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Figure 1. The double helix structure of DNA shown in a full atomic representation (left) and
schematically (right).
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Figure 2. (a) An example of a nucleotide of DNA. (b) Schematic view of the chain of nucleotides
along one DNA strand.

large flat groups having the shape of big plateaux, attached together by the sugar–phosphate
strands which are fairly rigid. Many rotations around the bonds are possible within each
strand but the distance between consecutive attachment points of the bases is, nevertheless,
well defined. The interaction between the base plateaux is such that they tend to form a compact
pile. This is due to the overlap of the π electrons of the cycles of the bases, and to hydrophobic
forces: if water penetrates between the bases, the energetic cost is very high. The length of the
strands is, however, too long to allow the plateaux to form a compact pile if they are simply
piled up parallel to each other, as shown in figure 4. If one puts the plateaux on top of each
other but rotated with respect to each other by about 30˚, the strands become oblique and one
can have the two plateaux in contact without compressing the length of the strands. Another
possibility would be to create a skewed ladder, but a detailed examination of the structure of
the bases shows that it leads to unacceptably close contacts between the atoms.
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Figure 6. Schematic picture of the replication and transcription of DNA.

DNA, together with the enzyme, closing the base pairs which have been read and opening new
ones, until the end of the gene is reached.

The process of transcription involves distortions of the molecule which are so large that
they necessarily probe the nonlinear character of the forces linking the various groups. Due
to the presence of the enzyme, which is itself a very complex molecule, it is currently beyond
physical description, but, as discussed later, DNA thermal denaturation, which has some
similarities with the transcription, can be described from a physical point of view. These
studies can be viewed as a first step towards modelling transcription.

2.1.3. DNA is a dynamical entity. The famous discovery of the double helix structure of DNA
put forward the notion that ‘form is function’; but we have seen that the reading of genetic
code requires large conformational changes. Such motions are observed even in the absence
of enzymes. DNA is a highly dynamical entity and its structure is not frozen. The ‘breathing’
of DNA has been known to biologists for decades. It consists of the temporary opening of the
base pairs. This is attested by proton–deuterium exchange experiments. DNA is put in solution
in deuterated water, and one observes that the imino-protons, which are the protons forming
hydrogen bonds between two bases in a base pair, are exchanged with deuterium coming from
the solvent. As these protons are deeply buried in the DNA structure, the exchange indicates
that bases can open, at least temporarily, to expose the imino-protons to the solvent [8]. The
determination of the lifetime of a base pair, i.e. the time during which it stays closed, has
been the subject of some controversy [9] because the rate limiting step in the exchange may
be either the rate at which base pairs open, or the time necessary for the exchange. Accurate
experiments, using NMR to detect the exchange, showed that the lifetime of a base pair is of
the order of 10 ms. These experiments also show that the protons of one particular base pair
can be exchanged while those of a base pair next to it are not exchanged. This indicates that
the large conformational changes that lead to base pair opening in DNA are highly localized,
which means that the coupling between successive bases along the DNA helix is weak enough
to allow consecutive bases to move almost independently of each other.

2.2. Physical experiments on DNA

To model the nonlinear dynamics of DNA, one needs precise data to establish a meaningful
model. They are provided by various physical experiments. Many data have been obtained
by standard methods of condensed matter physics, but, in the last few years, powerful new
methods have appeared, based on single molecule experiments.

Replication and transcription 
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Figure 9. Force–extension curve of a single DNA molecule. Reproduced with permission
from [17].

a simple model, known as the ‘Worm Like Chain’ (WLC) model [20, 21]. Comparison
between theory and experiment gives the persistence length of the DNA molecule, or its
bending rigidity.

• Intermediate forces (5 pN < f < 60 pN): when the force exceeds 5 pN one observes a
systematic deviation from the WLC model which is due to the purely elastic contribution
associated with the stretching of the double helix along its axis. This part of the curve
allows the determination of the Young modulus of the molecule. Moreover, measurements
in which DNA is attached to a magnetic bead which can be rotated can also provide the
torsional rigidity of the molecule.

• Large forces (f ! 65 pN): when the force becomes very large the molecule extends by
a large amount (85–110%) almost at constant force. This is associated with a structural
change induced by mechanical stress. Molecular modelling experiments have attempted
to determine the structure of the extended phase [22] but this is still an open question.

Another mechanical experiment which raises interesting questions is the mechanical
unzipping of DNA, which will be discussed in section 7.

3. A simple model for DNA

Our aim in this section is to examine to what extent one can understand theoretically some
of the properties of DNA. Can we establish a mathematical model of the molecule which has
solutions and properties in agreement with experimental observations?

The first question that one has to answer to establish such a model is to select the appropriate
scale, which depends on the properties one is interested in. For instance, in order to analyse
the force–extension curve of DNA, a model that ignores all the internal details of the molecule
and simply describes it as a flexible string works very well.

In this paper we would like to focus our attention on properties of the molecule which are
really characteristic of DNA and probe its nonlinear dynamics. The fluctuations of the molecule
described by the WLC model do not meet these criteria because other polymers show similar
features. Going to a much smaller scale, one could think of describing the dynamics of the
molecule at the atomistic scale. However, besides the complexity of such a model which would
confine the study to numerical simulations, this would not be a choice meeting our criteria

Force–extension curve of 
a single DNA molecule 

Peyrard, Nonlinear dynamics and 
statistical physics of DNA, 
Nonlinearity 2004 
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Temperature

Figure 8. Schematic picture of the thermal denaturation of DNA, showing that it starts locally as
‘denaturation bubbles’.

Besides thermal denaturation, it has recently been possible to study the fluctuational
opening of DNA hairpins, which are single strands of DNA which have at their two ends groups
of base pairs which are complementary to one another. As a result, these two groups tend to form
a double helix, i.e. attach to each other, causing a folding of the strand which takes the shape
of a hairpin. Such folded molecules show some temporary openings, which can be monitored
very accurately. For this purpose one attaches a fluorescent molecule to one end of the strand
and a quencher, i.e. a molecule that inhibits the fluorescence, at the other end. When the hairpin
is formed the fluorophore and the quencher are close to each other, and the DNA molecule is
not fluorescent. But when the hairpin opens, the fluorophore and the quencher are far apart and
the DNA becomes fluorescent. Using confocal microscopy one can observe the fluctuations of
the fluorescence of a single molecule, which give direct information about the large amplitude
motions associated with the opening and closing of the DNA hairpin [16].

2.2.2. Single molecule experiments. Standard physical methods operate on a huge number of
molecules and, therefore, they can only measure average properties. In the last few years a new
class of investigations appeared. They are performed on a single molecule. Such experiments
are possible for three reasons:

• As already mentioned, DNA is a very long molecule so that its manipulation is possible.
• Physicists can use methods developed by biologists. For instance, it is possible to use

natural enzymes to perform reactions on a specific site of DNA, allowing, for instance, the
chemical attachment of one particular point of the DNA molecule to a glass bead which
can be manipulated.

• In line with the methods developed for scanning microscopy, the technical progress allows
micromanipulations and observation of very small objects, although the experiments
remain real ‘tours de force’.

Figure 9 shows the result of such an experiment, the force–extension curve of a single
DNA molecule, obtained for the first time in 1992 [17] and repeated with a higher accuracy by
several groups a few years later [18, 19]. Such a curve is extremely rich in information about
the molecule. Three different regions appear on the diagram.

• Weak forces (f ! 5 pN): in this domain the force essentially balances the fluctuations of
the molecule and the elasticity of DNA is due to entropic effects. It can be analysed using
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Figure 15. Schematic of the micromechanical denaturation experiment of DNA.

The DNA molecule to open is attached on one side to a DNA linker, which is attached to a glass
plate providing a fixed reference point. On the other hand, one of the strands is attached to a
glass bead, which is pulled by a glass micro-needle. The necessary attachments are provided
by the ‘biological glue’ biotine–streptavidine, two molecules that bind strongly to each other.
It is possible to buy glass beads coated with spectravidine, and biological techniques are used to
chemically link biotine to the desired position of DNA. This experiment illustrates the power
of the combination of physical techniques with biological methods that can take advantage
of the specificity of biological reactions which are now well known and controlled, even if
their mechanism is not yet fully understood at the molecular level. The micro-needle, moved
at constant speed, pulls the glass bead, leading to the mechanical denaturation of the DNA
segment under study, but, in addition, its elastic deformation which is recorded provides a
measure of the force which is necessary to break the base pairs.

In fact a simple analysis shows that such an experiment is not able to distinguish a single
base pair. The piece of DNA strand which is already open and the needle are equivalent to
an elastic spring of rigidity k1. When a base pair breaks, a length !" = 7.5 Å is freed on
each strand. As a result this spring shortens by 2!" = 15 Å. The force that it exerts on DNA
decreases, but the decrease of the elastic energy stored in the spring is very small, well below
kBT , and the denaturation does not stop immediately after the first mechanical denaturation has
occurred. Assisted by thermal fluctuations, it goes on, along at least a few tens of base pairs,
releasing the elastic stress sufficiently for the elastic force to fall well below the critical force
that denaturates a base pair. Therefore, the experiment observes the breaking of groups of base
pairs and cannot be used for mechanical sequencing of DNA. However, on a scale of 100 bases
the experiment shows a good correlation between the G–C content and the force necessary to
open the molecule [35], showing that mechanical denaturation can give some information on
the sequence at low resolution. In order to analyse this information it is, however, necessary
to examine the results of the experiment in detail because the relation between the measured
force and the sequence is not trivial.

7.1. Numerical observation for a homopolymer

The simplest case that one can consider is the case of an artificial DNA molecule having a
single type of base pair, such as the homopolymer that was used in some thermal denaturation
experiments [14]. Actual single-molecule experiments on such systems have not yet been
performed because it is hard to make long enough homopolymers. Let us examine the results
of numerical simulations performed with the DNA model that we have introduced in section 3.

For such a study the model has to be slightly extended as shown in figure 16. As we
have only one variable per base pair, the stretching of the bases, the overall translation of the
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Here we took into account that, in each state !G/!T % "S(f, T), and
!G/!f % "b(f, T), according to Eq. 2 of Rouzina and Bloomfield (2001).
Both derivatives should be taken at the force and the temperature at the
midpoint of the transition.

To illustrate, we use, for !&(f), the value obtained from experimental
dsDNA and ssDNA stretching curves under standard conditions of room
temperature Tr % 293 K and 150 mM NaCl. First, we take the transition
free energy without applied force, !G0(T), in the form of linear dependence
described by Eq. 24 of Rouzina and Bloomfield (2001) with the values
from thermal melting studies of Tm % 360 K and !S % 25 cal/mol-K
(Blake and Delcourt, 1998; Rouzina and Bloomfield, 1999; Santalucia,
1998).

We assume that the dependences of !S on f and of !b(f) on T are
negligible. The first of these assumptions is justified by the fact that, as was
shown in Rouzina and Bloomfield (2001), !!&(f)/!T % "!S(f, T) '' !S
at any reasonable force. The second assumption implies that flexibilities of
ds and ssDNA change insignificantly with temperature. This assumption
holds much better for the ds than for ssDNA in the range of experimental
temperature variation. Direct measurement of the ssDNA flexibility at
various temperatures would be needed to enable more accurate prediction
of fov(T). In any case, the effect of varying ssDNA flexibility with tem-
perature on fov(T) should be minor compared to the main effect described
below.

The calculated fov(T) dependence (long dashed line in Fig. 1), captures
the main features of the effect. Its slope at T '' Tm, is constant and equal

to !fov/!T % "!S/!bmax ( "25 cal/mol-K/0.22 nm % "0.8 pN/K, where
!bmax ( 0.22 nm is the maximum difference between the stretched-out
extension per base of ss and dsDNA. A similar fit of their experimental
fov(T) dependence was performed by Gaub et al. (Clausen-Schaumann et
al., 2000). Our procedure is different in that the DNA melting temperature
at zero force is required to equal the value determined from thermal
melting studies. Also we take into account the variation of !b with force,
and the variation of !S with temperature, as described in the next subsection.

The slope of fov(T) calculated assuming !S % 25 cal/mol-K (long
dashed line in Fig. 1) apparently overestimates the experimental slope from
the data of Gaub et al. (Clausen-Schaumann et al., 2000). The best fit to all
data points is provided by !S % 20 cal/mol-K (short dashed line in Fig. 1),
rather than !S % 25 cal/mol-K. This lower value of the melting entropy
would explain why the DNA double helix is melted at room temperature by
fov % 65 pN rather than about 80 pN as predicted by the long dashed line
in Fig. 1. In other words, analysis of the stretching experiment suggests that
dsDNA at room temperature is less stable than expected from the conven-
tional estimate according to Eq. 24 with the calorimetric value of !S, as
discussed in Rouzina and Bloomfield (2001).

Heat capacity effects

It is possible to resolve this contradiction between the measured and fitted
values of the DNA melting entropy by taking into account its dependence
on temperature (Landau and Lifshitz, 1988),

!S # !S#Tm$ " !Cp ! ln! T
Tm
". (3)

Here, !Cp is the change of DNA heat capacity per basepair upon melting.
For a long time, !Cp was considered negligible due to experimental
difficulties in its determination. Only recently was it directly measured to
be !Cp % 65 ) 20 cal/mol-K (Chalikian et al., 1999; Holbrook et al., 1999;
Jelesarov et al., 1999), and its importance for DNA melting thermodynam-
ics realized (Rouzina and Bloomfield, 1999a,b).

In calorimetric experiments, it is !S(Tm) which is measured. However,
DNA melting by stretching can occur at much lower temperatures, which,
according to Eq. 3, should have much lower transition entropy. Thus, at the
room temperature Tr % 293 K and !Cp % 65 cal/mol-K, !S(Tr) % 11
cal/mol-K rather than 25 cal/mol-K.

The simplest way to calculate the dependence of fov on (T), taking into
account the nonzero !Cp, is to solve the quadratic equation !&(f) %
"!G0(T) with

!G0#T$ # !S#Tm$ ! #Tm $ T$ $
!Cp

2 !
#Tm $ T$2

Tm
. (4)

This expression for !G0(T) can be obtained as its expansion to the second
order with respect to small parameter (T " Tm)/Tm '' 1 using the standard
relation !G % !H " T!S, with !H % !H(Tm) * !Cp ! (T " Tm) and
!S(T) given by Eq. 3 (Rouzina and Bloomfield, 1999). The transition free
energy calculated according to Eq. 4 with !Cp % 65 cal/mol-K is presented
in Fig. 2 in comparison with the behavior if !Cp % 0. The double helix
stability at room temperature in the former case is indeed smaller by
+0.5kBTr % 0.3 kcal/mol. In other words, the actual DNA stability at room
temperature is about 30% smaller than conventionally thought, based on
the linear approximation to its temperature dependence, Eq. 24 of Rouzina
and Bloomfield (2001). We performed such fov(T) calculation fixing
!S(Tm) % 25 ) 2 cal/mol-K and adjusting !Cp; the best fit to experiment
was obtained with !Cp % 65 ) 15 cal/mol-K, in very good agreement with
the calorimetric determination. More detailed discussion of the fitting
procedure applied to highly accurate data fov(T) can be found in a recent
paper from our laboratory (M. C. Williams, J. R. Wenner, I. Rouzina, and
V. A. Bloomfield, submitted for publication). There, we arrive at the
conclusion that the melting theory describes the fov(T) dependence very

FIGURE 1 The helix-coil phase boundary in (f, T) plane. Circles with
error bars are data points from Clausen-Schaumann et al. (2000). Long
dashed line: fov(T) calculated according to equation !&(f) % "!S ! (T "
Tm) with experimental values Tm % 87°C and !S(Tm) % 25 cal/mol-K.
Short dashed line: the same but with !S % 20 cal/mol-K. Solid line:
calculation assuming nonlinear dependence of transition free energy on the
temperature, Eq. 4, with the heat capacity of DNA melting per basepair of
!Cp % 65 cal/mol-K and !S(Tm) % 25 cal/mol-K. In all calculations,
!&(f) was taken equal to its experimental room temperature value (Fig. 3 A
of Rouzina and Bloomfield, 2001).

