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OUTLINE

❖ Quantum Digital Simulation of Lattice Gauge Theories

❖ Quantum Many Body Hamiltonian on a Lattice

❖ Goal: nonperturbative phenomena, dynamical effects, …

❖ First step: to determine the (many body) Ground State with precision

❖ Fully digital or variational approaches
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 Lattice Gauge Theory in 2Dℤ2
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| + ⟩l•     electric limit     h → 0

•    magnetic  limit  h → ∞
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Phase transition   hc = 3.04438(2)

Γ

h < hc confined phase

h > hc deconfined phase (topological)
with long range entanglement



❖ ENCODING of the degrees of freedom

dimℋ = 2nLfor the total Hilbert space  we have, with L=#links:                 ℋ = ⊗links L2(G)

on each link, the Hilbert space is , and to represent the elements of the  basis   
we need means a register of  qubits, with  

ℋl = L2(G) { |g⟩}g∈G
n |G | ≤ 2n

e.g., in a square lattice with PBC, L=2V  (V=#vertices), clearly showing the exponential growth  

What about the gauge invariant subspace?

ℋphys = { |ψ⟩ ∈ ℋ : G |ψ⟩ = |ψ⟩}

dimℋphys = |G |L−V+1 ≃ dimℋ for PBC

Fully Digital Simulation



Starting from the known GS of , the we use the adiabatic theorem to find the GS 
for a different value of coupling constant.

H(g = g0)

EVOLUTION: Trotter approximation

U(t) = e−itH = (e−iHt/m)m ≈ (e−iHEt/me−iHBt/m)m

      but both  are (separately) gauge-invariantHE, HB

 do not commute, they are diagonal  in the representation/group basis respectivelyHE, HB

❖ STATE PREPARATION  via ADIABATIC THEOREM

The evolution operators :  are going to be implemented via a
 

QUANTUM CIRCUIT

e−iHEt/m , e−iHBt/m



inversion

𝒰−1 |g⟩ = |g−1⟩
multiplication

𝒰× |g⟩ |h⟩ = |g⟩ |gh⟩
trace

𝒰tr(θ) |g⟩ = |g⟩ eiθRe(tr[g])

G-Fourier
transform 𝒰F ∑

g∈G

f(g) |g⟩ = ∑
J∈UIR

∑
mn

̂f(J)mn |J, mn⟩

̂f(J)mn = ⟨J, mn | f⟩

phase gate    +   other elementary logic gates𝒰ph(ϕ)Standard Gates:

“Group operations gates”

QUANTUM CIRCUIT



|U0 >

|U1 >

|U2 >

|U3 >

phase gate
 ϕ ∝ λEΔt

e.g. for  G = ℤ2

phase gate
 θ ∝ λBΔt



                    In summary, the steps of the calculations are:

1. prepare the system in the  and choose the final value of the coupling 

2. construct the circuit that adiabatically prepares the ground state of  , through a Trotter 
approximation 

   (with  as numbers and duration of time-steps, which introduce a systematic error)

3. measure the expectation value of the chosen observable 

      (e.g. Hamiltonian or Wilson loops)

|GS >g=0 h

H(h)

Ns, ts

This has to be repeated a sufficient number of times to extract the 
probabilities of possible outcomes of the observable. 

This introduces a statistical error.



3x3 lattice with PBC                 

exact

simulation

systematic:
Trotter approximation +
 adiabatic evolution 

error bar: statistical

G = ℤ2

GROUND STATE 
ENERGY

W ≈ 0
W ≈ 1CONFINED

DECONFINED

2x2 WILSON LOOP

(with L. Lumia, Master thesis, 2021)



Quantum Approximate
Optimization Algorithm

hybrid  classical-quantum 
protocol, in which an input 
state is manipulated via a 
parametrised quantum 
circuit,
to be update and optimised 
by means of classical 
optimization protocols 

QAOA

L. Lumia et al, PRX Quantum 3 (2022) 020320



Electric part evolution

for each step m, we get a product of all single qubit 
rotations around the x axis by an angle  βm

Up(β) = eiβσz

|ψP(γ, β)⟩ = (
P

∏
m=1

e−iβmHEe−iγmHB) |ψ0⟩

EP (γ, β) = ⟨ψP(γ, β) | H(h) | ψP(γ, β)⟩- classical minimisation of

- quantum circuit for each step ( ) of the QAOA to implement the evolutions through   m = 1,⋯, P HE , HB



Magnetic part evolution

for all 4 links on a plaquette; it involves a rotation around 
the z axis by an angle  on one (vertical) link, controlled 
by the other three links

each (vertical) link acts as a target 
for the left plaquette and as control 
for the right one:
each elementary part of the circuit 
acts on a pair of plaquettes (7 links)

it can be run in parallel on each pair 
of (horizontal) plaquettes
(with care to boundary conditions)

γm

Up(γ) = eiγσz



Preparation of initial state

simple product state, prepared by Hadamard gate

more complicated, circuit similar to that of magnetic evolution 
plus Hadamard, in parallel on columns

|ΩE⟩ = ⨂
l

| + ⟩l

|ΩB⟩ = 𝒩 ∑
Γ

𝒲Γ |ΩE⟩

Y.-J. Liu, K. Shtengel, A. Smith, and F. Pollmann, Methods for simulating string-net states and anyons on 
a digital quantum computer, arXiv:2110.02020  

(consistent with results that O(L) circuit depth to prepare states with long range entanglement)



1) Two-step protocol, inspired by adiabatic quantum computation

- first optimising an annealing schedule dt=dt* by means of a linear protocol of time :

- then 10 local optimisations:

 are P-dimensional vectors with random numbers uniformly distributed in 

τ = Pdt

ϵ, δ [−0.025,0.025]

Energy landscape -> rugged; barren plateaus

γm =
m dt

P
h βm = dt

γ = γ(dt*) + ϵ β = β(dt*) + δ

2) global optimisation (using basin-hopping) starting from both |ΩE⟩, |ΩB⟩

CLASSICAL OPTIMIZATION

L=3 (4,5) P=1,…, 8 h=0, …, 10Cases considered



(IN)FIDELITY (w.r.t. exact ground state evaluated numerically)

Numerical results



     defined over rectangles of size 𝒲lx,ly lx × ly

If  , the exponential decay with the area dominates for large loops  confined phase
If instead , then the decay is dictated by the perimeter law only  deconfined phase

χ > 0 ⇒
χ = 0 ⇒

Wilson loop ratio 

χ(l, l) = − log
⟨Wl,l⟩⟨Wl−1,l−1⟩
⟨Wl,l−1⟩⟨Wl−1,l⟩

WILSON LOOPS

⟨𝒲Γ⟩ ∝ e−χ A[Γ]−δ P[Γ] A=area , P=perimeter

L=5



Stopo = SA + SB + SC − SAB − SBC − SAC + SABC

despite the small dimension of the lattice 
and its subsystem, our results agree perfectly 
with the theoretical predictions

TOPOLOGICAL ENTROPY

tripartite region ABC
L=3

for  h = 0 , SABC = Stop = 0

for  h = ∞ , SABC = (Nv − 1) ln 2 Stop = − ln 2



❖ Extend the preparation of the ground state to  to higher N, 
e.g. N=3 and N=4

❖ Study the phase diagram of non-abelian groups as 
❖ Addition of matter

ℤN

DN

✓Real computer 
   IBM (within INFN-CERN agreement)

OUTLOOKS


