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State of the art: the ODE/IM correspondence
• Consider the ODE (Schroedinger)
− d2

dx2ψ(x) +
(
`(`+1)

x2 + x2M
)
ψ(x) = Eψ(x)

A solution y(x) ∼ x−M/2 exp
(
− xM+1

M+1

)
as x → +∞

Two solutions χ+ ∼ x`+1 , χ− ∼ x−` as x → 0
Connection coefficients Q±(E): y(x) = Q+(E)χ−(x) + Q−(E)χ+(x)
Q±(E) are vacuum eigenvalues of Q-operators (Q-functions) of CFT minimal
models Dorey,Tateo; Bazhanov, Lukyanov, Zamolodchikov ’98

• Generalisation: PDEs (∂w + V (w , w̄))Ψ = (∂w̄ + V̄ (w , w̄))Ψ = 0, V , V̄ 2x2
matrices: a Lax pair. The compatibility condition ∂w V̄ − ∂w̄ V + [V , V̄ ] = 0
defines classical equations for the entries of V , V̄ .

A particular choice of V and V̄ depends on a field η̂, solution of the classical
sinh-Gordon equation. In this case connection coefficients between different
vector solutions Ψ are Q-functions of sine-Gordon model Gaiotto-Moore-Neitzke

’08,’09; Lukyanov, Zamolodchikov ’10

• Infinite number of conserved charges: vacuum eigenvalues In, Īn appear in
asymptotic expansion at |Reθ| → +∞ of Q-functions Q±(θ)
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Plan: give an explanation for ODE/IM

Why do ODE/IM appear? To answer this question, we reverse the arrow. We
start from quantum integrable field theories: for a large class of them a state
is characterised by Baxter’s TQ-relations (T is the eigenvalue of the transfer
matrix)

T (θ)Q±(θ) = φ1(θ)Q±(θ + iγ) + φ2(θ)Q±(θ − iγ) ,

with T ,Q± entire (state dependent) functions and φi given functions. When
θ = θ+

n (θ = θ−n ) zero of Q+ (or Q−), a TQ-relation implies Bethe equations

φ1(θ±n )Q±(θ±n + iγ) + φ2(θ±n )Q±(θ±n − iγ) = 0 .

We want to associate to a state of a quantum integrable model a classical

model: two PDEs (Lax pair). Tool: A Marchenko-like equation Marchenko ’55

We will discuss the example of sine-Gordon model in the vacuum, but the
discussion can be made more general.
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Functional relations

Example of sine-Gordon model on a cylinder

L =
1

16π

[
(∂tϕ)2 − (∂xϕ)2

]
+ 2µ cos βϕ , ϕ(x + R, t) = ϕ(x, t)

Different k -vacua: ϕ→ ϕ+ 2π/β ⇒ |Ψk 〉 → e2πik |Ψk 〉. Q-functions are
Q±(θ) (± sign of k ). Some properties of Q±.

I Entire quasi-periodic functions: Q±(θ + iτ) = e±iπ
(
`+ 1

2

)
Q±(θ), ` = 2|k| − 1/2,

quasi-period τ = π/(1− β2)

I TQ-relation

T (θ)Q±(θ) = e∓iπ
(
`+ 1

2

)
Q±(θ + iπ) + e±iπ

(
`+ 1

2

)
Q±(θ − iπ)

I Asymptotics: ln Q±(θ + iτ/2) ' −w0eθ − w̄0e−θ , w0 = − MR

4 cos πβ2

2(1−β2)

I Extensions: Homogeneous sine-Gordon model (many masses)
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From functional relations to integral equations

I Q± are the unique entire functions solutions of the integral equation

Q±(θ + iτ/2) = q±(θ)±
∫ +∞

−∞

dθ′

4π
tanh

θ − θ′

2
T
(
θ
′ + i

τ

2

)
e−w0(eθ+eθ

′
)−w̄0(e−θ+e−θ

′
) ·

·e±(θ−θ′)`Q±
(
θ
′ + i

τ

2

)
, q±(θ) = e±

iπ
4 ±

(
θ+ iπ

2

)
`e−w0eθ−w̄0e−θ

I The TQ-relation holds due to the property (of the kernel on continuous
functions):

lim
ε→0+

[
tanh

(
x +

iπ
2
− iε

)
− tanh

(
x −

iπ
2

+ iε
)]

= 2πiδ(x) , x ∈ R .

I Define the functions X±(θ): q±(θ)X±(θ) = Q±(θ + iτ/2)

I Make w0, w̄0 dynamical: w0 → −iw ′, w̄0 → iw̄ ′, X±(θ)→ X±(w ′, w̄ ′|θ)

I Integral equation satisfied by X±(w ′, w̄ ′|θ), λ = eθ:

X±(w ′, w̄ ′|θ) = 1±
∫ +∞

0

dλ′

4πλ′
λ− λ′

λ + λ′
T (λ′e

iτ
2 )e−2iw′λ′+2i w̄′

λ′ X±(w ′, w̄ ′|θ′)
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Getting a Marchenko-like equation

I We define a Fourier transform of X± − 1 (with an active role for w ′)

K±(w ′, ξ; w̄ ′) =

∫ +∞−iε

−∞−iε
dλei(ξ−w′)λ[X±(w ′, w̄ ′|θ)− 1] .