DNA Stretching–Melting: Solution Effects 895

Biophysical Journal 80(2) 894–900

I. Rouzina, A. Bloomfield, Force-Induced 
Melting of the DNA Double Helix. 2. Effect 
of Solution Conditions, Biophysical Journal 
80(2):894-900, 2001 
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Figure 10. The simple dynamical model for DNA nonlinear dynamics, described by
Hamiltionian (1).

to infinity if the two bases separate completely as in DNA denaturation. The variable yn can
even take negative values, corresponding to a compression of the bond linking the bases with
respect to its equilibrium length. Large negative values will be forbidden by steric hindrance,
which is introduced in the model by the potential linking the bases in a pair.

The model is shown in figure 10 and is defined by the Hamiltonian

H =
∑

n

p2
n

2m
+ W(yn, yn−1) + V (yn) with pn = m

dyn

dt
, (1)

where m is the reduced mass of the bases. At this stage we do not explicitly include the genetic
code and all base pairs are considered to be the same.

The potential V (y) describes the interaction between the two bases in a pair. We use a
Morse potential

V (y) = D(e−ay − 1)2, (2)

where D is the dissociation energy of the pair and a a parameter, homogeneous to the inverse
of a length, which sets the spatial scale of the potential. This expression has been chosen
because it is a standard expression for chemical bonds and, moreover, it has the appropriate
qualitative shape:

• it includes a strong repulsive part for y < 0, corresponding to the sterical hindrance
mentioned earlier,

• it has a minimum at the equilibrium position y = 0,
• it becomes flat for large y, giving a force between the bases that tends to vanish, as expected

when the bases are very far apart; this feature allows a complete dissociation of the base
pair, which would be forbidden if we had chosen a simple harmonic potential.

The potential W(yn, yn−1) describes the interaction between adjacent bases along the DNA
molecule. It has several physical origins:

• The presence of the sugar–phosphate strand, which is rather rigid and connects the bases.
Pulling a base out of the stack in a translational motion tends to pull the neighbours due
to this link. One should note, however, that we have not specified the three-dimensional
motion of the bases in this simple model. An increase of the base pair stretching could also
be obtained by rotating the bases out of the stack, around an axis parallel to the axis of the
helix and passing through the attachment point between a base and the sugar–phosphate
strand. Such a motion would not couple the bases through the strands. The potential

M. Peyrard, A. R. Bishop, Statistical Mechanics of a Nonlinear Model for DNA Denaturation, PRL 1989 
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W(yn, yn−1) is an effective potential which can be viewed as averaging over the different
possibilities to displace the bases.

• The direct interaction between the base pair plateaux, which is due to an overlap of the
π -electron orbitals of the organic rings that make up the bases.

In the first stage, we shall use for W(yn, yn−1) the simplest expression, i.e. the expansion of
the potential around its minimum which is reached when yn = yn−1

W(yn, yn−1) = 1
2K(yn − yn−1)

2. (3)

Such an harmonic approximation would be good if the stacking interaction were strong enough
to keep yn close to yn−1 at all times. This is not true for DNA, but the harmonic approximation
allows easier calculations, and it is sufficient to get some interesting results which agree with
some experimental observations. However, we shall see that the expression for W has to be
improved to provide a correct description of the thermal denaturation.

The choice of the potential parameters is a very difficult question because, as discussed
earlier, the potentials entering the model are effective potentials, which combine many actual
interactions. For instance, V (y) includes the hydrogen bonds between the bases but also the
repulsion between the charged phosphate groups, which is partly screened by the ions which
are in solution.

The parameters that we use have been calibrated by comparison with experiments, in
particular the thermal denaturation as discussed in section 6, but they are not accurately
known. The parameters for V (y) are D = 0.03 eV, which is slightly above kBT at room
temperature (kB being the Boltzmann constant) and a = 4.5 Å−1. For a stretching of the
base pair distance of 0.1 Å, these parameters give a variation of energy of 0.006 eV, which is
consistent with the values that we listed for hydrogen bonds in section 2. The value chosen for
K is K = 0.06 eV Å−2, which corresponds to a weak coupling between the bases, as attested
by the experimental results showing that proton–deuterium exchange can occur on one base
pair without affecting the neighbours. The average mass of the nucleotides is 300 amu.

The values of the constants have been given with a system of units adapted to the scale
of the problem: lengths in units of " = 1 Å, energies in units of e = 1 eV, mass in units of
m0 = 1 amu. This defines a natural time unit t0 through e = m0"

2t−2
0 , which is equal to

t0 = 1.018 × 10−14 s, which is of the order of magnitude of the period of the vibrational
motions of the base pairs.

Although actual units are important to compare the results with experiments, for theoretical
calculations, it is very useful to express the problem in terms of dimensionless quantities. It is
natural to introduce the dimensionless stretching of the base pairs as Y = ay. If we measure
the energies in units of the depth D of the Morse potential, the dimensionless Hamiltonian is
H ′ = H/D, and defining the dimensionless quantity S = K/(Da2), and a dimensionless time
τ =

√
Da2/mt , we obtain the Hamiltonian H ′ only in terms of dimensionless quantities in

the form

H ′ =
∑

n

1
2
P 2

n +
1
2
S(Yn − Yn−1)

2 + (e−Yn − 1)2 with Pn = dYn

dτ
, (4)

from which one can derive dimensionless equations of motion, which depend on a single
parameter S which is equal to S = 0.0976 with our potential parameters.

4. Observing the dynamics of the DNA model

A simple method to evaluate the ability of this model to describe DNA is to observe its dynamics
and compare it with the experimental properties of DNA. Numerical simulations can be used,
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Figure 10. The simple dynamical model for DNA nonlinear dynamics, described by
Hamiltionian (1).

to infinity if the two bases separate completely as in DNA denaturation. The variable yn can
even take negative values, corresponding to a compression of the bond linking the bases with
respect to its equilibrium length. Large negative values will be forbidden by steric hindrance,
which is introduced in the model by the potential linking the bases in a pair.

The model is shown in figure 10 and is defined by the Hamiltonian

H =
∑

n

p2
n

2m
+ W(yn, yn−1) + V (yn) with pn = m

dyn

dt
, (1)

where m is the reduced mass of the bases. At this stage we do not explicitly include the genetic
code and all base pairs are considered to be the same.

The potential V (y) describes the interaction between the two bases in a pair. We use a
Morse potential

V (y) = D(e−ay − 1)2, (2)

where D is the dissociation energy of the pair and a a parameter, homogeneous to the inverse
of a length, which sets the spatial scale of the potential. This expression has been chosen
because it is a standard expression for chemical bonds and, moreover, it has the appropriate
qualitative shape:

• it includes a strong repulsive part for y < 0, corresponding to the sterical hindrance
mentioned earlier,

• it has a minimum at the equilibrium position y = 0,
• it becomes flat for large y, giving a force between the bases that tends to vanish, as expected

when the bases are very far apart; this feature allows a complete dissociation of the base
pair, which would be forbidden if we had chosen a simple harmonic potential.

The potential W(yn, yn−1) describes the interaction between adjacent bases along the DNA
molecule. It has several physical origins:

• The presence of the sugar–phosphate strand, which is rather rigid and connects the bases.
Pulling a base out of the stack in a translational motion tends to pull the neighbours due
to this link. One should note, however, that we have not specified the three-dimensional
motion of the bases in this simple model. An increase of the base pair stretching could also
be obtained by rotating the bases out of the stack, around an axis parallel to the axis of the
helix and passing through the attachment point between a base and the sugar–phosphate
strand. Such a motion would not couple the bases through the strands. The potential

Elastic potential

Morse potential



G. Florio and G. Puglisi Acta Biomaterialia xxx (xxxx) xxx 
ARTICLE IN PRESS 

JID: ACTBIO [m5G; December 13, 2022;16:35 ] 

Fig. 2. (a) Scheme of the bonds energy in the discrete model for DNA with the 
breakable links mimicking the behavior of the hydrogen bonds. Continuous lines 
parabolic/constant represent single valued potentials. Dashed lines represent the 
two-values potential assumed when temperature effects are considered. In panel 
(a) we have defined w i = u i /u d , where u d is the debonding threshold. See the main 
text for details. (b) Scheme of the chain with breakable links and applied displace- 
ment to the end-point bases. 
chain reference length. We may then introduce an internal (spin) 
variable χi with 
χi = {0 , if | u | ≤ u d , unbroken links 

1 , if | u | > u d , broken links , (2) 
thus describing each interchain link as a two-state element. The 
case of units undergoing transition between unbroken ad broken 
states has been investigated with a similar approach in the cases 
of parallel links in Selinger et al. [35] and, more recently, in Mad- 
dalena et al. [37] , Efendiev and Truskinovsky [38] , and then applied 
to biological adhesion in Puglisi and Truskinovsky [39] . 

On the other hand, we can write the elastic energy associated 
to each (nearest-neighbor) couple of elements in the strand as 
ψ t (u i +1 , u i ) = k t l 

2 
(
u i +1 − u i 

l 
)2 

, (3) 
where k t > 0 is the shear constant. 

As a result, the total potential energy of the breakable bonds 
can be assigned as 
#br = k e l 

2 
n ∑ 

i =1 
[
(1 − χi ) ( u i 

u d 
)2 

+ χi ] (4) 
whereas the strand total potential energy is 
#el = n ∑ 

i =0 ψ t (u i +1 , u i ) . (5) 
Finally, the total potential energy of the system reads 
# = #el + #br . (6) 
We stress that, due to its definition in Eq. (4) , #br depends on the 
configuration vector χ = { χ1 , . . . , χn } . To reproduce classical exper- 
iments on DNA molecules, we suppose that one side of the chain 

is fixed with u 0 = 0 , whereas we assume that a displacement d is 
assigned to the last mass ( hard device condition, see Fig. 2 ). More 
general boundary conditions taking care of the influence of the 
loading system can be assigned as proposed in Florio and Puglisi 
[36] by considering another energy term introducing the elasticity 
of the loading device or interacting molecule (such as RNA in the 
case of DNA transcription), but for the sake of simplicity we here 
neglect this additional term. 

After introducing the rescaled displacements w i = u i /u d we can 
write the (non dimensional) total elastic energy as 
n φ = #

k e l = ν2 
2 

n ∑ 
i =0 ( w i +1 − w i ) 2 + 1 

2 
n ∑ 

i =1 
[
(1 − χi ) w 2 i + χi ]. (7) 

In Eq. (7) we introduced the main non dimensional parameter of the 
model 
ν = √ 

k t 
k e u d l , (8) 

measuring the energy per unit (relative) displacement of the shear 
(inter-strand/covalent) bonds vs. the energy per unit displacement 
for the breakable (intra-strands/non-covalent) bonds. 

As remarked in the introduction, previous analytical results in 
the literature are based on specific assumptions such as continuum 
limit in Peyrard [17] and Theodorakopoulos [21] ) or in Theodor- 
akopoulos et al. [22] for the extreme discretization limit (corre- 
sponding to ν2 

n → 0 and ν2 
n → ∞ , respectively). Remarkably, here 

we do not need any of these assumptions so that both limits re- 
sult as particular cases of our analysis. 
2. Mechanical limit 

Consider first the mechanical (zero-temperature) limit describ- 
ing the behavior when the entropic energy terms can be neglected 
as compared to the internal energy. In this case the observed con- 
figurations correspond to the minima of the energy in Eq. (7) un- 
der the constraint of applied displacement. 

Equilibrium solutions. In order to find the equilibrium configu- 
rations and take care of the constraint previously mentioned, we 
minimize the total energy function 
n g = n φ − fδ, (9) 
where we introduced the Lagrange multiplier f coupled to the 
assigned displacement d, hereadimensionalized as δ = d/u d (see 
Fig. 2 ). Notice that f measures the (rescaled, non-dimensional) 
force acting on the system and its relation with the effective mea- 
sured force F is 
F = k e l 

u d f . (10) 
It is possible to see (Supplementary Material, SM) that the equi- 
librium solutions w i are monotonically increasing for δ > 0 , i.e. 
w i +1 ≥ w i for i = 0 . . . , n − 1 . As a result, by using Eq. (2) , all the 
stable equilibrium solutions are characterized by an initial con- 
nected segment of p attached links and n − p detached links, 
hereon referred as single domain wall (SDW) solutions. It is im- 
portant to remark that this condition in general is not necessarily 
verified by the general equilibrium configurations when the effects 
of the temperature T are taken into account. On the other hand, 
the efficacy of this approximation in the case of T > 0 at realistic 
values of the temperature has been numerically shown for protein 
unfolding experiments in Florio and Puglisi [36] . 

An explicit calculation (SM) allows us to evaluate the equilib- 
rium values of w i . In particular, given a fixed value of unbroken 
links p, the following total force-displacement relation holds 
w n +1 = δ = f 

k (p) , (11) 
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Figure 2: (a) Scheme of the potential energy terms in the discrete model for DNA with the breakable link mimicking the

behavior of the hydrogen bonds. The continuous line parabolic/constant is the single valued potential. Using the dashed

lines we represent the two-values potential assumed when temperature effects are considered. In panel (a) we have defined

wi = ui/ud, where ud is the debonding threshold. See the main text for details (b). Scheme of the chain with breakable

links and applied displacement to the final oscillator.

As a result, the total potential energy of the breakable bonds is

�br =
kel

2

nX

i=1
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✓
ui

ud

◆2

+ �i

#
(4)

whereas the strand total potential energy is

�el =
nX

i=0

 t(ui+1, ui) (5)

Finally, the total potential energy of the system reads

� = �el + �br. (6)

We stress that, due to its definition in Eq.(4), �br depends on the configuration vector � = {�1, . . . ,�n}.
To reproduce classical experiments on DNA molecules, we suppose that one side of the chain is fixed
with u0 = 0, whereas we assume that a displacement d is assigned to the last mass (so-called hard device

condition, see Fig. 2). These conditions represent a good approximation of hairpins unzipping when the
extensional stiffness of the single stranded molecules significantly overcome the double-stranded one.
More general boundary conditions taking care of the influence of the loading system can be assigned
as proposed in [34] by considering another energy term introducing the elasticity of the loading device
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Fig. 2. (a) Scheme of the bonds energy in the discrete model for DNA with the 
breakable links mimicking the behavior of the hydrogen bonds. Continuous lines 
parabolic/constant represent single valued potentials. Dashed lines represent the 
two-values potential assumed when temperature effects are considered. In panel 
(a) we have defined w i = u i /u d , where u d is the debonding threshold. See the main 
text for details. (b) Scheme of the chain with breakable links and applied displace- 
ment to the end-point bases. 
chain reference length. We may then introduce an internal (spin) 
variable χi with 
χi = {0 , if | u | ≤ u d , unbroken links 

1 , if | u | > u d , broken links , (2) 
thus describing each interchain link as a two-state element. The 
case of units undergoing transition between unbroken ad broken 
states has been investigated with a similar approach in the cases 
of parallel links in Selinger et al. [35] and, more recently, in Mad- 
dalena et al. [37] , Efendiev and Truskinovsky [38] , and then applied 
to biological adhesion in Puglisi and Truskinovsky [39] . 

