Facchi and A. Konderak (UNIBA)

SM&FT 2022, University of Bari, 19th December 2022

Classical Markov chains: an appetizer

 $\mathsf{Markov}\ \mathsf{chains} \Rightarrow \mathbf{memoryless}\ \mathsf{process}$

Classical Markov chains: an appetizer

Markov chains ⇒ memoryless process

Applications:

- physics
- economics
- biology
- chemistry
-

Markov chain Monte Carlo methods

Goal: sample a known probability distribution π

Solution: sample a Markov chain with stationary distribution π

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953).

W. K. Hastings, Biometrika 57, 97 (1970).

Markov chain Monte Carlo methods

Goal: sample a known probability distribution π

Solution: sample a Markov chain with stationary distribution π

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953).

W. K. Hastings, Biometrika 57, 97 (1970).

Markov chain Monte Carlo methods

Goal: sample a known probability distribution π

Solution: sample a Markov chain with stationary distribution π

Main message

Markov chain Monte Carlo = $(Markov chain problem)^{-1}$

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953).

W. K. Hastings, Biometrika 57, 97 (1970).

Discrete-time (classical) Markov chain

 X_1, X_2, \ldots random variables in $(\Omega, \mathcal{F}, \mathbb{P})$

 Ω **finite** state space, card(Ω) = d

R. B. Bapat, R. B. Bapat, and T. E. S. Raghavan, Nonnegative matrices and applications, Cambridge University Press (1997).

Discrete-time (classical) Markov chain

 X_1, X_2, \ldots random variables in $(\Omega, \mathcal{F}, \mathbb{P})$

 Ω **finite** state space, $\operatorname{card}(\Omega) = d$

Markov property

$$\mathbb{P}(X_n = x | X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = \mathbb{P}(X_n = x | X_{n-1} = x_{n-1})$$

Discrete-time (classical) Markov chain

 X_1, X_2, \ldots random variables in $(\Omega, \mathcal{F}, \mathbb{P})$

 Ω **finite** state space, card(Ω) = d

Markov property

$$\mathbb{P}(X_n = x | X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = \mathbb{P}(X_n = x | X_{n-1} = x_{n-1})$$

- $p(x) := \mathbb{P}(X_0 = x)$ initial probability distribution
- $Q_{ij} := \mathbb{P}(X_{n+1} = x_i | X_n = x_j)$ stochastic (or transition) matrix

Discrete-time (classical) Markov chain

 X_1, X_2, \ldots random variables in $(\Omega, \mathcal{F}, \mathbb{P})$

 Ω **finite** state space, card(Ω) = d

Markov property

$$\mathbb{P}(X_n = x | X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = \mathbb{P}(X_n = x | X_{n-1} = x_{n-1})$$

- $p(x) := \mathbb{P}(X_0 = x)$ initial probability distribution
- $Q_{ij} := \mathbb{P}(X_{n+1} = x_i | X_n = x_j)$ stochastic (or transition) matrix
 - $Q_{ij} \geq 0$ (non-negativity)
 - $\sum_{i} Q_{ij} = 1$ (normalization)

Long-time behaviour of Markov chains

Normalization \Rightarrow $Q\pi = \pi$ stationary distribution

$$\mathbb{P}(X_n = x) = Q^n p(x)$$
 probability distribution at $t = n$

Long-time behaviour of Markov chains

Normalization $\Rightarrow Q\pi = \pi$ stationary distribution

$$\mathbb{P}(X_n = x) = Q^n p(x)$$
 probability distribution at $t = n$

Asymptotic limit: $n \to \infty$

Q stochastic matrix, $\sigma(Q)$ spectrum of Q

$$\sigma_P(Q) = \{\lambda \in \sigma(Q) \, | \, |\lambda| = 1\}$$
 peripheral spectrum of Q

Long-time behaviour of Markov chains

Normalization $\Rightarrow Q\pi = \pi$ stationary distribution

$$\mathbb{P}(X_n = x) = Q^n p(x)$$
 probability distribution at $t = n$

Asymptotic limit: $n \to \infty$

Q stochastic matrix, $\sigma(Q)$ spectrum of Q

$$\sigma_P(Q) = \{\lambda \in \sigma(Q) \mid |\lambda| = 1\}$$
 peripheral spectrum of Q