I Let us take the Fourier transform of the integral equation for X±. We get

K±(w ′, ξ; w̄ ′)± F (w ′ + ξ; w̄ ′)±
∫ +∞

w′

dξ′

2π
K±(w ′, ξ′; w̄ ′)F (ξ′ + ξ; w̄ ′) = 0 , ξ > w ′ ,

with F (x ; w̄ ′) = i
∫ +∞

0 dλ′e−ixλ′+2i w̄′
λ′ T (λ′ei τ2 ).

I This has the structure of a Marchenko equation appearing in quantum
inverse scattering (from scattering data and bound states to
Schroedinger). However for usual Marchenko
F (x) =

∫ +∞
−∞ dλe−ixλ(S(λ)− 1) +

∑
n

S(λn) : S=S-matrix, λn bound states

I In our construction scattering data and bound states are encoded in T ,
vacuum eigenvalue of the transfer matrix of a quantum integrable model.
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From Marchenko-like to Schroedinger

I Define the wave function ψ±(w ′, w̄ ′|θ) = e−iw′λ+i w̄′
λ X±(w ′, w̄ ′|θ),

X±(w ′, w̄ ′|θ)− 1 =

∫ +∞

w′

dξ
2π

e−i(ξ−w′)λK±(w ′, ξ; w̄ ′) , λ = eθ

I Differentiate (twice) and use our Marchenko-like equation: we get

−
∂2

∂w ′2
ψ±(w ′, w̄ ′|θ) + u±(w ′; w̄ ′)ψ±(w ′, w̄ ′|θ) = e2θ

ψ±(w ′, w̄ ′|θ) ,

i.e. Schroedinger equations with potentials

u±(w ′; w̄ ′) = −2
d

dw ′
K±(w ′,w ′; w̄ ′)

2π
.

I Explicit solution of Marchenko equation gives access to the potential and
the (Jost) wave function. The potential is

u±(w ′; w̄ ′) = ∓∂w′2 η̂ + (∂w′ η̂)2
, η̂ = ln det(1 + V̂ )− ln det(1− V̂ )

V (θ, θ′) =
T
(
θ + i τ2

)
4π

e−2iw′eθ+2iw̄′e−θ

cosh θ−θ′
2
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Wave function and first Lax

I The wave function is ψ±(w ′, w̄ ′|θ) = X±(w ′, w̄ ′|θ)e−iw′λ+i w̄′
λ ,

X±(w ′, w̄ ′|θ) = −2∓
∫

dθ′

4π
e
θ−θ′

2 V (θ, θ′)X±(w ′, w̄ ′|θ′)

I To summarise, we have obtained two Schroedinger equations

−
∂2

∂w ′2
ψ±(w ′, w̄ ′|θ) + u±(w ′; w̄ ′)ψ±(w ′, w̄ ′|θ) = e2θ

ψ±(w ′, w̄ ′|θ) .

I Introduce Dη̂ = ∂w + 1
2∂w η̂ σ

3 − eθ+η̂σ+ − eθ−η̂σ−.

D =

(
Dη̂ 0
0 D−η̂

)
, Ψ =


e
θ+η̂

2 ψ+

e−
θ+η̂

2 (∂w + ∂w η̂)ψ+

e
θ−η̂

2 ψ−

e−
θ−η̂

2 (∂w − ∂w η̂)ψ−


I The first order matrix equation DΨ = 0 (the first Lax) is equivalent to

Schroedinger equations in w ′
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Second Lax
I A differential equation in w̄ ′ is defined by using the Fourier transform

K bis
± (w̄ ′, ξ; w ′) =

∫ +∞−iε

−∞−iε
dλ−1ei(ξ+w̄′)λ−1

[X±(w ′, w̄ ′|θ)− 1] ,

(with active role for w̄ ′) on the equation for X±. Following the Marchenko
procedure, we end up with the ’conjugate’ differential equation

−
∂2

∂w̄ ′ 2
ψ

bis
± (w ′, w̄ ′|θ) + ū∓(w ′, w̄ ′)ψbis

± (w ′, w̄ ′|θ) = e−2θ
ψ

bis
± (w ′, w̄ ′|θ)

for

ψ
bis
± (w ′, w̄ ′|θ) = e−iw′λ+iw̄′λ−1

[
1 +

∫ +∞

−w̄′

dξ
2π

e−i(ξ+w̄′)λ−1
K bis
± (w̄ ′, ξ; w ′)

]
.

I Introduce D̄η̂ = ∂w̄ − 1
2∂w̄ η̂ σ

3 − e−θ+η̂σ− − e−θ−η̂σ+ and

D̄ =

(
D̄η̂ 0
0 D̄−η̂

)
, Ψbis =


e
θ−η̂

2 (∂w̄ + ∂w̄ η̂)ψbis
−

e−
θ−η̂

2 ψbis
−

e
θ+η̂

2 (∂w̄ − ∂w̄ η̂)ψbis
+

e−
θ+η̂

2 ψbis
+


I The first order matrix equation D̄Ψbis = 0 is equivalent to Schroedinger

equations in w̄ ′.
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The classical model

I Let us compare the two vectors Ψ and Ψbis.
I By examining the solutions we constructed we find that
ψbis
∓ (w ′, w̄ ′|θ) = ψ∓(w ′, w̄ ′|θ)e∓η̂(w,w̄).