On the other hand, we can write the elastic energy associated 
to each (nearest-neighbor) couple of elements in the strand as 
ψ t (u i +1 , u i ) = k t l 

2 
(
u i +1 − u i 

l 
)2 

, (3) 
where k t > 0 is the shear constant. 

As a result, the total potential energy of the breakable bonds 
can be assigned as 
#br = k e l 

2 
n ∑ 

i =1 
[
(1 − χi ) ( u i 

u d 
)2 

+ χi ] (4) 
whereas the strand total potential energy is 
#el = n ∑ 

i =0 ψ t (u i +1 , u i ) . (5) 
Finally, the total potential energy of the system reads 
# = #el + #br . (6) 
We stress that, due to its definition in Eq. (4) , #br depends on the 
configuration vector χ = { χ1 , . . . , χn } . To reproduce classical exper- 
iments on DNA molecules, we suppose that one side of the chain 

is fixed with u 0 = 0 , whereas we assume that a displacement d is 
assigned to the last mass ( hard device condition, see Fig. 2 ). More 
general boundary conditions taking care of the influence of the 
loading system can be assigned as proposed in Florio and Puglisi 
[36] by considering another energy term introducing the elasticity 
of the loading device or interacting molecule (such as RNA in the 
case of DNA transcription), but for the sake of simplicity we here 
neglect this additional term. 

After introducing the rescaled displacements w i = u i /u d we can 
write the (non dimensional) total elastic energy as 
n φ = #

k e l = ν2 
2 

n ∑ 
i =0 ( w i +1 − w i ) 2 + 1 

2 
n ∑ 

i =1 
[
(1 − χi ) w 2 i + χi ]. (7) 

In Eq. (7) we introduced the main non dimensional parameter of the 
model 
ν = √ 

k t 
k e u d l , (8) 

measuring the energy per unit (relative) displacement of the shear 
(inter-strand/covalent) bonds vs. the energy per unit displacement 
for the breakable (intra-strands/non-covalent) bonds. 

As remarked in the introduction, previous analytical results in 
the literature are based on specific assumptions such as continuum 
limit in Peyrard [17] and Theodorakopoulos [21] ) or in Theodor- 
akopoulos et al. [22] for the extreme discretization limit (corre- 
sponding to ν2 

n → 0 and ν2 
n → ∞ , respectively). Remarkably, here 

we do not need any of these assumptions so that both limits re- 
sult as particular cases of our analysis. 
2. Mechanical limit 

Consider first the mechanical (zero-temperature) limit describ- 
ing the behavior when the entropic energy terms can be neglected 
as compared to the internal energy. In this case the observed con- 
figurations correspond to the minima of the energy in Eq. (7) un- 
der the constraint of applied displacement. 

Equilibrium solutions. In order to find the equilibrium configu- 
rations and take care of the constraint previously mentioned, we 
minimize the total energy function 
n g = n φ − fδ, (9) 
where we introduced the Lagrange multiplier f coupled to the 
assigned displacement d, hereadimensionalized as δ = d/u d (see 
Fig. 2 ). Notice that f measures the (rescaled, non-dimensional) 
force acting on the system and its relation with the effective mea- 
sured force F is 
F = k e l 

u d f . (10) 
It is possible to see (Supplementary Material, SM) that the equi- 
librium solutions w i are monotonically increasing for δ > 0 , i.e. 
w i +1 ≥ w i for i = 0 . . . , n − 1 . As a result, by using Eq. (2) , all the 
stable equilibrium solutions are characterized by an initial con- 
nected segment of p attached links and n − p detached links, 
hereon referred as single domain wall (SDW) solutions. It is im- 
portant to remark that this condition in general is not necessarily 
verified by the general equilibrium configurations when the effects 
of the temperature T are taken into account. On the other hand, 
the efficacy of this approximation in the case of T > 0 at realistic 
values of the temperature has been numerically shown for protein 
unfolding experiments in Florio and Puglisi [36] . 

An explicit calculation (SM) allows us to evaluate the equilib- 
rium values of w i . In particular, given a fixed value of unbroken 
links p, the following total force-displacement relation holds 
w n +1 = δ = f 

k (p) , (11) 
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Fig. 2. (a) Scheme of the bonds energy in the discrete model for DNA with the 
breakable links mimicking the behavior of the hydrogen bonds. Continuous lines 
parabolic/constant represent single valued potentials. Dashed lines represent the 
two-values potential assumed when temperature effects are considered. In panel 
(a) we have defined w i = u i /u d , where u d is the debonding threshold. See the main 
text for details. (b) Scheme of the chain with breakable links and applied displace- 
ment to the end-point bases. 
chain reference length. We may then introduce an internal (spin) 
variable χi with 
χi = {0 , if | u | ≤ u d , unbroken links 

1 , if | u | > u d , broken links , (2) 
thus describing each interchain link as a two-state element. The 
case of units undergoing transition between unbroken ad broken 
states has been investigated with a similar approach in the cases 
of parallel links in Selinger et al. [35] and, more recently, in Mad- 
dalena et al. [37] , Efendiev and Truskinovsky [38] , and then applied 
to biological adhesion in Puglisi and Truskinovsky [39] . 

On the other hand, we can write the elastic energy associated 
to each (nearest-neighbor) couple of elements in the strand as 
ψ t (u i +1 , u i ) = k t l 

2 
(
u i +1 − u i 

l 
)2 

, (3) 
where k t > 0 is the shear constant. 

As a result, the total potential energy of the breakable bonds 
can be assigned as 
#br = k e l 

2 
n ∑ 

i =1 
[
(1 − χi ) ( u i 

u d 
)2 

+ χi ] (4) 
whereas the strand total potential energy is 
#el = n ∑ 

i =0 ψ t (u i +1 , u i ) . (5) 
Finally, the total potential energy of the system reads 
# = #el + #br . (6) 
We stress that, due to its definition in Eq. (4) , #br depends on the 
configuration vector χ = { χ1 , . . . , χn } . To reproduce classical exper- 
iments on DNA molecules, we suppose that one side of the chain 

is fixed with u 0 = 0 , whereas we assume that a displacement d is 
assigned to the last mass ( hard device condition, see Fig. 2 ). More 
general boundary conditions taking care of the influence of the 
loading system can be assigned as proposed in Florio and Puglisi 
[36] by considering another energy term introducing the elasticity 
of the loading device or interacting molecule (such as RNA in the 
case of DNA transcription), but for the sake of simplicity we here 
neglect this additional term. 

After introducing the rescaled displacements w i = u i /u d we can 
write the (non dimensional) total elastic energy as 
n φ = #

k e l = ν2 
2 

n ∑ 
i =0 ( w i +1 − w i ) 2 + 1 

2 
n ∑ 

i =1 
[
(1 − χi ) w 2 i + χi ]. (7) 

In Eq. (7) we introduced the main non dimensional parameter of the 
model 
ν = √ 

k t 
k e u d l , (8) 

measuring the energy per unit (relative) displacement of the shear 
(inter-strand/covalent) bonds vs. the energy per unit displacement 
for the breakable (intra-strands/non-covalent) bonds. 

As remarked in the introduction, previous analytical results in 
the literature are based on specific assumptions such as continuum 
limit in Peyrard [17] and Theodorakopoulos [21] ) or in Theodor- 
akopoulos et al. [22] for the extreme discretization limit (corre- 
sponding to ν2 

n → 0 and ν2 
n → ∞ , respectively). Remarkably, here 

we do not need any of these assumptions so that both limits re- 
sult as particular cases of our analysis. 
2. Mechanical limit 

Consider first the mechanical (zero-temperature) limit describ- 
ing the behavior when the entropic energy terms can be neglected 
as compared to the internal energy. In this case the observed con- 
figurations correspond to the minima of the energy in Eq. (7) un- 
der the constraint of applied displacement. 

Equilibrium solutions. In order to find the equilibrium configu- 
rations and take care of the constraint previously mentioned, we 
minimize the total energy function 
n g = n φ − fδ, (9) 
where we introduced the Lagrange multiplier f coupled to the 
assigned displacement d, hereadimensionalized as δ = d/u d (see 
Fig. 2 ). Notice that f measures the (rescaled, non-dimensional) 
force acting on the system and its relation with the effective mea- 
sured force F is 
F = k e l 

u d f . (10) 
It is possible to see (Supplementary Material, SM) that the equi- 
librium solutions w i are monotonically increasing for δ > 0 , i.e. 
w i +1 ≥ w i for i = 0 . . . , n − 1 . As a result, by using Eq. (2) , all the 
stable equilibrium solutions are characterized by an initial con- 
nected segment of p attached links and n − p detached links, 
hereon referred as single domain wall (SDW) solutions. It is im- 
portant to remark that this condition in general is not necessarily 
verified by the general equilibrium configurations when the effects 
of the temperature T are taken into account. On the other hand, 
the efficacy of this approximation in the case of T > 0 at realistic 
values of the temperature has been numerically shown for protein 
unfolding experiments in Florio and Puglisi [36] . 

An explicit calculation (SM) allows us to evaluate the equilib- 
rium values of w i . In particular, given a fixed value of unbroken 
links p, the following total force-displacement relation holds 
w n +1 = δ = f 

k (p) , (11) 
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Fig. 2. (a) Scheme of the bonds energy in the discrete model for DNA with the 
breakable links mimicking the behavior of the hydrogen bonds. Continuous lines 
parabolic/constant represent single valued potentials. Dashed lines represent the 
two-values potential assumed when temperature effects are considered. In panel 
(a) we have defined w i = u i /u d , where u d is the debonding threshold. See the main 
text for details. (b) Scheme of the chain with breakable links and applied displace- 
ment to the end-point bases. 
chain reference length. We may then introduce an internal (spin) 
variable χi with 
χi = {0 , if | u | ≤ u d , unbroken links 

1 , if | u | > u d , broken links , (2) 
thus describing each interchain link as a two-state element. The 
case of units undergoing transition between unbroken ad broken 
states has been investigated with a similar approach in the cases 
of parallel links in Selinger et al. [35] and, more recently, in Mad- 
dalena et al. [37] , Efendiev and Truskinovsky [38] , and then applied 
to biological adhesion in Puglisi and Truskinovsky [39] . 

On the other hand, we can write the elastic energy associated 
to each (nearest-neighbor) couple of elements in the strand as 
ψ t (u i +1 , u i ) = k t l 

2 
(
u i +1 − u i 

l 
)2 

, (3) 
where k t > 0 is the shear constant. 

As a result, the total potential energy of the breakable bonds 
can be assigned as 
#br = k e l 

2 
n ∑ 

i =1 
[
(1 − χi ) ( u i 

u d 
)2 

+ χi ] (4) 
whereas the strand total potential energy is 
#el = n ∑ 

i =0 ψ t (u i +1 , u i ) . (5) 
Finally, the total potential energy of the system reads 
# = #el + #br . (6) 
We stress that, due to its definition in Eq. (4) , #br depends on the 
configuration vector χ = { χ1 , . . . , χn } . To reproduce classical exper- 
iments on DNA molecules, we suppose that one side of the chain 

is fixed with u 0 = 0 , whereas we assume that a displacement d is 
assigned to the last mass ( hard device condition, see Fig. 2 ). More 
general boundary conditions taking care of the influence of the 
loading system can be assigned as proposed in Florio and Puglisi 
[36] by considering another energy term introducing the elasticity 
of the loading device or interacting molecule (such as RNA in the 
case of DNA transcription), but for the sake of simplicity we here 
neglect this additional term. 

After introducing the rescaled displacements w i = u i /u d we can 
write the (non dimensional) total elastic energy as 
n φ = #

k e l = ν2 
2 

n ∑ 
i =0 ( w i +1 − w i ) 2 + 1 

2 
n ∑ 

i =1 
[
(1 − χi ) w 2 i + χi ]. (7) 

In Eq. (7) we introduced the main non dimensional parameter of the 
model 
ν = √ 

k t 
k e u d l , (8) 

measuring the energy per unit (relative) displacement of the shear 
(inter-strand/covalent) bonds vs. the energy per unit displacement 
for the breakable (intra-strands/non-covalent) bonds. 

As remarked in the introduction, previous analytical results in 
the literature are based on specific assumptions such as continuum 
limit in Peyrard [17] and Theodorakopoulos [21] ) or in Theodor- 
akopoulos et al. [22] for the extreme discretization limit (corre- 
sponding to ν2 

n → 0 and ν2 
n → ∞ , respectively). Remarkably, here 

we do not need any of these assumptions so that both limits re- 
sult as particular cases of our analysis. 
2. Mechanical limit 

Consider first the mechanical (zero-temperature) limit describ- 
ing the behavior when the entropic energy terms can be neglected 
as compared to the internal energy. In this case the observed con- 
figurations correspond to the minima of the energy in Eq. (7) un- 
der the constraint of applied displacement. 

Equilibrium solutions. In order to find the equilibrium configu- 
rations and take care of the constraint previously mentioned, we 
minimize the total energy function 
n g = n φ − fδ, (9) 
where we introduced the Lagrange multiplier f coupled to the 
assigned displacement d, hereadimensionalized as δ = d/u d (see 
Fig. 2 ). Notice that f measures the (rescaled, non-dimensional) 
force acting on the system and its relation with the effective mea- 
sured force F is 
F = k e l 

u d f . (10) 
It is possible to see (Supplementary Material, SM) that the equi- 
librium solutions w i are monotonically increasing for δ > 0 , i.e. 
w i +1 ≥ w i for i = 0 . . . , n − 1 . As a result, by using Eq. (2) , all the 
stable equilibrium solutions are characterized by an initial con- 
nected segment of p attached links and n − p detached links, 
hereon referred as single domain wall (SDW) solutions. It is im- 
portant to remark that this condition in general is not necessarily 
verified by the general equilibrium configurations when the effects 
of the temperature T are taken into account. On the other hand, 
the efficacy of this approximation in the case of T > 0 at realistic 
values of the temperature has been numerically shown for protein 
unfolding experiments in Florio and Puglisi [36] . 

An explicit calculation (SM) allows us to evaluate the equilib- 
rium values of w i . In particular, given a fixed value of unbroken 
links p, the following total force-displacement relation holds 
w n +1 = δ = f 

k (p) , (11) 
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Fig. 2. (a) Scheme of the bonds energy in the discrete model for DNA with the 
breakable links mimicking the behavior of the hydrogen bonds. Continuous lines 
parabolic/constant represent single valued potentials. Dashed lines represent the 
two-values potential assumed when temperature effects are considered. In panel 
(a) we have defined w i = u i /u d , where u d is the debonding threshold. See the main 
text for details. (b) Scheme of the chain with breakable links and applied displace- 
ment to the end-point bases. 
chain reference length. We may then introduce an internal (spin) 
variable χi with 
χi = {0 , if | u | ≤ u d , unbroken links 

1 , if | u | > u d , broken links , (2) 
thus describing each interchain link as a two-state element. The 
case of units undergoing transition between unbroken ad broken 
states has been investigated with a similar approach in the cases 
of parallel links in Selinger et al. [35] and, more recently, in Mad- 
dalena et al. [37] , Efendiev and Truskinovsky [38] , and then applied 
to biological adhesion in Puglisi and Truskinovsky [39] . 

