Quantum simulations for Abelian Gauge Theories

Elisa Ercolessi
SMEFT Workshop
December 19, 2022

OUTLINE

* Quantum Digital Simulation of Lattice Gauge Theories
* Quantum Many Body Hamiltonian on a Lattice
* Goal: nonperturbative phenomena, dynamical effects, ...
* First step: to determine the (many body) Ground State with precision
* Fully digital or variational approaches

\mathbb{Z}_{2} Lattice Gauge Theory in 2D

total Hamiltonian

$$
H(h)=H_{E}+h H_{B}
$$

electric contribution

$$
H_{E}=\sum_{l}\left(1-\sigma_{l}^{x}\right)
$$

magnetic contribution

$$
H_{B}=-\sum_{p} \mathscr{B}_{p}=-\sum_{p} \sigma_{p_{1}}^{z} \sigma_{p_{2}}^{z} \sigma_{p_{3}}^{z} \sigma_{p_{4}}^{z}
$$

$$
\mathscr{A}_{v}=\prod_{l \in v} \sigma_{l}^{x} \mathscr{A}_{v}|\psi\rangle_{p h y s}=|\psi\rangle_{p h y s}
$$

Remark: on dual lattice it becomes an Ising model (with $\left.S_{p}^{x}=\mathscr{B}_{p}, S_{p}^{z} S_{p^{\prime}}^{z}=\sigma_{l\left(p, p^{\prime}\right)}^{x}\right)$

- electric limit $h \rightarrow 0$

$$
\left|\Omega_{E}\right\rangle=\bigotimes_{l}|+\rangle_{l}
$$

- magnetic limit $h \rightarrow \infty$

Wilson loop operator $\quad \mathscr{V}_{\Gamma}=\prod_{l \in \Gamma} \sigma_{l}^{z}$

Phase transition $h_{c}=3.04438(2)$

$$
\begin{aligned}
& h<h_{c} \text { confined phase } \\
& h>h_{c} \text { deconfined phase (topological) }
\end{aligned}
$$

Fully Digital Simulation

* ENCODING of the degrees of freedom
on each link, the Hilbert space is $\mathscr{H}_{l}=L^{2}(G)$, and to represent the elements of the basis $\{|g\rangle\}_{g \in G}$ we need means a register of n qubits, with $|G| \leq 2^{n}$
for the total Hilbert space $\mathscr{H}=\otimes_{\text {links }} L^{2}(G)$ we have, with $\mathrm{L}=\#$ links: $\quad \operatorname{dim} \mathscr{H}=2^{n L}$
e.g., in a square lattice with $\mathrm{PBC}, \mathrm{L}=2 \mathrm{~V}(\mathrm{~V}=\#$ vertices), clearly showing the exponential growth

What about the gauge invariant subspace?

$$
\begin{aligned}
& \mathscr{H}_{p h y s}=\{|\psi\rangle \in \mathscr{H}: G|\psi\rangle=|\psi\rangle\} \\
& \operatorname{dim} \mathscr{H}_{\text {phys }}=|G|^{L-V+1} \simeq \sqrt{\operatorname{dim} \mathscr{H}} \text { for PBC }
\end{aligned}
$$

* STATE PREPARATION via ADIABATIC THEOREM

Starting from the known GS of $H\left(g=g^{0}\right)$, the we use the adiabatic theorem to find the GS for a different value of coupling constant.

EVOLUTION: Trotter approximation

$$
U(t)=e^{-i t H}=\left(e^{-i H t / m}\right)^{m} \approx\left(e^{-i H_{E} t / m} e^{-i H_{B} t / m}\right)^{m}
$$

H_{E}, H_{B} do not commute, they are diagonal in the representation/group basis respectively but both H_{E}, H_{B} are (separately) gauge-invariant

The evolution operators : $e^{-i H_{E} t / m}, e^{-i H_{B} t / m}$ are going to be implemented via a

