A predictive model for the thermomechanical melting transition of double stranded DNA

G. Florio

DICATECh, Politecnico di Bari

In collaboration with

- G. Puglisi, PoliBA

DIPARTIMENTO DI INGEGNERIA CIVILE,
AMBIENTALE, DEL TERRITORIO, EDILE E DI CHIMICA

Related research activity in progress with

- L. Bellino, PoliBa
- N. M. Pugno, Trento
- S. Giordano, CNRS-Lille
- A. Goriely, Oxford
- M. J. Buehler, MIT

SM\&FT 2022 - The XIX Workshop on Statistical Mechanics and non pertubative Field Theory December 19-21, 2022, Bari

MOTIVATIONS AND OUTLINE OF THE TALK

- Modelling DNA
- Analytical results for predicting properties and designing bioinspired materials
- Extending the models to different systems
- Models at the micro-scale for DNA
- Effects of temperature
- Comparison with experimental data

MOTIVATION: DNA MECHANICS

Double helix structure of DNA

Replication and transcription

Peyrard, Nonlinear dynamics and statistical physics of DNA, Nonlinearity 2004

Force-extension curve of a single DNA molecule

MOTIVATION: DNA MECHANICS

TEMPERATURE EFFECTS

C. Williams, I. Rouzina, A. Bloomfield, Thermodynamics of DNA Interactions from Single Molecule Stretching Experiments, Acc. Chem. Res.35, 159-166, 2002

I. Rouzina, A. Bloomfield, Force-Induced Melting of the DNA Double Helix. 2. Effect of Solution Conditions, Biophysical Journal 80(2):894-900, 2001

PEYRARD-BISHOP MODEL

M. Peyrard, A. R. Bishop, Statistical Mechanics of a Nonlinear Model for DNA Denaturation, PRL 1989

MODEL: SUBSTITUTE THE MORSE POTENTIAL

We substitute the Morse potential with a piece-wise potential energy.
GF, Puglisi, Acta Biomaterialia,

$$
\xrightarrow[+]{l}
$$

$u_{i} \quad$ transverse displacement
u_{d} debonding threshold
$w_{i}=u_{i} / u_{d} \quad$ rescaled displacement

$$
\psi_{e}\left(u_{i}\right)=\frac{k_{e} l}{2} \begin{cases}\left(u_{i} / u_{d}\right)^{2}, & \text { if }\left|u_{i} / u_{d}\right| \leq 1 \\ 1 & \text { if }\left|u_{i} / u_{d}\right|>1\end{cases}
$$

MODEL: SUBSTITUTE THE MORSE POTENTIAL

Introduce an internal (spin) variable: $\quad \chi=\left\{\begin{array}{lc}0, \text { if }|u| \leq u_{d}, & \text { unbroken link } \\ 1, \text { if }|u|>u_{d}, & \text { broken link }\end{array}\right.$

$$
\left\langle\int_{w_{i+1}-w_{i}}^{\psi_{t}} \psi_{t}\left(u_{i+1}, u_{i}\right)=\frac{k_{t} l}{2}\left(\frac{u_{i+1}-u_{i}}{l}\right)^{2}\right.
$$

ENERGY AND MECHANICAL LIMIT

$$
n \phi=\frac{\Phi}{k_{e} l}=\frac{\nu^{2}}{2} \sum_{i=0}^{n}\left(w_{i+1}-w_{i}\right)^{2}+\frac{1}{2} \sum_{i=1}^{n}\left[\left(1-\chi_{i}\right) w_{i}^{2}+\chi_{i}\right]
$$

Strand elastic energy
Energy of the breakable bonds

$$
\nu=\sqrt{\frac{k_{t}}{k_{e}}} \frac{u_{d}}{l}
$$

Main non-dimensional parameter

Equilibrium configurations from the minimization of

$$
\left.n g=n \phi-f \delta \quad \text { with } \quad \begin{array}{rl}
\delta & =d / u_{d} \\
F & =\frac{k_{e} l}{u_{d}} f
\end{array} \begin{array}{c}
\text { rescaled end-point } \\
\text { displacement }
\end{array}\right] \text { rescaled force }
$$

We find $\delta=\frac{f}{k(p)}$
$p=0, \ldots, n$,

attached links (single domain wall solutions)

MECHANICAL LIMIT (ZERO TEMPERATURE)

Force-displacement relation

Jumps in the force each time a link is broken (sequential breaking of base pairs)