Main message

Peripheral eigenvalues (eigenvectors) related to the asymptotic behaviour

Irreducible and primitive stochastic matrices

Q stochastic matrix

- ullet Q irreducible $\Leftrightarrow 1$ simple eigenvalue with positive eigenvector
- Q **primitive** \Leftrightarrow irreducible and $\sigma_P(Q) = \{1\}$

R. B. Bapat, R. B. Bapat, and T. E. S. Raghavan, Nonnegative matrices and applications, Cambridge University Press (1997).

Irreducible and primitive stochastic matrices

Q stochastic matrix

- ullet Q irreducible $\Leftrightarrow 1$ simple eigenvalue with positive eigenvector
- Q **primitive** \Leftrightarrow irreducible and $\sigma_P(Q) = \{1\}$

$$Q$$
 irreducible $\Rightarrow \sigma_P(Q) \ni \lambda = e^{i\frac{2\pi k}{M}}$, $0 \le k \le M-1$, $1 \le M \le d$

Q primitive \Leftrightarrow all probability distributions converge to π

R. B. Bapat, R. B. Bapat, and T. E. S. Raghavan, Nonnegative matrices and applications, Cambridge University Press (1997).

Irreducible and primitive stochastic matrices

Q stochastic matrix

- ullet Q irreducible $\Leftrightarrow 1$ simple eigenvalue with positive eigenvector
- Q **primitive** \Leftrightarrow irreducible and $\sigma_P(Q) = \{1\}$

$$Q$$
 irreducible $\Rightarrow \sigma_P(Q) \ni \lambda = e^{i\frac{2\pi k}{M}}, \ 0 \le k \le M-1, \ 1 \le M \le d$

Q primitive \Leftrightarrow **all** probability distributions converge to π

Main message

Every stochastic matrix may be decomposed in terms of irreducible ones in the asymptotic limit

Quantum Markov chains: motivation

1) Quantum information theory: circuit notation

Quantum Markov chains: motivation

1) Quantum information theory: circuit notation

2) Attractor quantum neural networks (aQNNs):

Storage capacity \Leftrightarrow maximum # **stationary** states noisy dynamics

M. Lewenstein et al., Quantum Sci. Technol. 7, 029502 (2022).

M. Lewenstein et al., Quantum Sci. Technol. 6, 045002 (2021).

Open quantum systems

Universe

Classical Markov chain ↔ Quantum Markov chain

Finite state space \leftrightarrow *d*-dimensional **Hilbert** space

T. Heinosaari, and M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press (2011).

Classical Markov chain ↔ Quantum Markov chain

Finite state space \leftrightarrow *d*-dimensional **Hilbert** space

$$p(x)$$
 probability vector $\leftrightarrow \rho$ density matrix: $\rho \ge 0$, $tr(\rho) = 1$

T. Heinosaari, and M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press (2011).

Classical Markov chain \leftrightarrow Quantum Markov chain

Finite state space \leftrightarrow *d*-dimensional **Hilbert** space

$$p(x)$$
 probability vector $\leftrightarrow \rho$ density matrix: $\rho \ge 0$, $tr(\rho) = 1$

Q stochastic matrix $\leftrightarrow \Phi$ **Quantum channel**

Non-negativity of
$$Q\leftrightarrow$$
 Positivity of Φ : $\Phi(\rho)\geq 0$

Normalization of $Q \leftrightarrow$ **Trace-preservation** of Φ : $tr(\Phi(\rho)) = 1$

T. Heinosaari, and M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press (2011).

Classical Markov chain ↔ Quantum Markov chain

Finite state space \leftrightarrow *d*-dimensional **Hilbert** space

$$p(x)$$
 probability vector $\leftrightarrow \rho$ density matrix: $\rho \ge 0$, $tr(\rho) = 1$

Q stochastic matrix $\leftrightarrow \Phi$ **Quantum channel**

Non-negativity of
$$Q\leftrightarrow$$
 Positivity of Φ : $\Phi(\rho)\geq 0$

Normalization of
$$Q \leftrightarrow$$
 Trace-preservation of Φ : $tr(\Phi(\rho)) = 1$