On the other hand, we can write the elastic energy associated 
to each (nearest-neighbor) couple of elements in the strand as 
ψ t (u i +1 , u i ) = k t l 
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, (3) 
where k t > 0 is the shear constant. 

As a result, the total potential energy of the breakable bonds 
can be assigned as 
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whereas the strand total potential energy is 
#el = n ∑ 

i =0 ψ t (u i +1 , u i ) . (5) 
Finally, the total potential energy of the system reads 
# = #el + #br . (6) 
We stress that, due to its definition in Eq. (4) , #br depends on the 
configuration vector χ = { χ1 , . . . , χn } . To reproduce classical exper- 
iments on DNA molecules, we suppose that one side of the chain 

is fixed with u 0 = 0 , whereas we assume that a displacement d is 
assigned to the last mass ( hard device condition, see Fig. 2 ). More 
general boundary conditions taking care of the influence of the 
loading system can be assigned as proposed in Florio and Puglisi 
[36] by considering another energy term introducing the elasticity 
of the loading device or interacting molecule (such as RNA in the 
case of DNA transcription), but for the sake of simplicity we here 
neglect this additional term. 

After introducing the rescaled displacements w i = u i /u d we can 
write the (non dimensional) total elastic energy as 
n φ = #
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In Eq. (7) we introduced the main non dimensional parameter of the 
model 
ν = √ 

k t 
k e u d l , (8) 

measuring the energy per unit (relative) displacement of the shear 
(inter-strand/covalent) bonds vs. the energy per unit displacement 
for the breakable (intra-strands/non-covalent) bonds. 

As remarked in the introduction, previous analytical results in 
the literature are based on specific assumptions such as continuum 
limit in Peyrard [17] and Theodorakopoulos [21] ) or in Theodor- 
akopoulos et al. [22] for the extreme discretization limit (corre- 
sponding to ν2 

n → 0 and ν2 
n → ∞ , respectively). Remarkably, here 

we do not need any of these assumptions so that both limits re- 
sult as particular cases of our analysis. 
2. Mechanical limit 

Consider first the mechanical (zero-temperature) limit describ- 
ing the behavior when the entropic energy terms can be neglected 
as compared to the internal energy. In this case the observed con- 
figurations correspond to the minima of the energy in Eq. (7) un- 
der the constraint of applied displacement. 

Equilibrium solutions. In order to find the equilibrium configu- 
rations and take care of the constraint previously mentioned, we 
minimize the total energy function 
n g = n φ − fδ, (9) 
where we introduced the Lagrange multiplier f coupled to the 
assigned displacement d, hereadimensionalized as δ = d/u d (see 
Fig. 2 ). Notice that f measures the (rescaled, non-dimensional) 
force acting on the system and its relation with the effective mea- 
sured force F is 
F = k e l 

u d f . (10) 
It is possible to see (Supplementary Material, SM) that the equi- 
librium solutions w i are monotonically increasing for δ > 0 , i.e. 
w i +1 ≥ w i for i = 0 . . . , n − 1 . As a result, by using Eq. (2) , all the 
stable equilibrium solutions are characterized by an initial con- 
nected segment of p attached links and n − p detached links, 
hereon referred as single domain wall (SDW) solutions. It is im- 
portant to remark that this condition in general is not necessarily 
verified by the general equilibrium configurations when the effects 
of the temperature T are taken into account. On the other hand, 
the efficacy of this approximation in the case of T > 0 at realistic 
values of the temperature has been numerically shown for protein 
unfolding experiments in Florio and Puglisi [36] . 

An explicit calculation (SM) allows us to evaluate the equilib- 
rium values of w i . In particular, given a fixed value of unbroken 
links p, the following total force-displacement relation holds 
w n +1 = δ = f 

k (p) , (11) 
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Figure 2: (a) Scheme of the potential energy terms in the discrete model for DNA with the breakable link mimicking the

behavior of the hydrogen bonds. The continuous line parabolic/constant is the single valued potential. Using the dashed

lines we represent the two-values potential assumed when temperature effects are considered. In panel (a) we have defined

wi = ui/ud, where ud is the debonding threshold. See the main text for details (b). Scheme of the chain with breakable

links and applied displacement to the final oscillator.

As a result, the total potential energy of the breakable bonds is

�br =
kel

2

nX

i=1

"
(1� �i)

✓
ui

ud

◆2

+ �i

#
(4)

whereas the strand total potential energy is

�el =
nX

i=0

 t(ui+1, ui) (5)

Finally, the total potential energy of the system reads

� = �el + �br. (6)

We stress that, due to its definition in Eq.(4), �br depends on the configuration vector � = {�1, . . . ,�n}.
To reproduce classical experiments on DNA molecules, we suppose that one side of the chain is fixed
with u0 = 0, whereas we assume that a displacement d is assigned to the last mass (so-called hard device

condition, see Fig. 2). These conditions represent a good approximation of hairpins unzipping when the
extensional stiffness of the single stranded molecules significantly overcome the double-stranded one.
More general boundary conditions taking care of the influence of the loading system can be assigned
as proposed in [34] by considering another energy term introducing the elasticity of the loading device

4

Figure 1: Representation of the separation of two strands of DNA due to the action of a force (a) and induced by thermal

effect (b). (c) Phase diagram of DNA denaturation.

fundamental innovation with respect to classical analysis of the PB model is the assumption of a
simplified form on the base interactions potential energy

 e(ui) =
kel

2

(
(ui/ud)2, if |ui/ud|  1

1 if |ui/ud| > 1
(1)

where ke > 0 is the elastic modulus of the unbroken links and ud is the debonding threshold, ui,
i = 0, 1, ..., n+1, are the transverse displacements with respect to the symmetry axis of the chain, and
we introduced the spring natural length l = L/n, L being the total chain reference length. We may
then introduce an internal (spin) variable �i with

�i =

⇢
0, if |u|  ud, unbroken link,
1, if |u| > ud, broken link, (2)

thus describing each interchain link as a two-state element. The case of units undergoing transition
between unbroken ad broken states has been investigated with a similar approach in the cases of parallel
links in [35] and, more recently, in [37, 38] and then applied to biological adhesion in [39].

On the other hand, we can write the elastic energy associated to each couple of elements of the
strand as

 t(ui+1, ui) =
ktl

2

✓
ui+1 � ui

l

◆2

, (3)

where kt > 0 is the shear constant.
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or interacting molecule (such as RNA in the case of DNA transcription), but for the sake of simplicity
we here neglect this additional term.

After introducing the rescaled displacements wi = ui/ud we can write the (non dimensional) total
elastic energy as

n� =
�

kel
=

⌫
2

2

nX

i=0

(wi+1 � wi)
2 +

1

2

nX

i=1

⇥
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2
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⇤
. (7)

In Eq.(7) we introduced the main non dimensional parameter of the model

⌫ =

r
kt

ke

ud

l
, (8)

measuring the energy per unit (relative) displacement of the shear (inter-strand/covalent) bonds vs the
energy per unit displacement for the breakable (intra-strands/non-covalent) bonds.

As remarked in the introduction, previous analytical results in the literature are based on specific
assumptions such as continuum limit in [16] and in [20] or [21] in the extreme discretization limit
(corresponding to ⌫2

n ! 0 and ⌫2

n ! 1, respectively). Here we do not need any of these assumption so
that both limits result as particular cases of our analysis.

2. Mechanical limit

Consider first the mechanical (zero-temperature) limit describing the behavior when entropic terms
can be neglected as compared to the internal energy. In this case the observed configurations correspond
to the minima of the energy in Eq. (7) also including the constraint of applied displacement.

Equilibrium solutions –. In order to find the equilibrium configurations and take care of the constraint
of assigned displacement, we minimize the potential energy function

n g = n�� f�, (9)

where we introduced the Lagrange multiplier f coupled to the assigned � = d/ud and d is the imposed
end-point displacement (see Fig. 2) We notice that the parameter f coupled to � represents the (rescaled,
non-dimensional) force acting on the system and its relation with the effective measured force F is

F =
kel

ud
f. (10)

It is possible to see (Supplementary Material, SM) that the equilibrium solutions wi are monotonically
increasing for � > 0, i.e. wi+1 � wi for i = 0 . . . , n � 1. As a result, by using Eq.(2), all the
stable equilibrium solutions are characterized by an initial connected segment of p attached links and
n � p detached links, so-called single domain wall (SDW) solutions. It is important to remark that
this condition in general is not verified when the effects of the temperature T are taken into account.
On the other hand, the efficacy of this approximation in the case of T > 0 at realistic values of the
temperature has been numerically shown for protein unfolding experiments in [34].

An explicit calculation (SI) allows us to evaluate the equilibrium values of wi. In particular, given
a fixed value of unbroken links p, the following total force-displacement relation holds

wn+1 = � =
f

k(p)
, (11)

where we introduced the global stiffness (dependent on the configuration p)

k(p) =
⌫
2

�(p)
, p = 0, . . . , n, (12)
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Fig. 2. (a) Scheme of the bonds energy in the discrete model for DNA with the 
breakable links mimicking the behavior of the hydrogen bonds. Continuous lines 
parabolic/constant represent single valued potentials. Dashed lines represent the 
two-values potential assumed when temperature effects are considered. In panel 
(a) we have defined w i = u i /u d , where u d is the debonding threshold. See the main 
text for details. (b) Scheme of the chain with breakable links and applied displace- 
ment to the end-point bases. 
chain reference length. We may then introduce an internal (spin) 
variable χi with 
χi = {0 , if | u | ≤ u d , unbroken links 

1 , if | u | > u d , broken links , (2) 
thus describing each interchain link as a two-state element. The 
case of units undergoing transition between unbroken ad broken 
states has been investigated with a similar approach in the cases 
of parallel links in Selinger et al. [35] and, more recently, in Mad- 
dalena et al. [37] , Efendiev and Truskinovsky [38] , and then applied 
to biological adhesion in Puglisi and Truskinovsky [39] . 

On the other hand, we can write the elastic energy associated 
to each (nearest-neighbor) couple of elements in the strand as 
ψ t (u i +1 , u i ) = k t l 

2 
(
u i +1 − u i 

l 
)2 

, (3) 
where k t > 0 is the shear constant. 

As a result, the total potential energy of the breakable bonds 
can be assigned as 
#br = k e l 

2 
n ∑ 

i =1 
[
(1 − χi ) ( u i 

u d 
)2 

+ χi ] (4) 
whereas the strand total potential energy is 
#el = n ∑ 

i =0 ψ t (u i +1 , u i ) . (5) 
Finally, the total potential energy of the system reads 
# = #el + #br . (6) 
We stress that, due to its definition in Eq. (4) , #br depends on the 
configuration vector χ = { χ1 , . . . , χn } . To reproduce classical exper- 
iments on DNA molecules, we suppose that one side of the chain 

is fixed with u 0 = 0 , whereas we assume that a displacement d is 
assigned to the last mass ( hard device condition, see Fig. 2 ). More 
general boundary conditions taking care of the influence of the 
loading system can be assigned as proposed in Florio and Puglisi 
[36] by considering another energy term introducing the elasticity 
of the loading device or interacting molecule (such as RNA in the 
case of DNA transcription), but for the sake of simplicity we here 
neglect this additional term. 

After introducing the rescaled displacements w i = u i /u d we can 
write the (non dimensional) total elastic energy as 
n φ = #

k e l = ν2 
2 

n ∑ 
i =0 ( w i +1 − w i ) 2 + 1 

2 
n ∑ 

i =1 
[
(1 − χi ) w 2 i + χi ]. (7) 

In Eq. (7) we introduced the main non dimensional parameter of the 
model 
ν = √ 

k t 
k e u d l , (8) 

measuring the energy per unit (relative) displacement of the shear 
(inter-strand/covalent) bonds vs. the energy per unit displacement 
for the breakable (intra-strands/non-covalent) bonds. 

As remarked in the introduction, previous analytical results in 
the literature are based on specific assumptions such as continuum 
limit in Peyrard [17] and Theodorakopoulos [21] ) or in Theodor- 
akopoulos et al. [22] for the extreme discretization limit (corre- 
sponding to ν2 

n → 0 and ν2 
n → ∞ , respectively). Remarkably, here 

we do not need any of these assumptions so that both limits re- 
sult as particular cases of our analysis. 
2. Mechanical limit 

Consider first the mechanical (zero-temperature) limit describ- 
ing the behavior when the entropic energy terms can be neglected 
as compared to the internal energy. In this case the observed con- 
figurations correspond to the minima of the energy in Eq. (7) un- 
der the constraint of applied displacement. 

Equilibrium solutions. In order to find the equilibrium configu- 
rations and take care of the constraint previously mentioned, we 
minimize the total energy function 
n g = n φ − fδ, (9) 
where we introduced the Lagrange multiplier f coupled to the 
assigned displacement d, hereadimensionalized as δ = d/u d (see 
Fig. 2 ). Notice that f measures the (rescaled, non-dimensional) 
force acting on the system and its relation with the effective mea- 
sured force F is 
F = k e l 

u d f . (10) 
It is possible to see (Supplementary Material, SM) that the equi- 
librium solutions w i are monotonically increasing for δ > 0 , i.e. 
w i +1 ≥ w i for i = 0 . . . , n − 1 . As a result, by using Eq. (2) , all the 
stable equilibrium solutions are characterized by an initial con- 
nected segment of p attached links and n − p detached links, 
hereon referred as single domain wall (SDW) solutions. It is im- 
portant to remark that this condition in general is not necessarily 
verified by the general equilibrium configurations when the effects 
of the temperature T are taken into account. On the other hand, 
the efficacy of this approximation in the case of T > 0 at realistic 
values of the temperature has been numerically shown for protein 
unfolding experiments in Florio and Puglisi [36] . 

An explicit calculation (SM) allows us to evaluate the equilib- 
rium values of w i . In particular, given a fixed value of unbroken 
links p, the following total force-displacement relation holds 
w n +1 = δ = f 

k (p) , (11) 
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Figure 1: Representation of the separation of two strands of DNA due to the action of a force (a) and induced by thermal

effect (b). (c) Phase diagram of DNA denaturation.

fundamental innovation with respect to classical analysis of the PB model is the assumption of a
simplified form on the base interactions potential energy

 e(ui) =
kel

2

(
(ui/ud)2, if |ui/ud|  1

1 if |ui/ud| > 1
(1)

where ke > 0 is the elastic modulus of the unbroken links and ud is the debonding threshold, ui,
i = 0, 1, ..., n+1, are the transverse displacements with respect to the symmetry axis of the chain, and
we introduced the spring natural length l = L/n, L being the total chain reference length. We may
then introduce an internal (spin) variable �i with

�i =

⇢
0, if |u|  ud, unbroken link,
1, if |u| > ud, broken link, (2)

thus describing each interchain link as a two-state element. The case of units undergoing transition
between unbroken ad broken states has been investigated with a similar approach in the cases of parallel
links in [35] and, more recently, in [37, 38] and then applied to biological adhesion in [39].