QUANTUM CIRCUIT

Standard Gates: phase gate $\mathscr{U}_{p h}(\phi)+$ other elementary logic gates
"Group operations gates"

$$
\begin{array}{cc}
\text { inversion } & \text { multiplication } \\
\mathscr{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle & U_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle
\end{array} \quad \mathscr{U}_{t r}(\theta)|g\rangle=|g\rangle e^{i \theta \operatorname{Re}(t r[g])}
$$

G-Fourier
transform

$$
\begin{array}{r}
U_{F} \sum_{g \in G} f(g)|g\rangle=\sum_{J \in U I R} \sum_{m n} \hat{f}(J)_{m n}|J, m n\rangle \\
\hat{f}(J)_{m n}=\langle J, m n \mid f\rangle
\end{array}
$$

e.g. for $G=\mathbb{Z}_{2}$

$$
\begin{aligned}
& \left|U_{0}\right\rangle=\widehat{\mathfrak{U}_{F}}=\sqrt[\mathfrak{U}_{p h}]{=} \sqrt[\mathfrak{U}_{F}^{\dagger}]{=} \\
& \left|U_{1}\right\rangle=\widehat{\mathfrak{U}_{F}}=\mathfrak{U}_{p h}=\sqrt[\mathfrak{U}_{F}^{\dagger}]{=}
\end{aligned}
$$

$$
\begin{aligned}
& \left|U_{3}\right\rangle=\widehat{\mathfrak{U}_{F}}=\boxed{\mathfrak{U}_{p h}}=\sqrt[\mathfrak{U}_{F}^{\dagger}]{=}
\end{aligned}
$$

Circuit realizing the time evolution of 4 links generated by H_{E}.

Quantum circuit realizing the time evolution of a single plaquette generated by the magnetic term of the hamiltonian.

In summary, the steps of the calculations are:

1. prepare the system in the $\mid G S>_{g=0}$ and choose the final value of the coupling h
2. construct the circuit that adiabatically prepares the ground state of $H(h)$, through a Trotter approximation
(with N_{s}, t_{s} as numbers and duration of time-steps, which introduce a systematic error)
3. measure the expectation value of the chosen observable
(e.g. Hamiltonian or Wilson loops)

This has to be repeated a sufficient number of times to extract the probabilities of possible outcomes of the observable.

This introduces a statistical error.

$$
G=\mathbb{Z}_{2}
$$

3x3 lattice with PBC
(with L. Lumia, Master thesis, 2021)

(b) $\quad t_{s}=0.0008, N_{s}=600$

2x2 WILSON LOOP

QAOA

Quantum Approximate Optimization Algorithm
hybrid classical-quantum protocol, in which an input state is manipulated via a parametrised quantum circuit,
to be update and optimised by means of classical optimization protocols

L. Lumia et al, PRX Quantum 3 (2022) 020320

$$
\left|\psi_{P}(\gamma, \beta)\right\rangle=\left(\prod_{m=1}^{P} e^{-i \beta_{m} H_{E}} e^{-i \gamma_{m} H_{B}}\right)\left|\psi_{0}\right\rangle
$$

- quantum circuit for each step ($m=1, \cdots, P$) of the QAOA to implement the evolutions through H_{E}, H_{B} - classical minimisation of $\quad E_{P}(\gamma, \beta)=\left\langle\psi_{P}(\gamma, \beta)\right| H(h)\left|\psi_{P}(\gamma, \beta)\right\rangle$

Electric part evolution

for each step m, we get a product of all single qubit rotations around the x axis by an angle β_{m}

$$
U_{p}(\beta)=e^{i \beta \sigma^{z}}
$$

$$
\begin{aligned}
& \left|p_{1}\right\rangle-\mathrm{H}-U_{p}(\beta)-\mathrm{H}- \\
& \left|p_{2}\right\rangle-\mathrm{H}-U_{p}(\beta)-\mathrm{H}- \\
& \left|p_{3}\right\rangle-\mathrm{H}-U_{p}(\beta)-\mathrm{H}- \\
& \left|p_{4}\right\rangle-\mathrm{H}-U_{p}(\beta)-\mathrm{H}-
\end{aligned}
$$

