

Theory and Phenomenology of Fundamental Interactions

UNIVERSITY AND INFN · BOLOGNA

Quantum simulations for Abelian Gauge Theories

Elisa Ercolessi SM&FT Workshop December 19, 2022

OUTLINE

- * Quantum Digital Simulation of Lattice Gauge Theories
- * Quantum Many Body Hamiltonian on a Lattice
- * Goal: nonperturbative phenomena, dynamical effects, ...

- * First step: to determine the (many body) Ground State with precision
- * Fully digital or variational approaches

\mathbb{Z}_2 Lattice Gauge Theory in 2D

total Hamiltonian
$$H(h) = H_E + h H_B$$

electric contribution
$$H_E = \sum_l (1 - \sigma_l^x)$$

p

magnetic contribution

$$H_B = -\sum \mathscr{B}_p = -\sum \sigma_{p_1}^z \sigma_{p_2}^z \sigma_{p_3}^z \sigma_{p_4}^z$$

Gauss law

p

$$\mathscr{A}_{v} = \prod_{l \in v} \sigma_{l}^{x} \mathscr{A}_{v} |\psi\rangle_{phys} = |\psi\rangle_{phys}$$

Remark: on dual lattice it becomes an Ising model (with $S_p^x = \mathcal{B}_p$, $S_p^z S_{p'}^z = \sigma_{l(p,p')}^x$)

electric limit
$$h \to 0$$
 $|\Omega_E\rangle = \bigotimes_l |+\rangle$

• magnetic limit $h \to \infty$

Toric code
$$|\Omega_B\rangle = \mathcal{N} \sum_{\Gamma} \mathcal{W}_{\Gamma} |\Omega_E\rangle$$

Wilson loop operator $\mathcal{W}_{\Gamma} = \prod_{l \in \Gamma} \sigma_l^z$

Phase transition $h_c = 3.04438(2)$

 $h < h_c$ confined phase

 $h > h_c$ deconfined phase (topological) with long range entanglement

Fully Digital Simulation

* **ENCODING** of the degrees of freedom

on each link, the Hilbert space is $\mathscr{H}_l = L^2(G)$, and to represent the elements of the basis $\{|g\rangle\}_{g \in G}$ we need means a register of *n* **qubits**, with $|G| \le 2^n$

for the total Hilbert space $\mathscr{H} = \bigotimes_{links} L^2(G)$ we have, with L=#links: $dim\mathscr{H} = 2^{nL}$

e.g., in a square lattice with PBC, L=2V (V=#vertices), clearly showing the *exponential growth*

What about the gauge invariant subspace?

$$\mathcal{H}_{phys} = \{ |\psi\rangle \in \mathcal{H} : G |\psi\rangle = |\psi\rangle \}$$
$$dim\mathcal{H}_{phys} = |G|^{L-V+1} \simeq \sqrt{dim\mathcal{H}} \text{ for PBC}$$

*** STATE PREPARATION via ADIABATIC THEOREM**

Starting from the known GS of $H(g = g^0)$, the we use the <u>adiabatic theorem</u> to find the GS for a different value of coupling constant.

EVOLUTION: Trotter approximation

$$U(t) = e^{-itH} = \left(e^{-iHt/m}\right)^m \approx \left(e^{-iH_E t/m}e^{-iH_B t/m}\right)^m$$

 H_E , H_B do not commute, they are diagonal in the representation/group basis respectively but both H_E , H_B are (separately) gauge-invariant

The evolution operators : $e^{-iH_E t/m}$, $e^{-iH_B t/m}$ are going to be implemented via a

QUANTUM CIRCUIT

QUANTUM CIRCUIT

Standard Gates: phase gate $\mathscr{U}_{ph}(\phi)$ + other elementary logic gates

"Group operations gates"

inversion	multiplication	trace
$\mathcal{U}_{-1} g\rangle = g^{-1}\rangle$	$\mathcal{U}_{\times} g\rangle h\rangle = g\rangle gh\rangle$	$\mathcal{U}_{tr}(\theta) g \rangle = g \rangle e^{i\theta Re(tr[g])}$

G-Fourier
transform
$$\mathcal{U}_F \sum_{g \in G} f(g) | g \rangle = \sum_{J \in UIR} \sum_{mn} \hat{f}(J)_{mn} | J, mn \rangle$$

$$\hat{f}(J)_{mn} = \langle J, mn | f \rangle$$

Circuit realizing the time evolution of 4 links generated by H_E .