TEMPERATURE EFFECTS

Partition function $\mathcal{Z}=\sum_{\left\{\chi_{i}\right\}} \int_{\mathbb{R}^{n}} e^{-\beta n \phi(\boldsymbol{w}, \delta)} d \boldsymbol{w}$

$$
\beta=\frac{k_{e} l}{k_{B} T}
$$

Rescaled inverse temperature

Average Force $\quad \bar{f}(\beta, \delta) \simeq \frac{\sum_{p=0}^{n} k(p) \Gamma_{p}(\beta, \delta)}{\sum_{p=0}^{n} \Gamma_{p}(\beta, \delta)} \delta$
with
(single domain wall solutions)
$\Gamma_{p}(\beta, \delta)=\frac{1}{\sqrt{\operatorname{det} \boldsymbol{B}(p)}} e^{-\frac{\beta}{2}(n-p)} e^{-\frac{\beta}{2} k(p) \delta^{2}}$
$\operatorname{det} \boldsymbol{B}=\frac{\nu^{2 n}}{\sinh \lambda}[(n-p+1) \sinh [(p+1) \lambda]-(n-p) \sinh (p \lambda)]$
$\cosh \lambda=1+\frac{1}{2 \nu^{2}}$

TEMPERATURE EFFECTS

Increasing temperature: the force of the plateau and the number of attached base pairs decrease

THERMODYNAMIC LIMIT

$$
\begin{array}{|l}
\begin{array}{l}
l \text { fixed } \\
n \rightarrow+\infty \\
L=n l \rightarrow+\infty
\end{array} \\
L=\nu \sqrt{1-\frac{T}{T_{c}}}
\end{array} \quad \begin{gathered}
\bar{f}=\frac{k_{e} l}{k_{B} \lambda} \\
\text { Force-temperature relation }
\end{gathered} \quad \text { Critical temperature }
$$

COMPARISON WITH EXPERIMENTS

Unzipping experiments with DNA hairpins:

Data from: de Lorenzo, S.; Ribezzi-Crivellari, M.; Arias-Gonzalez, J.R.; Smith, S. B.; Ritort, F., A Temperature-Jump Optical Trap for Single-Molecule Manipulation, Biophys. Jour. 2015, 108, 2854-2864

COMPARISON WITH EXPERIMENTS

Overstretching experiments in DNA

Data from: Williams, M. C.; Rouzina, I.; Bloomfield, V. A., Thermodynamics of DNA Interactions from Single Molecule Stretching Experiments, Acc. Chem. Res. 2002, 35, 159-166

CONCLUSIONS AND PERSPECTIVES

- We obtain a model allowing to deduce analytical formulas describing the (temperature-dependent) features observed in DNA
- The model is general and based on simple assumptions (use of spin variables): ion can be applied in more general contexts such as material science, biology, medicine, engineering (natural and artificial bio-inspired materials)
- Applications to phenomena in biological processes such as cell adhesion where cells interact with each other or with their substrate using specialized proteins, or mechanics of axonal damage in traumatic brain injuries
- Related works with softening and fracture

references and related works

- G. Florio, G. Puglisi, A predictive model for the thermomechanical melting transition of double stranded DNA, Acta Biomaterialia, in press (2022)
- A. Cannizzo, G. Florio, G. Puglisi, S. Giordano, Thermal effects on fracture and brittle-to-ductile transition, arXiv:2212.02962 (2022)
- L. Bellino, G. Florio, G. Puglisi, A. Goriely, Cooperative melting in double-stranded peptide chains through local mechanical interactions, preprint (2022)
- S. Di Stefano, G. Florio, G. Napoli, N. M. Pugno, G. Puglisi, On the role of elasticity in focal adhesion within the passive regime, International Journal of Non-Linear Mechanics 146, 104157 (2022)
- A. Cannizzo, G. Florio, G. Puglisi, S. Giordano, Temperature controlled decohesion regimes of an elastic chain adhering to a fixed substrate by softening and breakable bonds, Journal of Physics A Mathematical and Theo- retical 54, 445001 (2021)
- G. Florio, N. M. Pugno, M. J. Buehler, G. Puglisi, A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations, Acta Biomaterialia 134, 477-489 (2021)
- G. Florio, G. Puglisi, S. Giordano, Role of temperature in the decohesion of an elastic chain tethered to a substrate by on-site breakable links, Phys. Rev. Research 2, 033227 (2020)

Thank you for your attention!!!