On the other hand, we can write the elastic energy associated to each couple of elements of the
strand as

 t(ui+1, ui) =
ktl

2

✓
ui+1 � ui

l

◆2

, (3)

where kt > 0 is the shear constant.
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Introduce an internal (spin) variable:
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Fig. 2. (a) Scheme of the bonds energy in the discrete model for DNA with the 
breakable links mimicking the behavior of the hydrogen bonds. Continuous lines 
parabolic/constant represent single valued potentials. Dashed lines represent the 
two-values potential assumed when temperature effects are considered. In panel 
(a) we have defined w i = u i /u d , where u d is the debonding threshold. See the main 
text for details. (b) Scheme of the chain with breakable links and applied displace- 
ment to the end-point bases. 
chain reference length. We may then introduce an internal (spin) 
variable χi with 
χi = {0 , if | u | ≤ u d , unbroken links 

1 , if | u | > u d , broken links , (2) 
thus describing each interchain link as a two-state element. The 
case of units undergoing transition between unbroken ad broken 
states has been investigated with a similar approach in the cases 
of parallel links in Selinger et al. [35] and, more recently, in Mad- 
dalena et al. [37] , Efendiev and Truskinovsky [38] , and then applied 
to biological adhesion in Puglisi and Truskinovsky [39] . 

On the other hand, we can write the elastic energy associated 
to each (nearest-neighbor) couple of elements in the strand as 
ψ t (u i +1 , u i ) = k t l 

2 
(
u i +1 − u i 

l 
)2 

, (3) 
where k t > 0 is the shear constant. 

As a result, the total potential energy of the breakable bonds 
can be assigned as 
#br = k e l 

2 
n ∑ 

i =1 
[
(1 − χi ) ( u i 

u d 
)2 

+ χi ] (4) 
whereas the strand total potential energy is 
#el = n ∑ 

i =0 ψ t (u i +1 , u i ) . (5) 
Finally, the total potential energy of the system reads 
# = #el + #br . (6) 
We stress that, due to its definition in Eq. (4) , #br depends on the 
configuration vector χ = { χ1 , . . . , χn } . To reproduce classical exper- 
iments on DNA molecules, we suppose that one side of the chain 

is fixed with u 0 = 0 , whereas we assume that a displacement d is 
assigned to the last mass ( hard device condition, see Fig. 2 ). More 
general boundary conditions taking care of the influence of the 
loading system can be assigned as proposed in Florio and Puglisi 
[36] by considering another energy term introducing the elasticity 
of the loading device or interacting molecule (such as RNA in the 
case of DNA transcription), but for the sake of simplicity we here 
neglect this additional term. 

After introducing the rescaled displacements w i = u i /u d we can 
write the (non dimensional) total elastic energy as 
n φ = #

k e l = ν2 
2 

n ∑ 
i =0 ( w i +1 − w i ) 2 + 1 

2 
n ∑ 

i =1 
[
(1 − χi ) w 2 i + χi ]. (7) 

In Eq. (7) we introduced the main non dimensional parameter of the 
model 
ν = √ 

k t 
k e u d l , (8) 

measuring the energy per unit (relative) displacement of the shear 
(inter-strand/covalent) bonds vs. the energy per unit displacement 
for the breakable (intra-strands/non-covalent) bonds. 

As remarked in the introduction, previous analytical results in 
the literature are based on specific assumptions such as continuum 
limit in Peyrard [17] and Theodorakopoulos [21] ) or in Theodor- 
akopoulos et al. [22] for the extreme discretization limit (corre- 
sponding to ν2 

n → 0 and ν2 
n → ∞ , respectively). Remarkably, here 

we do not need any of these assumptions so that both limits re- 
sult as particular cases of our analysis. 
2. Mechanical limit 

Consider first the mechanical (zero-temperature) limit describ- 
ing the behavior when the entropic energy terms can be neglected 
as compared to the internal energy. In this case the observed con- 
figurations correspond to the minima of the energy in Eq. (7) un- 
der the constraint of applied displacement. 

Equilibrium solutions. In order to find the equilibrium configu- 
rations and take care of the constraint previously mentioned, we 
minimize the total energy function 
n g = n φ − fδ, (9) 
where we introduced the Lagrange multiplier f coupled to the 
assigned displacement d, hereadimensionalized as δ = d/u d (see 
Fig. 2 ). Notice that f measures the (rescaled, non-dimensional) 
force acting on the system and its relation with the effective mea- 
sured force F is 
F = k e l 

u d f . (10) 
It is possible to see (Supplementary Material, SM) that the equi- 
librium solutions w i are monotonically increasing for δ > 0 , i.e. 
w i +1 ≥ w i for i = 0 . . . , n − 1 . As a result, by using Eq. (2) , all the 
stable equilibrium solutions are characterized by an initial con- 
nected segment of p attached links and n − p detached links, 
hereon referred as single domain wall (SDW) solutions. It is im- 
portant to remark that this condition in general is not necessarily 
verified by the general equilibrium configurations when the effects 
of the temperature T are taken into account. On the other hand, 
the efficacy of this approximation in the case of T > 0 at realistic 
values of the temperature has been numerically shown for protein 
unfolding experiments in Florio and Puglisi [36] . 

An explicit calculation (SM) allows us to evaluate the equilib- 
rium values of w i . In particular, given a fixed value of unbroken 
links p, the following total force-displacement relation holds 
w n +1 = δ = f 

k (p) , (11) 
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Figure 1: Representation of the separation of two strands of DNA due to the action of a force (a) and induced by thermal

effect (b). (c) Phase diagram of DNA denaturation.

fundamental innovation with respect to classical analysis of the PB model is the assumption of a
simplified form on the base interactions potential energy

 e(ui) =
kel

2

(
(ui/ud)2, if |ui/ud|  1

1 if |ui/ud| > 1
(1)

where ke > 0 is the elastic modulus of the unbroken links and ud is the debonding threshold, ui,
i = 0, 1, ..., n+1, are the transverse displacements with respect to the symmetry axis of the chain, and
we introduced the spring natural length l = L/n, L being the total chain reference length. We may
then introduce an internal (spin) variable �i with

�i =

⇢
0, if |u|  ud, unbroken link,
1, if |u| > ud, broken link, (2)

thus describing each interchain link as a two-state element. The case of units undergoing transition
between unbroken ad broken states has been investigated with a similar approach in the cases of parallel
links in [35] and, more recently, in [37, 38] and then applied to biological adhesion in [39].

On the other hand, we can write the elastic energy associated to each couple of elements of the
strand as

 t(ui+1, ui) =
ktl

2

✓
ui+1 � ui

l

◆2

, (3)

where kt > 0 is the shear constant.
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or interacting molecule (such as RNA in the case of DNA transcription), but for the sake of simplicity
we here neglect this additional term.

After introducing the rescaled displacements wi = ui/ud we can write the (non dimensional) total
elastic energy as
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In Eq.(7) we introduced the main non dimensional parameter of the model
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measuring the energy per unit (relative) displacement of the shear (inter-strand/covalent) bonds vs the
energy per unit displacement for the breakable (intra-strands/non-covalent) bonds.

As remarked in the introduction, previous analytical results in the literature are based on specific
assumptions such as continuum limit in [16] and in [20] or [21] in the extreme discretization limit
(corresponding to ⌫2

n ! 0 and ⌫2

n ! 1, respectively). Here we do not need any of these assumption so
that both limits result as particular cases of our analysis.

2. Mechanical limit

Consider first the mechanical (zero-temperature) limit describing the behavior when entropic terms
can be neglected as compared to the internal energy. In this case the observed configurations correspond
to the minima of the energy in Eq. (7) also including the constraint of applied displacement.

Equilibrium solutions –. In order to find the equilibrium configurations and take care of the constraint
of assigned displacement, we minimize the potential energy function

n g = n�� f�, (9)

where we introduced the Lagrange multiplier f coupled to the assigned � = d/ud and d is the imposed
end-point displacement (see Fig. 2) We notice that the parameter f coupled to � represents the (rescaled,
non-dimensional) force acting on the system and its relation with the effective measured force F is

F =
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ud
f. (10)

It is possible to see (Supplementary Material, SM) that the equilibrium solutions wi are monotonically
increasing for � > 0, i.e. wi+1 � wi for i = 0 . . . , n � 1. As a result, by using Eq.(2), all the
stable equilibrium solutions are characterized by an initial connected segment of p attached links and
n � p detached links, so-called single domain wall (SDW) solutions. It is important to remark that
this condition in general is not verified when the effects of the temperature T are taken into account.
On the other hand, the efficacy of this approximation in the case of T > 0 at realistic values of the
temperature has been numerically shown for protein unfolding experiments in [34].

An explicit calculation (SI) allows us to evaluate the equilibrium values of wi. In particular, given
a fixed value of unbroken links p, the following total force-displacement relation holds
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where we introduced the global stiffness (dependent on the configuration p)
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Figure 2: (a) Scheme of the potential energy terms in the discrete model for DNA with the breakable link mimicking the

behavior of the hydrogen bonds. The continuous line parabolic/constant is the single valued potential. Using the dashed

lines we represent the two-values potential assumed when temperature effects are considered. In panel (a) we have defined

wi = ui/ud, where ud is the debonding threshold. See the main text for details (b). Scheme of the chain with breakable

links and applied displacement to the final oscillator.

As a result, the total potential energy of the breakable bonds is
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whereas the strand total potential energy is

�el =
nX

i=0
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Finally, the total potential energy of the system reads

� = �el + �br. (6)

We stress that, due to its definition in Eq.(4), �br depends on the configuration vector � = {�1, . . . ,�n}.
To reproduce classical experiments on DNA molecules, we suppose that one side of the chain is fixed
with u0 = 0, whereas we assume that a displacement d is assigned to the last mass (so-called hard device

condition, see Fig. 2). These conditions represent a good approximation of hairpins unzipping when the
extensional stiffness of the single stranded molecules significantly overcome the double-stranded one.
More general boundary conditions taking care of the influence of the loading system can be assigned
as proposed in [34] by considering another energy term introducing the elasticity of the loading device

4

attached links (single domain wall solutions)  

or interacting molecule (such as RNA in the case of DNA transcription), but for the sake of simplicity
we here neglect this additional term.

After introducing the rescaled displacements wi = ui/ud we can write the (non dimensional) total
elastic energy as
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In Eq.(7) we introduced the main non dimensional parameter of the model
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measuring the energy per unit (relative) displacement of the shear (inter-strand/covalent) bonds vs the
energy per unit displacement for the breakable (intra-strands/non-covalent) bonds.

As remarked in the introduction, previous analytical results in the literature are based on specific
assumptions such as continuum limit in [16] and in [20] or [21] in the extreme discretization limit
(corresponding to ⌫2

n ! 0 and ⌫2

n ! 1, respectively). Here we do not need any of these assumption so
that both limits result as particular cases of our analysis.

2. Mechanical limit

Consider first the mechanical (zero-temperature) limit describing the behavior when entropic terms
can be neglected as compared to the internal energy. In this case the observed configurations correspond
to the minima of the energy in Eq. (7) also including the constraint of applied displacement.

Equilibrium solutions –. In order to find the equilibrium configurations and take care of the constraint
of assigned displacement, we minimize the potential energy function

n g = n�� f�, (9)

where we introduced the Lagrange multiplier f coupled to the assigned � = d/ud and d is the imposed
end-point displacement (see Fig. 2) We notice that the parameter f coupled to � represents the (rescaled,
non-dimensional) force acting on the system and its relation with the effective measured force F is

F =
kel

ud
f. (10)

It is possible to see (Supplementary Material, SM) that the equilibrium solutions wi are monotonically
increasing for � > 0, i.e. wi+1 � wi for i = 0 . . . , n � 1. As a result, by using Eq.(2), all the
stable equilibrium solutions are characterized by an initial connected segment of p attached links and
n � p detached links, so-called single domain wall (SDW) solutions. It is important to remark that
this condition in general is not verified when the effects of the temperature T are taken into account.
On the other hand, the efficacy of this approximation in the case of T > 0 at realistic values of the
temperature has been numerically shown for protein unfolding experiments in [34].

An explicit calculation (SI) allows us to evaluate the equilibrium values of wi. In particular, given
a fixed value of unbroken links p, the following total force-displacement relation holds

wn+1 = � =
f

k(p)
, (11)

where we introduced the global stiffness (dependent on the configuration p)

k(p) =
⌫
2

�(p)
, p = 0, . . . , n, (12)
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with
�(p) = n� p+ ↵(p),
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n
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2⌫2 .
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The energy corresponding to each solution (at fixed p) reads

n� =
k(p)

2
�
2 +

n� p

2
, (14)

where the first term represents the elastic energy of the equilibrium solution and the second term
describes the (dissipated) unbonding energy.

When temperature effects are neglected, following [38, 41], we can consider two limit cases. In the
first scenario we assume that the system is able to overcome any energy barrier so that it is always able
to relax to the global minimum of the total potential energy (Maxwell convention). In the second case
the system is able to overcome no energy barrier and, therefore, it stays in a local minimum following
an equilibrium branch of the energy in Eq.(14) (Maximum delay convention).

Global energy minima. To determine the global minima we notice that the energy equilibrium branches
in Eq.(14) (each identified by the value of p) are convex. We indicate by �Max(p), p = 0, ..., n � 1 the
positive intersection displacement of the p and p+ 1 branches.

As a result we can find (see SM and, in particular, Eq.(SM24) for the details) the f � � relation
as represented with bold lines in Fig.3. The melting transition is obtained by a serrated plateaux
with the decohesion front coherently propagating accordingly to the classical zipper hypothesis [42]. In
particular, the force-displacement relation is given by Eq.(11), following the conditions prescribed in
Eq.(SM29). We deduce that, according to the Maxwell convention, the system behaves elastically with
f = k(n)� until � = �Max(n� 1). After this value we observe a sequence of successive jumps between
neighbor branches (each denoted by the value of unbroken links p) with the value of the force f in a
p-dependent interval (p > 0) as f 2 [f1(p), f2(p)] where f1(p) = k(p)�Max(p), f2(p) = k(p)�Max(p� 1).

It is possible to see that, initially, f2(p) decreases as p decreases. This means that after the first link
has been broken, the force necessary to break the following one is smaller, i.e. the decohesion process
is more easily realized. On the other hand, due to a hardening effect induced by the constraint w0 = 0,
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Figure 3: Force-displacement relation under the Maxwell convention. Thin black lines represent local minima, thick blue

line global minima. Here n = 30 and ⌫ = 1.
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to relax to the global minimum of the total potential energy (Maxwell convention). In the second case
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as represented with bold lines in Fig.3. The melting transition is obtained by a serrated plateaux
with the decohesion front coherently propagating accordingly to the classical zipper hypothesis [42]. In
particular, the force-displacement relation is given by Eq.(11), following the conditions prescribed in
Eq.(SM29). We deduce that, according to the Maxwell convention, the system behaves elastically with
f = k(n)� until � = �Max(n� 1). After this value we observe a sequence of successive jumps between
neighbor branches (each denoted by the value of unbroken links p) with the value of the force f in a
p-dependent interval (p > 0) as f 2 [f1(p), f2(p)] where f1(p) = k(p)�Max(p), f2(p) = k(p)�Max(p� 1).

It is possible to see that, initially, f2(p) decreases as p decreases. This means that after the first link
has been broken, the force necessary to break the following one is smaller, i.e. the decohesion process
is more easily realized. On the other hand, due to a hardening effect induced by the constraint w0 = 0,
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line global minima. Here n = 30 and ⌫ = 1.
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Figure 5: Equilibrium solutions for a system with n = 80 and ⌫ = 1 under the maximum delay convention. (a) Monotonic

and (b) cyclic loading. Experimental force-displacement diagram for (c) monotonic (extracted from [43]) and for (d)

cyclic loading (extracted from [2]).