Quantum circuit realizing the time evolution of a single plaquette generated by the magnetic term of the hamiltonian. In summary, the steps of the calculations are:

- 1. prepare the system in the $|GS\rangle_{g=0}$ and choose the final value of the coupling *h*
- 2. construct the circuit that adiabatically prepares the ground state of H(h), through a Trotter approximation

(with N_s , t_s as numbers and duration of time-steps, which introduce a *systematic error*)

3. measure the expectation value of the chosen observable

(e.g. Hamiltonian or Wilson loops)

This has to be repeated a sufficient number of times to extract the probabilities of possible outcomes of the observable. This introduces a *statistical error*. $G = \mathbb{Z}_2$

3x3 lattice with PBC

(with L. Lumia, Master thesis, 2021)

QAOA

Quantum Approximate Optimization Algorithm

hybrid classical-quantum protocol, in which an input state is manipulated via a parametrised quantum circuit,

to be update and optimised by means of classical optimization protocols

L. Lumia et al, PRX Quantum 3 (2022) 020320

$$|\psi_P(\gamma,\beta)\rangle = \left(\prod_{m=1}^P e^{-i\beta_m H_E} e^{-i\gamma_m H_B}\right) |\psi_0\rangle$$

- quantum circuit for each step ($m = 1, \dots, P$) of the QAOA to implement the evolutions through H_E , H_B

- classical minimisation of $E_P(\gamma,\beta) = \langle \psi_P(\gamma,\beta) | H(h) | \psi_P(\gamma,\beta) \rangle$

Electric part evolution

for each step m, we get a product of all single qubit rotations around the x axis by an angle β_m

$$U_p(\beta) = e^{i\beta\sigma^z}$$

Magnetic part evolution

for all 4 links on a plaquette; it involves a rotation around the z axis by an angle γ_m on one (vertical) link, controlled by the other three links $U_p(\gamma) = e^{i\gamma\sigma^z}$

 $|p_4\rangle$

each (vertical) link acts as a target for the left plaquette and as control for the right one: each elementary part of the circuit acts on a pair of plaquettes (7 links)

it can be run in parallel on each pair of (horizontal) plaquettes (with care to boundary conditions)

Preparation of initial state

 $|\Omega_E\rangle = \bigotimes_l |+\rangle_l$ simple product state, prepared by Hadamard gate

 $|\Omega_B\rangle = \mathcal{N} \sum_{\Gamma} \mathcal{W}_{\Gamma} |\Omega_E\rangle$ more complicated, circuit similar to that of magnetic evolution plus Hadamard, in parallel on columns

(consistent with results that O(L) circuit depth to prepare states with long range entanglement)

Y.-J. Liu, K. Shtengel, A. Smith, and F. Pollmann, Methods for simulating string-net states and anyons on a digital quantum computer, arXiv:2110.02020

CLASSICAL OPTIMIZATION

Energy landscape -> rugged; barren plateaus

1) Two-step protocol, inspired by adiabatic quantum computation

- first optimising an annealing schedule dt=dt* by means of a linear protocol of time $\tau = Pdt$: $\gamma_m = \frac{m dt}{P} h \quad \beta_m = dt$
- then 10 local optimisations: $\gamma = \gamma(dt^*) + \epsilon \beta = \beta(dt^*) + \delta$

 ϵ, δ are P-dimensional vectors with random numbers uniformly distributed in [-0.025,0.025]

2) global optimisation (using basin-hopping) starting from both $|\Omega_E\rangle$, $|\Omega_B\rangle$

Cases considered L=3(4,5) P=1,...,8 h=0,...,10

Numerical results

(IN)FIDELITY (w.r.t. exact ground state evaluated numerically)

WILSON LOOPS

 \mathcal{W}_{l_x,l_y} defined over rectangles of size $l_x \times l_y$

$$\langle \mathcal{W}_{\Gamma} \rangle \propto e^{-\chi A[\Gamma] - \delta P[\Gamma]}$$
 A=area, P=perimeter

If $\chi > 0$, the exponential decay with the area dominates for large loops \Rightarrow confined phase If instead $\chi = 0$, then the decay is dictated by the perimeter law only \Rightarrow deconfined phase

Wilson loop ratio

$$\chi(l,l) = -\log \frac{\langle W_{l,l} \rangle \langle W_{l-1,l-1} \rangle}{\langle W_{l,l-1} \rangle \langle W_{l-1,l} \rangle}$$

TOPOLOGICAL ENTROPY

tripartite region ABC

 $S_{topo} = S_A + S_B + S_C - S_{AB} - S_{BC} - S_{AC} + S_{ABC}$

despite the small dimension of the lattice and its subsystem, our results agree perfectly with the theoretical predictions

for
$$h = 0$$
, $S_{ABC} = S_{top} = 0$
for $h = \infty$, $S_{ABC} = (N_v - 1) \ln 2$ $S_{top} = -\ln 2$

OUTLOOKS

- * Extend the preparation of the ground state to \mathbb{Z}_N to higher N, e.g. N=3 and N=4
- * Study the phase diagram of non-abelian groups as D_N
- * Addition of matter

Real computerIBM (within INFN-CERN agreement)