 ${\sf Entanglement} \Rightarrow \Phi \ \textbf{completely positive}$

T. Heinosaari, and M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press (2011).

Classical Markov chain ↔ Quantum Markov chain

Finite state space \leftrightarrow *d*-dimensional **Hilbert** space

$$p(x)$$
 probability vector $\leftrightarrow \rho$ density matrix: $\rho \ge 0$, $\operatorname{tr}(\rho) = 1$

Q stochastic matrix $\leftrightarrow \Phi$ **Quantum channel**

Non-negativity of
$$Q\leftrightarrow$$
 Positivity of Φ : $\Phi(\rho)\geq 0$

Normalization of $Q \leftrightarrow$ **Trace-preservation** of Φ : $tr(\Phi(\rho)) = 1$

 $\mathsf{Entanglement} \Rightarrow \Phi \ \textbf{completely positive}$

Main message

Complete positivity is a purely quantum concept!

T. Heinosaari, and M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press (2011).

Asymptotics of quantum channels

Trace-preservation $\Rightarrow \Phi(\rho_s) = \rho_s$ stationary state

Asymptotics of quantum channels

Trace-preservation
$$\Rightarrow \Phi(\rho_s) = \rho_s$$
 stationary state

$$\rho(n) = \Phi^n \rho(0)$$
 evolved state at $t = n$

Asymptotic limit: $n \to \infty$

Asymptotics of quantum channels

Trace-preservation $\Rightarrow \Phi(\rho_s) = \rho_s$ stationary state

$$\rho(n) = \Phi^n \rho(0)$$
 evolved state at $t = n$

Asymptotic limit: $n \to \infty$

 Φ quantum channel, $\sigma(\Phi)$ spectrum of Φ

$$\sigma_P(\Phi) = \{\lambda \in \sigma(\Phi) \, | \, |\lambda| = 1\}$$
 peripheral spectrum of Φ

Main message

Peripheral eigenvalues (eigenvectors) related to the asymptotic behaviour

Φ quantum channel

• Φ unitary $\Leftrightarrow \Phi(\rho) = U\rho U^{\dagger}$, U unitary matrix

Φ quantum channel

- Φ unitary $\Leftrightarrow \Phi(\rho) = U\rho U^{\dagger}$, U unitary matrix
- Φ irreducible $\Leftrightarrow 1$ simple eigenvalue with stationary state $\rho_s > 0$
- Φ **primitive** \Leftrightarrow irreducible and $\sigma_P(\Phi) = \{1\}$

- Φ quantum channel
 - Φ unitary $\Leftrightarrow \Phi(\rho) = U\rho U^{\dagger}$, U unitary matrix
 - Φ irreducible $\Leftrightarrow 1$ simple eigenvalue with stationary state $\rho_s > 0$
 - Φ **primitive** \Leftrightarrow irreducible and $\sigma_P(\Phi) = \{1\}$
- Φ irreducible $\Rightarrow \sigma_P(\Phi) \ni \lambda = e^{i\frac{2\pi k}{M}}$, $0 \le k \le M-1$, $1 \le M \le d$
- Φ primitive \Leftrightarrow **all** density matrices converge to ρ_s

- Φ quantum channel
 - Φ unitary $\Leftrightarrow \Phi(\rho) = U\rho U^{\dagger}$, U unitary matrix
- Φ irreducible $\Leftrightarrow 1$ simple eigenvalue with stationary state $\rho_s>0$
- Φ **primitive** \Leftrightarrow irreducible and $\sigma_P(\Phi) = \{1\}$

$$\Phi$$
 irreducible $\Rightarrow \sigma_P(\Phi) \ni \lambda = e^{i\frac{2\pi k}{M}}$, $0 \le k \le M-1$, $1 \le M \le d$

 Φ primitive \Leftrightarrow all density matrices converge to $\rho_{\it s}$

Main message

Every quantum channel may be decomposed in terms of unitary and irreducible ones in the asymptotic limit

D. Amato, P. Facchi, and A. Konderak, arXiv:2210.17513 [quant-ph] (2022).

Concluding remarks

 Long-time behaviour of classical Markov chains related to irreducible stochastic matrices

- Asymptotics of quantum Markov chains linked to unitary and irreducible quantum channels
- Quantum Channels (stochastic matrices) with a given asymptotics may be constructed

J. J. McDonald, Linear Algebra Appl. 363, 217 (2003).

D. Amato, P. Facchi, and A. Konderak, arXiv:2210.17513 [quant-ph] (2022).

Thanks for your attention.

