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Lattice gauge theories

Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 3 / 18

Lagrangian LGT:

I imaginary time τ = it

I discrete spacetime for
Monte Carlo methods

Z =

∫
Dφ e−S(φ)

x

τ

Hamiltonian simulation:

I discrete space

I input preparation,
evolution, measurements

|ψ(t)〉 = e−iHt |ψ(0)〉

|ψ(0)〉 |ψ(t)〉

|

0
|
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Unitary discretization of 1 + 1 QED

Notarnicola et al. J. Phys. A: Math. Theor. 48, 30FT01 2015
Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 4 / 18

Hamiltonian for the lattice with spacing a in one dimension:

H =
i

2a

∑
x

[
ψ†x+1U†x,x+1ψx − h.c.

]
+ m

∑
x

(−1)xψ†xψx +
ag2

2

∑
x

E2
x,x+1

Kogut-Susskind staggered fermions: solution for the doubling.

Cyclic group Zn

discretization {|e`〉}:
U |e`〉 = |e`+1〉
U |en〉 = |e1〉

Un = 1

Gauss law constraint for the physical states subspace:

Gx |φ〉 =
(
ψ†xψx +

(−1)x − 1
2

−
√

n
2π

(Ex,x+1 − Ex−1,x)

)
|φ〉 = 0
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Register encoding
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I Jordan-Wigner transformation maps the spinor field into a spin system

I Minimal complexity: Z2 with Ex,x+1 |↑〉 =
√
π

2 |↑〉 and Ex,x+1 |↓〉 = −
√
π

2 |↓〉

H = HJ +Hm =
J
2

N−1∑
x=0

(
σ−x Ux,x+1σ

+
x+1 + H.c.

)
− m

2

N−1∑
x=0

(−1)xZx,

with σ± = X±iY
2 , Pauli matrices X, Y, Z and occupied sites referred to |↓〉.

Physical states for a periodic lattice with N = 2 matter sites
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Dynamical quantum phase transitions
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Quench protocols: parameters dependent Hamiltonian H(γ)

H0 = H(γ0)

with ground state |ψ(0)〉 = |ψg〉
H = H(γf )

real-time evolution |ψ(t)〉 = e−iHt |ψg〉
−→

Loschmidt amplitude: G(t) = 〈ψg|ψ(t)〉 =⇒ L(t) = |G(t)|2 = e−Nλ(t)

rate
function

Schwinger model: H0 = H(m, J) −→ H = H(−m, J)

for J = m
L(t) zeros at

tj =
(2j + 1)π

2
√

2 m

ϕ(J, t) = arg G(t)
winding number

ν =
1

2π

∮
C

ds·∇ϕ,
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Quantum state tomography

Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 7 / 18

Pure state projector:
P = |ψ〉 〈ψ|, P2 = P

I it is possible to determine the
state using a measurement
just in one direction

I in general such direction is unkown a priori
(e.g. random noise processes)

Example:
single qubit case

ρ =
Tr{ρ}1+ Tr{Xρ}X + Tr{Yρ}Y + Tr{Zρ}Z

2
N qubit case

ρ =
∑

v

Tr{σv1 ⊗ · · · ⊗ σvNρ}σv1 ⊗ · · · ⊗ σvN

2N

with σ0 = 1, σ1 = X, σ2 = Y, σ3 = Z.
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Ground state preparation

Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 9 / 18

The encoding assigns each degree of freedom to a qubit qi, i = 0, 1, 2, 3

I matter site 0 → q1

I matter site 1 → q2

I gauge link 0, 1 → q0

I gauge link 1, 0 → q3

|q0q1q2q3〉
=⇒

I |vac〉0 = |1011〉
I |e+e−〉L = |0101〉
I |e+e−〉R = |1100〉
I |vac〉1 = |0010〉

Ground state |ψg〉 = ag(|vac〉0 + |vac〉1) + bg(|e+e−〉L + |e+e−〉R)