I On the four-vectors this connection implies Ψ = −eθΨbis. Then, we can
write DΨ = D̄Ψ = 0: from this relations we get that [D, D̄]Ψ = 0, which
means for η̂

∂w∂w̄ η̂ = 2 sinh 2η̂ ,

i.e. that η̂ satisfies the classical sinh-Gordon equation.
I The two Lax problems DΨ = D̄Ψ = 0 coincide with the starting point of

usual ODE/IM construction (Lukyanov and Zamolodchikov). We have
completed our inverse construction.
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Conformal limit

I Potentials u±(w ′, w̄ ′) of Schroedinger equations are complicated
functions (Fredholm determinants)

I Simplifications occur in the conformal limit, when masses (w0)→ 0,
w̄ ′ → 0 and w ′ scales as

dw ′

dx
=
√

p(x)e−θ θ → +∞

with p(x) = x2M − E , M = 1/β2 − 1 (θ ’rapidity’).

I Then, the new wave function ψcft (x) = ψ+(w ′)p(x)−
1
4 satisfies the ODE

−
d2

dx2
ψ

cft (x) +

(
p(x) +

`(` + 1)

x2

)
ψ

cft (x) = 0

which is ODE considered by Dorey and Tateo and Bazhanov, Lukyanov,
Zamolodchikov in their ’98 papers.
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Summary and Perspectives

I We have given a possible explanation for the occurrence of the ODE/IM
correspondence. The idea is that the TQ-functional relation is equivalent
to a an equation with the form of a Marchenko equation. From this
Marchenko-like equation one gets Schroedinger equations.

I We have discussed the case of vacuum eigenvalues of T̂ , Q̂ for
sine-Gordon model.

I However, TQ-relations are common in quantum integrable models (they
are equivalent to Bethe Ansatz). The same connection to a classical
model can be found for other quantum models (e.g. spin chains).
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Back to quantum (usual path)

I As in usual ODE/IM, in the classical model we constructed we find Q
functions of (Homogeneous) sine-Gordon as connection coefficients
between different solutions.

I In the Wick rotated new variable w = iw ′, when w → w0 the potentials

u± ' −`(`± 1)/(w − w0)2

I We have solutions (Frobenius) that when w → w0

f (−`)
+ (w ′, w̄ ′) '

(
w − w0(~c)

)−`
, f (`+1)

+ (w ′, w̄ ′) '
(
w − w0(~c)

)`+1
,

f (`)
− (w ′, w̄ ′) '

(
w − w0(~c)

)`
, f (−`+1)
− (w ′, w̄ ′) '

(
w − w0(~c)

)−`+1
.

In terms of f we expand ψ±
ψ+(w ′, w̄ ′|θ) = −eθ(`+1)Q−(θ̂)f (`+1)

+ (w ′, w̄ ′) + e−θ`Q+(θ̂)f (−`)
+ (w ′, w̄ ′)

ψ−(w ′, w̄ ′|θ) = eθ`Q−(θ̂)f (`)
− (w ′, w̄ ′)− e−θ(`−1)Q+(θ̂)f (−`+1)

− (w ′, w̄ ′)

I Connection coefficients contain Q-functions of the quantum model:

lim
w→w0

(
w − w0

)±`
ψ±(w ′, w̄ ′|θ) = D±e∓θ`Q±

(
θ̂ = θ + i

τ

2

)
.
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Special case

I Particular case: β2 = 2/3, ` = 0 which imply T = 1
I Now η̂ = ln det(1 + V̂ )− ln det(1− V̂ ), with

V (θ, θ′) =
e−2iw′eθ+2iw̄′e−θ

4π cosh θ−θ′
2

I The field η̂ depends only on t = 4
√

w ′w̄ ′, w ′ = t
4 eiϕ and the

sinh-Gordon equation ∂w∂w̄ η̂ = 2 sinh 2η̂ reduces to the Painlevè III3
equation:

1
t

d
dt

(
t

d
dt
η̂(t)

)
=

1
2

sinh 2η̂(t)
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I The wave functions ψ±(w ′, w̄ ′|θ) depend only on t , θ + iϕ. Then, they
satisfy differential equations in t and θ. This means that
Q±(θ) = ψ±(t = 4w0|θ) satisfy also differential equations (in θ).

d2Q±(θ)

dθ2 + tanh(θ ± η̂0)

[
−dQ±(θ)

dθ
∓ 2w0η̂

′
0Q±(θ)

]
− 4w2

0 (η̂′0)2Q±(θ) +

+ 2w2
0 [cosh 2θ + cosh 2η̂0]Q±(θ) = 0 ,

where η̂0 = η̂(t = 4w0).
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