Attractor subspace and asymptotic map

Asymptotic or **attractor** subspace $Attr(\Phi)$

$$\mathsf{Attr}(\Phi) = \mathsf{span}\{X \in \mathcal{M}_d \,|\, \Phi(X) = \lambda X \text{ for some } \lambda \in \sigma_P(\Phi)\}$$

$$\hat{\Phi}_P = \Phi|_{\mathsf{Attr}(\Phi)}$$
 asymptotic map of Φ

Universe

M. M. Wolf, Quantum channels & operations: Guided tour, Lecture Notes (2012).

Asymptotic dynamics: structure theorem

$$\mathsf{Attr}(\Phi)\ni X=\mathtt{0}_{d_0}\oplus\bigoplus_{k=1}^M X_k\otimes\rho_k$$

- $X_k \in \mathcal{M}_{d_k}$
- $0 < \rho_k \in \mathcal{M}_{m_k}$ density matrix
- $d_0 + \sum_{k=1}^M d_k m_k = d$

$$\hat{\Phi}_P(X) = 0_{d_0} \oplus \bigoplus_{k=1}^M U_k X_{\pi(k)} U_k^{\dagger} \otimes \rho_k$$

- ullet $U_k \in \mathcal{M}_{d_k}$ unitary
- π **permutation** on $\{1, \ldots, M\}$

Asymptotic dynamics: cyclic decomposition

$$\mathsf{Attr}(\Phi)\ni X=0_{d_0}\oplus\bigoplus_{c=1}^L X_c\otimes Y_c$$

- $X_c \in \mathcal{M}_{\tilde{d}_c}$
- $Y_c \in Attr(\Phi_c)$, Φ_c irreducible channel on $\mathcal{M}_{\tilde{m}_c}$
- $d_0 + \sum_{c=1}^L \tilde{m}_c \tilde{d}_c = d$

$$\hat{\Phi}_P(X) = 0_{d_0} \oplus \bigoplus_{c=1}^L \tilde{U}_c X_c \tilde{U}_c^{\dagger} \otimes \Phi_c(Y_c)$$

- ullet $ilde{U}_c \in \mathcal{M}_{ ilde{d}_c}$ unitary
- Factorization of permutations and unitary evolutions

Asymptotic dynamics of unitary and irreducible channels

Unitary channel

$$\mathsf{Attr}(\Phi) = \mathcal{M}_d, \quad \hat{\Phi}_P = \Phi$$

Irreducible channel

$$\mathsf{Attr}(\Phi)
i X = \bigoplus_{k=1}^M c_k \rho_k, \quad \hat{\Phi}_P(X) = \bigoplus_{k=1}^M c_{\pi(k)} \rho_k$$

- $c_k \in \mathbb{C}$
- π **cyclic** permutation on $\{1, \ldots, M\}$

Quantum channels with a given asymptotics

Given

$$\mathcal{K} = \mathbf{0}_{d_0} \oplus \bigoplus_{k=1}^{M} \mathcal{M}_{d_k} \otimes \rho_k$$

and $\Psi: \mathcal{K} \mapsto \mathcal{K}$ of the form

$$\Psi(X) = 0_{d_0} \oplus igoplus_{k=1}^M U_k X_{\pi(k)} U_k^\dagger \otimes
ho_k$$

then there exists a quantum channel Φ such that

$$\mathsf{Attr}(\Phi) = \mathcal{K}$$
$$\hat{\Phi}_P = \Psi$$

The proof is **constructive**!

D. Amato, P. Facchi, and A. Konderak, arXiv:2210.17513 [quant-ph] (2022).