In terms of Statistical Mechanics, this choice corresponds to consider the so-called Helmholtz ensemble.
The relations between macrosopic quantities can be obtained from the partition function defined as

Z =
nX

{�i}, i=1

Z

Rn
e
��n�(w,�)

dw (15)

evaluated with w0 = 0 and wn+1 = �. Here we introduced the n-components vector w = {w1, w2, . . . , wn}.
Moreover, we have used the symbol {�i} to represent the summation over all phase configurations with
�i = {0, 1}. Finally, according with the non dimensionalization in (7), we adopted the rescaled (non
dimensional) inverse temperature � as

� =
kel

kBT
(16)

where kB is the Boltzman constant and T the absolute temperature. An explicit calculation of Z (see
SI) allows to evaluate the free energy and the expected value of the coupled force

F(�, �) = � 1

�
lnZ(�, �), f̄(�, �) =

@F
@�

. (17)

In order to simplify the analysis of the force-displacement relation and obtain fully analytical results
we can use the SDW solutions introduced in the mechanical (zero temperature) case. This represents
the well known zipper hypothesis [42] that has been energetically justified in the previous case of purely
mechanical system, whereas it represents only an approximation when temperature effects are included.
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2. Temperature effect

2.1. Partition function and temperature dependent force-displacement relation

The partition function is defined as

Z =
X

{�i}

Z

Rn+1
e
��n�(w,wn+1)�D(wn+1 � �) dwdwn+1 =

X

{�i}

Z

Rn
e
��n�(w,�)

dw (SM34)

where we have introduced the constraint w0 = 0 whereas the Dirac delta distribution �D is used
to impose the assigned displacement wn+1 = �. The symbol {�i} represent the summation over all
configurations with �i = {0, 1}. We defined the rescaled (non dimensional) inverse temperature � as

� =
kel

kBT
(SM35)

where kB is the Boltzman constant and T the absolute temperature. The explicit calculation, based
on a Gaussian integration, gives

Z =

✓
2⇡

�

◆n/2 X

{�i}

��(�, �), (SM36)

where
��(�, �) =

1p
detB

e
��

2 �e
��

2 k̂(�)�
2

(SM37)

and the total stiffness k̂(�) is defined in Eq. (SM9).
The free energy associated to the partition function Z is

F(�, �) = � 1

�
lnZ(�, �) = � n

2�
ln

2⇡

�
� 1

�
ln

X

{�i}

��(�, �). (SM38)

The expectation value of the equilibrium force hfi = f̄ conjugated to � can be evaluated by using
@F
@� = f̄ , that gives

hf(�, �)i = f̄(�, �) =
@F
@�

=

P
{�i} k̂(�)��(�, �)P

{�i} ��(�, �)
�. (SM39)

This expression describes the relation between the applied displacement and the force experienced by
the last element of the chain representing the DNA in our model. In particular, we notice that the
expectation value of the force is a statistical superposition of the different configurations with the statis-
tical weight depending on temperature and �. On the other hand, Eq.(SM39) is difficult to be handled.
For instance, we notice that the summation over all configurations of � in the partition function scales
exponentially with n. In order to simplify the analysis of the force-displacement relation and obtain
fully analytical results we resort to the SDW solutions (with SDW equilibrium solutions corresponding
to the global energy minima) already introduced in the mechanical (zero temperature) case. When
temperature effects are included, considering only this class of configurations is an approximation. On
the other hand, this approach is justified in the temperature range of real systems[6]. In particular, we
have

f̄(�, �) '
Pn

p=0 k(p)�p(�, �)Pn
p=0 �p(�, �)

�, (SM40)

where p represents the number of unbroken links and

�p(�, �) =
1p

detB(p)
e
��

2 (n�p)
e
��

2 k(p)�
2
. (SM41)
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The relations between macrosopic quantities can be obtained from the partition function defined as

Z =
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evaluated with w0 = 0 and wn+1 = �. Here we introduced the n-components vector w = {w1, w2, . . . , wn}.
Moreover, we have used the symbol {�i} to represent the summation over all phase configurations with
�i = {0, 1}. Finally, according with the non dimensionalization in (7), we adopted the rescaled (non
dimensional) inverse temperature � as

� =
kel

kBT
(16)

where kB is the Boltzman constant and T the absolute temperature. An explicit calculation of Z (see
SI) allows to evaluate the free energy and the expected value of the coupled force

F(�, �) = � 1

�
lnZ(�, �), f̄(�, �) =
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. (17)

In order to simplify the analysis of the force-displacement relation and obtain fully analytical results
we can use the SDW solutions introduced in the mechanical (zero temperature) case. This represents
the well known zipper hypothesis [42] that has been energetically justified in the previous case of purely
mechanical system, whereas it represents only an approximation when temperature effects are included.
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In order to simplify the analysis of the force-displacement relation and obtain fully analytical results
we can use the SDW solutions introduced in the mechanical (zero temperature) case. This represents
the well known zipper hypothesis [42] that has been energetically justified in the previous case of purely
mechanical system, whereas it represents only an approximation when temperature effects are included.
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The expectation value of the equilibrium force hfi = f̄ conjugated to � can be evaluated by using
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=
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This expression describes the relation between the applied displacement and the force experienced by
the last element of the chain representing the DNA in our model. In particular, we notice that the
expectation value of the force is a statistical superposition of the different configurations with the statis-
tical weight depending on temperature and �. On the other hand, Eq.(SM39) is difficult to be handled.
For instance, we notice that the summation over all configurations of � in the partition function scales
exponentially with n. In order to simplify the analysis of the force-displacement relation and obtain
fully analytical results we resort to the SDW solutions (with SDW equilibrium solutions corresponding
to the global energy minima) already introduced in the mechanical (zero temperature) case. When
temperature effects are included, considering only this class of configurations is an approximation. On
the other hand, this approach is justified in the temperature range of real systems[6]. In particular, we
have
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n = 100

(a)

(b)

Figure SI3: (a) Force-displacement curves for different values of ⌫ (n = 30, � = 103). (b) Force-displacement curves for

different values of n (⌫ = 1, � = 103).

In Fig. SI3 (a)-(b) we plot the force-displacement curves for different values of ⌫ and n, respectively.
The results (here shown for � = 103) are consistent with those that can obtained in the mechanical
(zero temperature) limit.

It is possible to obtain the expectation value of each rescaled displacement wi depending on � and
T . An explicit calculation based on Gaussian integration gives

hwi(�, �)i = w̄i(�, �) =

P
{�i}B

�1
i,n(�)��(�, �)P

{�i} ��(�, �)
⌫
2
�. (SM42)

In the SDW approximation we have

w̄i(�, �) '
Pn

p=0B
�1
i,n(p)�p(�, �)Pn

p=0 �p(�, �)
⌫
2
�. (SM43)

2.2. Thermodynamic limit: saddle point approximation and critical temperature

Let us consider Eqs.(SM40)-(SM41). In order to evaluate these expression in the limit of large n,
we need to compute detB and k(p) from Eq.(12). Using formulas for tridiagonal matrices it is possible
to show that

detB =
⌫
2n

sinh�
[(n� p+ 1) sinh[(p+ 1)�]� (n� p) sinh(p�)] .

(SM44)
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Rescaled inverse 
temperature

(single domain wall solutions)  with

represents the total stiffness of the system (at assigned phase configuration �). Substituting these
solutions into Eq. (SM4) we obtain the equilibrium energy at fixed � as

n� =
k̂(�)�2

2
+

n� p

2
, (SM10)

where, from the definition of �, we have that n � p = � · � represents the number of detached links,
with p = 0, ..., n. We also observe that the solution of the equilibrium equations requires the evaluation
of the inverse matrix B�1 of the (Hessian) tridiagonal matrix B. It is easy to verify that the matrix B
is always positive definite, so that it is invertible and all the solutions of (SM6)-(SM7) are local minima
of the energy. General iterative formulas [2, 3] to find B�1 can be used to show that all the elements
of the inverse matrix are positive definite and decay as the distance from the diagonal grows. As a
consequence, the equilibrium solutions wi in Eq.(SM8) are monotonic for f > 0, i.e. wi+1 � wi for
i = 0 . . . , n � 1. We remark that these solutions must respect the compatibility condition that all the
links with �i = 0 (respectively �i = 1) are in the attached (detached) configuration, i.e. verify wi < 1
(respectively wi � 1). In particular, this condition, together with the monotonicity result described
above, implies that all the stable equilibrium solutions are characterized by an initial connected segment
of p attached links and n� p detached links, denoted as single domain wall (SDW) solutions. Thus, we
may parametrize each state by the single parameter p assigning the total number of attached links.

1.2. SDW equilibrium solutions

In order to obtain explicit analytical results without resorting to iterative formulas for the inversion
of tridiagonal matrices, we can follow the approach in [38]. We decompose the equilibrium equations
(SM6) into two different equilibrium problems involving the first attached p links and the remaining
detached n�p links. In terms of the configuration vector, we can consider � = (0, . . . , 0, 1, . . . , 1) where
the first p elements have �i = 0 (attached bases) and the remaining n � p are described by �i = 1
(detached bases). Thus, the first p equations of (SM6) after easy manipulations can be rewritten as

2

666664

↵ �1 0
�1 ↵ �1

. . .
. . .

. . .

�1 ↵ �1
0 �1 ↵

3

777775

2

666664

w1

w2
.
.
.

wp�1

wp

3

777775
=

2

666664

0
0
.
.
.

0
wp+1

3

777775
(SM11)

where ↵ = 2 + 1
⌫2 . By using the results in [2, 5] we can evaluate the inverse of the tridiagonal matrix

in (SM11) and derive the displacements of the p attached elements as

wi =
sinh (i�)

sinh [(p+ 1)�]
wp+1, i = 1, ..., p, (SM12)

where
cosh� = 1 +

1

2⌫2
. (SM13)

On the other hand, when the links are detached the equilibrium solutions trivially give

wi+1 � wi =
f

⌫2
, i = p, ..., n. (SM14)

One then easily deduces

wp+1 = ↵(p)
f

⌫2
, (SM15)
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f̄/⌫

Figure 6: (a) Force-displacement curves for different values of temperature; parameters: n = 200, � =
100, 25, 10, 3, 2, 1, 0.5. Dependence of ⇡̄ on � for different values of T / 1/� (b) and ⌫ (c). In panel (b) we used

n = 1000, ⌫ = 1, � = 100, 50, 10, 5, 1.5, 1. In panel (c) we used n = 1000, ⌫ = 10, 5, 2, 1, � = 5.

At the same time, this approach has been numerically justified in the temperature range of real systems
in [34]. In this case, the summation over all possible phase configurations in Eq.(15) is substituted
by a summation over the index p denoting the number of unbroken links. This approximation is
particularly useful for two reasons. On one hand, it makes the analytical expression more transparent,
allowing, in principle, to evaluate the different statistical contributions of SDW (largely dominant in the
range of temperature experienced in experiments) and non-SDW configurations. On the other hand,
this approximation allows to obtain the fundamental relation between temperature and force in the
thermodynamic limit.

The important role of temperature in mechanically driven melting transition is described in Fig.
6(a). Observe that, due to temperature effects, the horizontal serrated plateaux are substituted by
smoother plateaux. We notice that in the limit of small temperature (large �, mechanical limit),
the curve oscillates around the value of ⌫ as obtained in the zero temperature limit (see Eq.(SM31)).
On the other hand, for larger temperatures the folding process begins at lower values of the assigned
displacement and resulting force, due to entropic effects. Moreover, the serrated path is smoothed.

We may observe that the main effect of the proposed model is that the melting transition begins at
significantly lower forces as temperature grows. Moreover, it is interesting to analyze the temperature
dependence of the expectation value of the fraction of unbroken bonds as the displacement is increased,
giving a measure of the cooperativity of the denaturation phenomenon. In particular, we define ⇡̄ =
h⇡i = hp/ni that can be evaluated starting from the canonical partition function Z (see SI). In Fig.6(b)-
(c) we report the dependence of this quantity on T and ⌫. Again we may observe that the cooperativity
grows as ⌫ and T are increased. As the figure shows, cooperativity grows also as the temperature
decreases and the melting process is activated from lower forces as the temperature grows.
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Figure 6: (a) Force-displacement curves for different values of temperature; parameters: n = 200, � =
100, 25, 10, 3, 2, 1, 0.5. Dependence of ⇡̄ on � for different values of T / 1/� (b) and ⌫ (c). In panel (b) we used

n = 1000, ⌫ = 1, � = 100, 50, 10, 5, 1.5, 1. In panel (c) we used n = 1000, ⌫ = 10, 5, 2, 1, � = 5.

At the same time, this approach has been numerically justified in the temperature range of real systems
in [34]. In this case, the summation over all possible phase configurations in Eq.(15) is substituted
by a summation over the index p denoting the number of unbroken links. This approximation is
particularly useful for two reasons. On one hand, it makes the analytical expression more transparent,
allowing, in principle, to evaluate the different statistical contributions of SDW (largely dominant in the
range of temperature experienced in experiments) and non-SDW configurations. On the other hand,
this approximation allows to obtain the fundamental relation between temperature and force in the
thermodynamic limit.

The important role of temperature in mechanically driven melting transition is described in Fig.
6(a). Observe that, due to temperature effects, the horizontal serrated plateaux are substituted by
smoother plateaux. We notice that in the limit of small temperature (large �, mechanical limit),
the curve oscillates around the value of ⌫ as obtained in the zero temperature limit (see Eq.(SM31)).
On the other hand, for larger temperatures the folding process begins at lower values of the assigned
displacement and resulting force, due to entropic effects. Moreover, the serrated path is smoothed.

We may observe that the main effect of the proposed model is that the melting transition begins at
significantly lower forces as temperature grows. Moreover, it is interesting to analyze the temperature
dependence of the expectation value of the fraction of unbroken bonds as the displacement is increased,
giving a measure of the cooperativity of the denaturation phenomenon. In particular, we define ⇡̄ =
h⇡i = hp/ni that can be evaluated starting from the canonical partition function Z (see SI). In Fig.6(b)-
(c) we report the dependence of this quantity on T and ⌫. Again we may observe that the cooperativity
grows as ⌫ and T are increased. As the figure shows, cooperativity grows also as the temperature
decreases and the melting process is activated from lower forces as the temperature grows.
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Figure 6: (a) Force-displacement curves for different values of temperature; parameters: n = 200, � =
100, 25, 10, 3, 2, 1, 0.5. Dependence of ⇡̄ on � for different values of T / 1/� (b) and ⌫ (c). In panel (b) we used

n = 1000, ⌫ = 1, � = 100, 50, 10, 5, 1.5, 1. In panel (c) we used n = 1000, ⌫ = 10, 5, 2, 1, � = 5.

At the same time, this approach has been numerically justified in the temperature range of real systems
in [34]. In this case, the summation over all possible phase configurations in Eq.(15) is substituted
by a summation over the index p denoting the number of unbroken links. This approximation is
particularly useful for two reasons. On one hand, it makes the analytical expression more transparent,
allowing, in principle, to evaluate the different statistical contributions of SDW (largely dominant in the
range of temperature experienced in experiments) and non-SDW configurations. On the other hand,
this approximation allows to obtain the fundamental relation between temperature and force in the
thermodynamic limit.