Each physical state is identified by the first two qubits |q0q1〉

|ψ′g〉 =
1√
2
(|0〉+|1〉)⊗

√
2(ag |0〉+bg |1〉)

{
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IBM Quantum NISQ devices
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Comparison of the built-in command: QuantumCircuit.initialize

ibm nairobi

0 1 2

3

54 6

ibmq manila

0 1 2 3 4

q0

↑
q1

↑
q2

↑
q3

↑

q3

↑

q2

↑

q1

↑
q0

↑

I median values of fidelities
approximately equal to 0.7

I higher interquartile range for
ibmq manila

I ibm nairobi with limited
fluctuations for lower values

80
runs

statistics
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Noise models for ground state prearation (I)

Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 11 / 18

Simulated circuits include an error probability related with each gate:

single qubit K0 =
√

1−
∑

i=x,y,z pi 1,K1 =
√

px X,K2 =
√py Y,K3 =

√
pz Z

double qubit K̃ij = Ki ⊗ Kj

trace distance
T = 1

2 ||ρibmq − ρsim||1
I shared parameters (px, py, pz)



Noise models for ground state prearation (II)

Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 12 / 18

trace distance
T = 1

2 ||ρibmq − ρsim||1

I single qubit gates with p1 = px = py = pz

two qubits gate with p2 = px = py = pz

I same two parameters (p1, p2),
without errors along Y (py = 0)

−→
scale factor 3

2

conserved overall
error probability

Equal minima: negligible loss of information without noise along Y



Cartan decomposition in Trotter evolution

Wiebe et al. arXiv:2002.11146 2020
Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 13 / 18

Trotter product formula:

e−iHt = e−i
∑

xHxt =

( ←∏
x

e−iHx∆t

) t
∆t

+O(∆t2)

where
∏←

x e−iHx∆t = . . . e−iH1∆te−iH0∆t, with fermionic hopping

HJ =

N−1∑
x=0

HJ,x =
J
4

N−1∑
x=0

[Xx,x+1 (XxXx+1 + YxYx+1)]

because Ux,x+1 = U†x,x+1 = Xx,x+1.

Cartan decomposition: e−iHJ,0∆t = K†A K

|q0〉 H • • H

|q1〉 • H • Rz(J∆t/2) • H •

|q2〉 Rz(−J∆t/2)
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Simulated evolution
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Trotter step evolution: e−iH∆t ≈ e−iHJ,1∆te−iHm,1∆te−iHJ,0∆te−iHm,0∆t

i
b
m
q
m
a
n
i
l
a

DQPTs conditiontion: J = m yielding a Rabi model in the positive parity
sector spanned by {|ψg〉 , |ψḡ〉}

evolution using
time step ∆t = 0.1

negligible error
for noiseless
Trotterization

first DQPT at t0 ≈ 1.11
m



Real-time evolution on IBM Quantum

IBM Quantum Hub at CERN
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I Time evolution leads
to the maximally
mixed state

I Longer time steps
with reduced
decoherence



Noise models for evolution
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Noise models: compared with T = 1
3∆t

∑2
`=0 T(ρibmq(` ∆t), ρsim(` ∆t))∆t

I single and double qubit gate share (px, pz)

I two parameters (p1, p2), without errors along Y (py = 0)



Estimation for noise reduction

Statistical Mechanics and nonpertubative Field Theory Schwinger model dynamics on IBM Quantum 17 / 18

Two minima combined with optimal ground state preparation model:

ibmq manila: dephasing time T2 ≈ 60 µs, gate time ≈ 370± 80 ns
max circuit moments = T2

gate time ≈ 160

I Trotter step with 20 moments I ground state preparation
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Conclusions
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Schwinger model real-time dynamics on IBM Quantum:

I outperforming ground state preparation;

I negligible noise along the Y direction;

I DQPTs phenomena for reduced error probabilities.

Our results could be improved:

I in devices with a higher number of qubits (not free access);

I by including error correction and mitigation.

Thank you!
Questions/Comments?
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