Magnetic part evolution

for all 4 links on a plaquette; it involves a rotation around the z axis by an angle γ_{m} on one (vertical) link, controlled by the other three links

$$
U_{p}(\gamma)=e^{i \gamma \sigma^{z}}
$$

each (vertical) link acts as a target for the left plaquette and as control for the right one:
each elementary part of the circuit acts on a pair of plaquettes (7 links)
it can be run in parallel on each pair of (horizontal) plaquettes (with care to boundary conditions)

Preparation of initial state

$\left|\Omega_{E}\right\rangle=\bigotimes_{l}|+\rangle_{l} \quad$ simple product state, prepared by Hadamard gate
$\left|\Omega_{B}\right\rangle=\mathscr{N} \sum_{\Gamma} \mathscr{W}_{\Gamma}\left|\Omega_{E}\right\rangle$ more complicated, circuit similar to that of magnetic evolution
(consistent with results that $\mathrm{O}(\mathrm{L})$ circuit depth to prepare states with long range entanglement)
Y.-J. Liu, K. Shtengel, A. Smith, and F. Pollmann, Methods for simulating string-net states and anyons on a digital quantum computer, arXiv:2110.02020

CLASSICAL OPTIMIZATION

Energy landscape -> rugged; barren plateaus

1) Two-step protocol, inspired by adiabatic quantum computation

- first optimising an annealing schedule $\mathrm{dt}=\mathrm{d} \mathrm{t}^{*}$ by means of a linear protocol of time $\tau=P d t$:
- then 10 local optimisations: $\gamma=\gamma\left(d t^{*}\right)+\epsilon \beta=\beta\left(d t^{*}\right)+\delta$

$$
\gamma_{m}=\frac{m d t}{P} h \quad \beta_{m}=d t
$$

ϵ, δ are P-dimensional vectors with random numbers uniformly distributed in $[-0.025,0.025]$
2) global optimisation (using basin-hopping) starting from both $\left|\Omega_{E}\right\rangle,\left|\Omega_{B}\right\rangle$

$$
\text { Cases considered } \quad \mathrm{L}=3(4,5) \quad \mathrm{P}=1, \ldots, 8 \quad \mathrm{~h}=0, \ldots, 10
$$

Numerical results

(IN)FIDELITY (w.r.t. exact ground state evaluated numerically)

WILSON LOOPS $\quad \mathscr{V}_{l_{x} l_{y}}$ defined over rectangles of size $l_{x} \times l_{y}$

$$
\left\langle\mathscr{W}_{\Gamma}\right\rangle \propto e^{-\chi A[\Gamma]-\delta P[\Gamma]} \quad \mathrm{A}=\text { area }, \mathrm{P}=\text { perimeter }
$$

If $\chi>0$, the exponential decay with the area dominates for large loops \Rightarrow confined phase If instead $\chi=0$, then the decay is dictated by the perimeter law only \Rightarrow deconfined phase

Wilson loop ratio
$\chi(l, l)=-\log \frac{\left\langle W_{l, l}\right\rangle\left\langle W_{l-1, l-1}\right\rangle}{\left\langle W_{l, l-1}\right\rangle\left\langle W_{l-1, l}\right\rangle}$

TOPOLOGICAL ENTROPY

tripartite region ABC
$S_{\text {topo }}=S_{A}+S_{B}+S_{C}-S_{A B}-S_{B C}-S_{A C}+S_{A B C}$

(a)

despite the small dimension of the lattice and its subsystem, our results agree perfectly with the theoretical predictions
for $h=0, \quad S_{A B C}=S_{\text {top }}=0$
for $h=\infty, \quad S_{A B C}=\left(N_{v}-1\right) \ln 2 \quad S_{\text {top }}=-\ln 2$

OUTLOOKS

- Extend the preparation of the ground state to \mathbb{Z}_{N} to higher N , e.g. $\mathrm{N}=3$ and $\mathrm{N}=4$
* Study the phase diagram of non-abelian groups as D_{N}
* Addition of matter
\checkmark Real computer IBM (within INFN-CERN agreement)