The important role of temperature in mechanically driven melting transition is described in Fig.
6(a). Observe that, due to temperature effects, the horizontal serrated plateaux are substituted by
smoother plateaux. We notice that in the limit of small temperature (large �, mechanical limit),
the curve oscillates around the value of ⌫ as obtained in the zero temperature limit (see Eq.(SM31)).
On the other hand, for larger temperatures the folding process begins at lower values of the assigned
displacement and resulting force, due to entropic effects. Moreover, the serrated path is smoothed.

We may observe that the main effect of the proposed model is that the melting transition begins at
significantly lower forces as temperature grows. Moreover, it is interesting to analyze the temperature
dependence of the expectation value of the fraction of unbroken bonds as the displacement is increased,
giving a measure of the cooperativity of the denaturation phenomenon. In particular, we define ⇡̄ =
h⇡i = hp/ni that can be evaluated starting from the canonical partition function Z (see SI). In Fig.6(b)-
(c) we report the dependence of this quantity on T and ⌫. Again we may observe that the cooperativity
grows as ⌫ and T are increased. As the figure shows, cooperativity grows also as the temperature
decreases and the melting process is activated from lower forces as the temperature grows.
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Figure 6: (a) Force-displacement curves for different values of temperature; parameters: n = 200, � =
100, 25, 10, 3, 2, 1, 0.5. Dependence of ⇡̄ on � for different values of T / 1/� (b) and ⌫ (c). In panel (b) we used

n = 1000, ⌫ = 1, � = 100, 50, 10, 5, 1.5, 1. In panel (c) we used n = 1000, ⌫ = 10, 5, 2, 1, � = 5.

At the same time, this approach has been numerically justified in the temperature range of real systems
in [34]. In this case, the summation over all possible phase configurations in Eq.(15) is substituted
by a summation over the index p denoting the number of unbroken links. This approximation is
particularly useful for two reasons. On one hand, it makes the analytical expression more transparent,
allowing, in principle, to evaluate the different statistical contributions of SDW (largely dominant in the
range of temperature experienced in experiments) and non-SDW configurations. On the other hand,
this approximation allows to obtain the fundamental relation between temperature and force in the
thermodynamic limit.

The important role of temperature in mechanically driven melting transition is described in Fig.
6(a). Observe that, due to temperature effects, the horizontal serrated plateaux are substituted by
smoother plateaux. We notice that in the limit of small temperature (large �, mechanical limit),
the curve oscillates around the value of ⌫ as obtained in the zero temperature limit (see Eq.(SM31)).
On the other hand, for larger temperatures the folding process begins at lower values of the assigned
displacement and resulting force, due to entropic effects. Moreover, the serrated path is smoothed.

We may observe that the main effect of the proposed model is that the melting transition begins at
significantly lower forces as temperature grows. Moreover, it is interesting to analyze the temperature
dependence of the expectation value of the fraction of unbroken bonds as the displacement is increased,
giving a measure of the cooperativity of the denaturation phenomenon. In particular, we define ⇡̄ =
h⇡i = hp/ni that can be evaluated starting from the canonical partition function Z (see SI). In Fig.6(b)-
(c) we report the dependence of this quantity on T and ⌫. Again we may observe that the cooperativity
grows as ⌫ and T are increased. As the figure shows, cooperativity grows also as the temperature
decreases and the melting process is activated from lower forces as the temperature grows.
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Figure 6: (a) Force-displacement curves for different values of temperature; parameters: n = 200, � =
100, 25, 10, 3, 2, 1, 0.5. Dependence of ⇡̄ on � for different values of T / 1/� (b) and ⌫ (c). In panel (b) we used

n = 1000, ⌫ = 1, � = 100, 50, 10, 5, 1.5, 1. In panel (c) we used n = 1000, ⌫ = 10, 5, 2, 1, � = 5.

At the same time, this approach has been numerically justified in the temperature range of real systems
in [34]. In this case, the summation over all possible phase configurations in Eq.(15) is substituted
by a summation over the index p denoting the number of unbroken links. This approximation is
particularly useful for two reasons. On one hand, it makes the analytical expression more transparent,
allowing, in principle, to evaluate the different statistical contributions of SDW (largely dominant in the
range of temperature experienced in experiments) and non-SDW configurations. On the other hand,
this approximation allows to obtain the fundamental relation between temperature and force in the
thermodynamic limit.

The important role of temperature in mechanically driven melting transition is described in Fig.
6(a). Observe that, due to temperature effects, the horizontal serrated plateaux are substituted by
smoother plateaux. We notice that in the limit of small temperature (large �, mechanical limit),
the curve oscillates around the value of ⌫ as obtained in the zero temperature limit (see Eq.(SM31)).
On the other hand, for larger temperatures the folding process begins at lower values of the assigned
displacement and resulting force, due to entropic effects. Moreover, the serrated path is smoothed.

We may observe that the main effect of the proposed model is that the melting transition begins at
significantly lower forces as temperature grows. Moreover, it is interesting to analyze the temperature
dependence of the expectation value of the fraction of unbroken bonds as the displacement is increased,
giving a measure of the cooperativity of the denaturation phenomenon. In particular, we define ⇡̄ =
h⇡i = hp/ni that can be evaluated starting from the canonical partition function Z (see SI). In Fig.6(b)-
(c) we report the dependence of this quantity on T and ⌫. Again we may observe that the cooperativity
grows as ⌫ and T are increased. As the figure shows, cooperativity grows also as the temperature
decreases and the melting process is activated from lower forces as the temperature grows.
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f̄/⌫

Figure 6: (a) Force-displacement curves for different values of temperature; parameters: n = 200, � =
100, 25, 10, 3, 2, 1, 0.5. Dependence of ⇡̄ on � for different values of T / 1/� (b) and ⌫ (c). In panel (b) we used

n = 1000, ⌫ = 1, � = 100, 50, 10, 5, 1.5, 1. In panel (c) we used n = 1000, ⌫ = 10, 5, 2, 1, � = 5.

At the same time, this approach has been numerically justified in the temperature range of real systems
in [34]. In this case, the summation over all possible phase configurations in Eq.(15) is substituted
by a summation over the index p denoting the number of unbroken links. This approximation is
particularly useful for two reasons. On one hand, it makes the analytical expression more transparent,
allowing, in principle, to evaluate the different statistical contributions of SDW (largely dominant in the
range of temperature experienced in experiments) and non-SDW configurations. On the other hand,
this approximation allows to obtain the fundamental relation between temperature and force in the
thermodynamic limit.

The important role of temperature in mechanically driven melting transition is described in Fig.
6(a). Observe that, due to temperature effects, the horizontal serrated plateaux are substituted by
smoother plateaux. We notice that in the limit of small temperature (large �, mechanical limit),
the curve oscillates around the value of ⌫ as obtained in the zero temperature limit (see Eq.(SM31)).
On the other hand, for larger temperatures the folding process begins at lower values of the assigned
displacement and resulting force, due to entropic effects. Moreover, the serrated path is smoothed.

We may observe that the main effect of the proposed model is that the melting transition begins at
significantly lower forces as temperature grows. Moreover, it is interesting to analyze the temperature
dependence of the expectation value of the fraction of unbroken bonds as the displacement is increased,
giving a measure of the cooperativity of the denaturation phenomenon. In particular, we define ⇡̄ =
h⇡i = hp/ni that can be evaluated starting from the canonical partition function Z (see SI). In Fig.6(b)-
(c) we report the dependence of this quantity on T and ⌫. Again we may observe that the cooperativity
grows as ⌫ and T are increased. As the figure shows, cooperativity grows also as the temperature
decreases and the melting process is activated from lower forces as the temperature grows.
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The energy corresponding to each solution (at fixed p) reads

n� =
k(p)

2
�
2 +

n� p

2
, (14)

where the first term represents the elastic energy of the equilibrium solution and the second term
describes the (dissipated) unbonding energy.

When temperature effects are neglected, following [38, 41], we can consider two limit cases. In the
first scenario we assume that the system is able to overcome any energy barrier so that it is always able
to relax to the global minimum of the total potential energy (Maxwell convention). In the second case
the system is able to overcome no energy barrier and, therefore, it stays in a local minimum following
an equilibrium branch of the energy in Eq.(14) (Maximum delay convention).

Global energy minima. To determine the global minima we notice that the energy equilibrium branches
in Eq.(14) (each identified by the value of p) are convex. We indicate by �Max(p), p = 0, ..., n � 1 the
positive intersection displacement of the p and p+ 1 branches.

As a result we can find (see SM and, in particular, Eq.(SM24) for the details) the f � � relation
as represented with bold lines in Fig.3. The melting transition is obtained by a serrated plateaux
with the decohesion front coherently propagating accordingly to the classical zipper hypothesis [42]. In
particular, the force-displacement relation is given by Eq.(11), following the conditions prescribed in
Eq.(SM29). We deduce that, according to the Maxwell convention, the system behaves elastically with
f = k(n)� until � = �Max(n� 1). After this value we observe a sequence of successive jumps between
neighbor branches (each denoted by the value of unbroken links p) with the value of the force f in a
p-dependent interval (p > 0) as f 2 [f1(p), f2(p)] where f1(p) = k(p)�Max(p), f2(p) = k(p)�Max(p� 1).

It is possible to see that, initially, f2(p) decreases as p decreases. This means that after the first link
has been broken, the force necessary to break the following one is smaller, i.e. the decohesion process
is more easily realized. On the other hand, due to a hardening effect induced by the constraint w0 = 0,
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p = n� 2

Figure 3: Force-displacement relation under the Maxwell convention. Thin black lines represent local minima, thick blue

line global minima. Here n = 30 and ⌫ = 1.
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T H E R M O D Y N A M I C  L I M I T

Thermodynamic limit –. The behavior of macromolecules with a large number of bases n can be of
particular interest in the case of temperature effects because it allows us deducing fully analytical
relations between the melting force and the temperature. Thus, we consider the thermodynamic limit
when n (and L = nl) goes to infinity (with l fixed). Indeed, by keeping the SDW approximation it is
possible to obtain (SI) the analytic relation

f̄ ' ⌫

r
1� T

Tc
, (18)

where we have defined the critical temperature (independent on the applied displacement and conju-
gated force)

Tc =
ke l

kB �
(19)

such that the force threshold for melting transition decreases to zero and the DNA molecule sponta-
neously melts. We notice that for T = 0 we find f̄ = ⌫ coherently with (SM31).

We point out that the results in the thermodynamic limit can be obtained by the Transfer Integral
(TI) method [16], but only in the limit of large values of ⌫2 as proposed also in [23] where the authors
obtain a square root relation of the type in (19). In SM we deduce, based on the TI technique, the
critical temperature T

(TI)
c =

p
kt ke
kB

ud for our model coherent with (19) in the regime ⌫
2 � 1. From this

point of view, it may be of interest to compare the obtained results with those deduced in the literature
based on the adoption of the Morse potential [16, 22, 20, 21], defined as VM (y) = D (1� e

�ay)2, with
D and a representing the depth and the width of the potential well, respectively. Observe that our
interchain interaction energy is symmetric with the possibility of detachment both for positive and
negative displacements. Specifically, we considered the superposition of a quadratic energy term and
a constant term (corresponding to the breaking of a bond). On the other hand, the Morse potential
is asymmetric and in the TI approach this corresponds to the possibility of obtaining the critical
temperature based on the existence criterion of bound states in the energy spectrum [40]. Moreover, to
refer to previously recalled paper notation in the literature, we remark that the authors introduced the
non dimensional parameter R = Da

2
/K (with K the elastic constant in the Peyrard-Bishop model)

such that R � 1 and R ⌧ 1 correspond to the discrete[21] and continuous [22] regimes, respectively. We
remark that the analytical solution of the formal Schröedinger equation associated to the TI approach
is valid if the condition D ⌧ KBT ⌧ D/R holds. On the other hand, the typical choice of material
parameters in DNA models (see later for a comparison with experimental data) correspond to the
former case (where typically R ' O(10)). Making a comparison with the presented model, we notice
that the direct method for the evaluation of the partition function based on the SDW approximation
and the summation over phase (spin) variables is valid for all values of the parameter ⌫, thus enlarging
the range of possible application of the model and providing evidence of the more general nature of
the methods used in this paper as compared with previous approaches that all requires hypotheses
on ⌫. Roughly speaking, we may summarize that the model proposed in [21] is able to describe the
initial linear dependence for small value of ⌫ and temperature, where the solutions approximate the
purely mechanical solutions at zero temperature. On the other hand, the TI approach is appropriate
to describe the regime of large values of ⌫ and T approximating the critical value. The results obtained
from the model here proposed are independent on the value of ⌫ and coherent with previously deduced
approximate results.

3.1. DNA melting as a phase transition

We here show that the melting of the DNA can be treated in the framework of phase transition
theory. It is interesting to point out that (see [43]) Eq.(18) can be used to derive the phase diagram
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Figure 7: Phase diagrams: (a) the temperature-melting force plane; (b) temperature-crititical displacement plane.

shown in Fig.7(a) separating the force-temperature plane in regions with fully attached solutions and
fully detached solutions, respectively. We can also derive a phase diagram for the applied displacement
and temperature as shown in Fig. 7(b). Indeed, we may introduce �̃c = �c/n as the (temperature and
elasticity dependent) applied strain measure needed to obtain a complete denaturation of the chain
when the expected value of the phase fraction of attached bonds ⇡ = p/n attains the zero value. An
explicit calculation in the thermodynamical limit (see SI) shows that

�̃c =
1

⌫

r
1� T

Tc
. (20)

The transition behavior can be described in more details if we consider also the behavior at dif-
ferent temperatures in the force-displacement plane as represented in Fig.8. In panel (a) we show the
dependence of the difference f0 � f̄ on the applied rescaled displacement � behavior in the thermo-
dynamical limit (with f0 = ⌫ the value of the force plateau in the mechanical limit). As shown in
the inset, by increasing �, the system behaves elastically up to a critical value of displacement and
force f̄ (point a), both decreasing as the temperature increases, when the system starts to melt. In
terms of a phase transition, this threshold (whose interpolation for the different curves is represented
by a thick red line on the left side of the plot) represents the starting value of the passage from the
single phase (fully attached) solution to the coexistence of two phases configurations with the system
decomposed in an attached and in a detached domain. This region corresponds to a force plateaux
(from point b to point c in the inset) with decreasing extension as the temperature increases. Thus,
the transition cooperativity, in the considered case of assigned displacement, increases as temperature
grows. As � is increased, a second threshold is attained (point c) corresponding to reach the second
single phase (fully detached) configuration, with the complete melting of the DNA chain. The system
then follows the fully detached branch (from point c to point d in the figure, red thick line on the right
of the main plot). The corresponding elasticity is due to the chain stiffness and the assumed boundary
conditions. Full denaturation would be attained without the considered constraint w0 = 0. In panel (b)
discreteness effects are evidenced. In particular, the behavior of curves in the thermodynamical limit
is compared to a short DNA double stranded molecule with n = 30 bases. Observe that, due to the
finite n, the transition corresponds to a sloped plateaux with an ‘anticipated’ transition induced by the
entropic terms, energetically favoring two-phases configurations. A comment is in order. We obtained
a phase diagram in the case of applied displacement in the thermodynamic limit showing the presence
of a critical melting temperature. One could ask if a change in the boundary conditions would change
this phase diagram. Based of the generality of our approach, depending on the use of discrete spin
variables representing different phases of each element, we expect that the phase diagram will maintain
qualitatively the same features if the microscopic structure of the system is left unchanged. This idea
is also suggested by the possibility to describe experimental results based on different protocols as will
be evident in the following paragraph.

11

Thermodynamic limit –. The behavior of macromolecules with a large number of bases n can be of
particular interest in the case of temperature effects because it allows us deducing fully analytical
relations between the melting force and the temperature. Thus, we consider the thermodynamic limit
when n (and L = nl) goes to infinity (with l fixed). Indeed, by keeping the SDW approximation it is
possible to obtain (SI) the analytic relation

f̄ ' ⌫

r
1� T

Tc
, (18)

where we have defined the critical temperature (independent on the applied displacement and conju-
gated force)

Tc =
ke l

kB �
(19)

such that the force threshold for melting transition decreases to zero and the DNA molecule sponta-
neously melts. We notice that for T = 0 we find f̄ = ⌫ coherently with (SM31).

We point out that the results in the thermodynamic limit can be obtained by the Transfer Integral
(TI) method [16], but only in the limit of large values of ⌫2 as proposed also in [23] where the authors
obtain a square root relation of the type in (19). In SM we deduce, based on the TI technique, the
critical temperature T

(TI)
c =

p
kt ke
kB

ud for our model coherent with (19) in the regime ⌫
2 � 1. From this

point of view, it may be of interest to compare the obtained results with those deduced in the literature
based on the adoption of the Morse potential [16, 22, 20, 21], defined as VM (y) = D (1� e

�ay)2, with
D and a representing the depth and the width of the potential well, respectively. Observe that our
interchain interaction energy is symmetric with the possibility of detachment both for positive and
negative displacements. Specifically, we considered the superposition of a quadratic energy term and
a constant term (corresponding to the breaking of a bond). On the other hand, the Morse potential
is asymmetric and in the TI approach this corresponds to the possibility of obtaining the critical
temperature based on the existence criterion of bound states in the energy spectrum [40]. Moreover, to
refer to previously recalled paper notation in the literature, we remark that the authors introduced the
non dimensional parameter R = Da

2
/K (with K the elastic constant in the Peyrard-Bishop model)

such that R � 1 and R ⌧ 1 correspond to the discrete[21] and continuous [22] regimes, respectively. We
remark that the analytical solution of the formal Schröedinger equation associated to the TI approach
is valid if the condition D ⌧ KBT ⌧ D/R holds. On the other hand, the typical choice of material
parameters in DNA models (see later for a comparison with experimental data) correspond to the
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and the summation over phase (spin) variables is valid for all values of the parameter ⌫, thus enlarging
the range of possible application of the model and providing evidence of the more general nature of
the methods used in this paper as compared with previous approaches that all requires hypotheses
on ⌫. Roughly speaking, we may summarize that the model proposed in [21] is able to describe the
initial linear dependence for small value of ⌫ and temperature, where the solutions approximate the
purely mechanical solutions at zero temperature. On the other hand, the TI approach is appropriate
to describe the regime of large values of ⌫ and T approximating the critical value. The results obtained
from the model here proposed are independent on the value of ⌫ and coherent with previously deduced
approximate results.

3.1. DNA melting as a phase transition

We here show that the melting of the DNA can be treated in the framework of phase transition
theory. It is interesting to point out that (see [43]) Eq.(18) can be used to derive the phase diagram
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Figure 9: Comparison of experimental results for DNA hairpin from [44] with the predictions of the model. (a): unzipping

force versus temperature; blue dots are the experimental values whereas the continuous line represents Eq.(21). (b): Force-

extension curves for different temperatures; solid lines are obtained using Eq.(17) and Eq.(SM39) (rescaling f̄ in order

to derive the physical force F̄ and recalling that � = d/ud) whereas dashed lines are obtained from Eq.(21); from top to

bottom the temperatures are T = 276K (triangles), T = 285K (diamonds), T = 295K (boxes), T = 302K (bullets). The

costitutive parameters used to obtain the curves are described in the main text. (c): Comparison of the potential energy

in Eq. (1) (continuous line) and the branch of the Morse potential corresponding to the breaking of a link (dashed line)

with a = 40 nm
�1

and D = 18.45 pN nm (represented only for positive values of the displacement y, see discussion in the

text).

9(c) we compare the potential energy in Eq.(1) and the Morse potential (with a = 40 nm�1). Based on
these parameters we first can reproduce the results in the force-temperature space. Then, by using the
same material parameters, we predict the force-extension curves at different temperatures as reported
in Figure 9(b). Specifically, we reproduce the initial part of the curves (solid lines) by using Eq.(17)
and Eq.(SM39) (with n = 6800 mimicking the number of base pairs in the experiment) whereas we
deduce the values of the force plateaux using Eq.(21) (dashed lines). Observe the very good agreement
between experimental results and the theoretical predictions of the model.

A comment is in order. In our analysis we considered the case of an unzipping protocol where the
mechanical action of the measuring apparatus is perpendicular to the axis of the DNA macromolecule
(unzipping). We now show the possibility of predicting the thermomechanical behavior of DNA also in
the case of overstretching experiments, when the forces are applied longitudinally to the DNA axes as
studied in [45, 46]. We argue that this generality of the proposed model for different loading conditions
relies on the fact that the peeling (longitudinal to the DNA axis) process and the unzipping (transverse
to the DNA axis) are similar from the physical point of view as suggested by previous experimental and
theoretical analysis [47, 48]. To attain this result we now substitute for both covalent and non covalent
bonds the shear stiffness with the extension stiffness.

Thus, in this case to compare the behavior of our system with respect to the experimental one,
we choose the material parameters consistently with those reported in [45, 27, 28]. Specifically, we
consider the following values of the parameters: kt = 272.34 pN, ke = 76.33 pN, l = 0.34 nm and
ud = 0.0145 nm. We have kt/l = 800 pN/nm = 0.05 eV/Å2. Consequently, the critical temperature is
Tc ' 372.2K. As in the previous example, the values of ke and ud are fixed to compare our results
with those obtained by the Morse potential, imposing that D = ke l/2 = 12.98 pN nm = 0.081 eV.
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f0 � f̄

Figure 8: DNA melting as a phase transition. Grey regions represent partially attached configurations. (a): dependence of

the difference f0�f̄ on � in the thermodynamical limit with f0 = ⌫ (see the text for the description); inset: correspondence

of the curve branches with the configuration of the chain. (b): behavior for a limited DNA chain with n = 30 superimposed

to the ideal behavior in the thermodynamic limit in the thermodynamical limit; the behavior of the finite size system in

the mechanical limit is reported by gray equilibrium branches. In both panels we used ⌫ = 2 and � = 0.9, 1.3, 1.7, 3, 10.
The critical temperature Tc corresponds to �c = �(2) ⇠ 0.495. In the inset of panel (a) we reported the behavior for

� = 3.

3.2. Comparison with experimental results

To show the effectiveness of the model in quantitatively capture the thermomechanical phase tran-
sition behavior of DNA we now compare our theoretical results with the unzipping experiments at
different ambient temperature. As a specific example, we can consider the behavior of DNA hairpins as
experimentally analyzed in [44]. Specifically, taking into account Eqs.(8) and (10), we find the expres-
sion of the (temperature-dependent) expectation value of the physical force in terms of the material
parameters of the model:

F̄ =

s

ke kt

✓
1� T

Tc

◆
. (21)

In Figure 9(a) we report the unzipping force versus the temperature. In order to fit the experiments
we fix l = 0.34 nm, ud = 0.0165 nm and, using two experimental points marked with a star in 9(a), we
can perform a best fit so to find kt = 20.03 pN, ke = 108.55 pN. Thus, we can predict the value of the
critical temperature as Tc ' 345.3K. The values of ke and ud can be compared with the values of the
parameters in the Morse potential used in some models of DNA (see for instance [27, 28]). We find
that the used material parameters are consistent with those reported in [27, 28]. As a matter of fact,
we find kt/l = 59 pN/nm = 0.0037 eV/Å2. Moreover, comparing the expression of the Morse potential
with the potential energy in Eq. (1) we have that D = ke l/2 = 18.45 pN nm = 0.115 eV. In Figure
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Unzipping experiments with DNA hairpins:

Data from: de Lorenzo, S.; Ribezzi-Crivellari, M.; Arias-Gonzalez, J.R.; Smith, S. B.; Ritort, F., 
A Temperature-Jump Optical Trap for Single-Molecule Manipulation, Biophys. Jour. 2015, 108, 
2854-2864 

J.S
tat.M

ech.
(2009)

P
02060

Dynamic force spectroscopy of DNA hairpins: I

Figure 1. (a) Experimental set-up. (b) DNA hairpin sequence. The 5′ and 3′
labels indicate the polarity of the phosphate chain of the hairpin.

or decreased) in both stretching and releasing stages of the cycle4, and recorded with an
acquisition frequency of 1 kHz. All experiments were done at a temperature 23–24 ◦C in a
1 M NaCl aqueous buffer with neutral pH (7.5) stabilized with Tris HCl and 1 M EDTA.

The molecular construct is shown in figure 1(b) and consists of a DNA hairpin of
21 base pairs (bps) ending with a tetraloop GAAA. The hairpin is inserted between two
identical short dsDNA handles of 29 bps each. The sequence of this DNA hairpin is
canonical (i.e. all base pairs are complementary) and has been specifically designed to
produce a two-state folder (see below in section 3).

Force–distance curves (FDCs) in our experiments represent the force acting on the
molecule as a function of the relative position of the trap along the force axis. From the
FDC it is possible to extract the molecular extension, so as to represent the force versus
the molecular extension in what is known as a force–extension curve (FEC). Many works

4 This process is performed at constant pulling speed v. Since the elasticity of DNA (dsDNA handles and unfolded
DNA hairpin) is force dependent, strictly speaking the loading/unloading rate r is not constant throughout the
pulling process. Nevertheless, in the force range of our experiment the rigidity of the optical trap kb is much
smaller than the stiffness of the handles and the unfolded DNA hairpin. Therefore, the effective rigidity (31) is
keff ≈ kb, and our system verifies r = vkeff ≈ vkb.

doi:10.1088/1742-5468/2009/02/P02060 4
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Figure 9: Comparison of experimental results for DNA hairpin from [44] with the predictions of the model. (a): unzipping

force versus temperature; blue dots are the experimental values whereas the continuous line represents Eq.(21). (b): Force-

extension curves for different temperatures; solid lines are obtained using Eq.(17) and Eq.(SM39) (rescaling f̄ in order

to derive the physical force F̄ and recalling that � = d/ud) whereas dashed lines are obtained from Eq.(21); from top to

bottom the temperatures are T = 276K (triangles), T = 285K (diamonds), T = 295K (boxes), T = 302K (bullets). The

costitutive parameters used to obtain the curves are described in the main text. (c): Comparison of the potential energy

in Eq. (1) (continuous line) and the branch of the Morse potential corresponding to the breaking of a link (dashed line)

with a = 40 nm
�1

and D = 18.45 pN nm (represented only for positive values of the displacement y, see discussion in the

text).

9(c) we compare the potential energy in Eq.(1) and the Morse potential (with a = 40 nm�1). Based on
these parameters we first can reproduce the results in the force-temperature space. Then, by using the
same material parameters, we predict the force-extension curves at different temperatures as reported
in Figure 9(b). Specifically, we reproduce the initial part of the curves (solid lines) by using Eq.(17)
and Eq.(SM39) (with n = 6800 mimicking the number of base pairs in the experiment) whereas we
deduce the values of the force plateaux using Eq.(21) (dashed lines). Observe the very good agreement
between experimental results and the theoretical predictions of the model.

A comment is in order. In our analysis we considered the case of an unzipping protocol where the
mechanical action of the measuring apparatus is perpendicular to the axis of the DNA macromolecule
(unzipping). We now show the possibility of predicting the thermomechanical behavior of DNA also in
the case of overstretching experiments, when the forces are applied longitudinally to the DNA axes as
studied in [45, 46]. We argue that this generality of the proposed model for different loading conditions
relies on the fact that the peeling (longitudinal to the DNA axis) process and the unzipping (transverse
to the DNA axis) are similar from the physical point of view as suggested by previous experimental and
theoretical analysis [47, 48]. To attain this result we now substitute for both covalent and non covalent
bonds the shear stiffness with the extension stiffness.

Thus, in this case to compare the behavior of our system with respect to the experimental one,
we choose the material parameters consistently with those reported in [45, 27, 28]. Specifically, we
consider the following values of the parameters: kt = 272.34 pN, ke = 76.33 pN, l = 0.34 nm and
ud = 0.0145 nm. We have kt/l = 800 pN/nm = 0.05 eV/Å2. Consequently, the critical temperature is
Tc ' 372.2K. As in the previous example, the values of ke and ud are fixed to compare our results
with those obtained by the Morse potential, imposing that D = ke l/2 = 12.98 pN nm = 0.081 eV.
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Figure 10: Comparison of experimental results with the theoretical prediction of the denaturation force on temperature.

The experimental data are taken from [45]. The values of the material parameters are given in the text and are consistent

with those reported in [45, 27, 28]. Inset: comparison of the potential energy in Eq. (1) (continuous line) and the branch

of the Morse potential corresponding to the breaking of a link (dashed line) with a = 60 nm
�1

and D = 12.98 pN nm

(represented only for positive values of the displacement y, see discussion in the text).

In the inset of Figure 10 we compare the potential energy in Eq.(1) and the Morse potential (with
a = 60 nm�1). As Figure 10 shows, the comparison of the experimental data with the theoretical
prediction given by Eq.(21) indicates an excellent agreement. Notwithstanding, the approximations
used to obtain explicit analytical formulas (one spatial dimension, extension of the potential energy
branches beyond the spinodal point, SDW approximation) does not alter the predictability of the model.
In our opinion, the obtained results support the hypothesis that the fundamental mechanisms at the
basis of the breaking in DNA are captured by our model.

Remarkably, due to the generality of the model, our results can be extended to different macro-
molecules independently from their length and stiffness (assuming the validity of the thermodynamical
limit). For low values of base pairs n the discrete results of previous sections can be adopted.

4. Conclusions

We considered the thermomechanical action on the melting transition of double stranded DNA
molecules. Based on a simplified two-state behavior of the interchains bonds and the introduction of
related spin variables, we deduced a full analytic description. Previous analytic results were based
on specific assumptions. In particular, in Peyrard et al. [21] the authors consider the extreme dis-
cretization hypothesis when intra-chains bonds stiffness is negligible as compared with inter-chains,
corresponding to small values of ⌫. In this case the authors obtain a linear dependence on T plus small
corrections in T

2. This behavior corresponds to the case when entropic terms represent a perturbation
of the internal energy terms and the considered configurations can be considered as perturbation of the
purely mechanical limit. In particular, in the case of very low temperature, we deduced here analytic
expressions for all local and global energy minimizers. As we show the themomechanical melting be-
havior approaches this purely mechanical limit as temperature decreases. In this limit we are also able
to describe dissipative effects and hysteresis qualitatively reproducing the cyclic experimental behavior
of double stranded DNA molecules that under unloading undergo a rebonding transition with a result-
ing hysteresis [2]. On the other hand, Transfer Integrals approaches (see e.g. [23]) are based on the
opposite hypothesis of inter-chains bonds stiffness negligible as compared with intra-chains bonds one.
This limit describes the behavior when entropic energy terms prevails. In particular this is the case
when the system approaches the denaturation temperature. As we show, our analytical model recover
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f0 � f̄

Figure 8: DNA melting as a phase transition. Grey regions represent partially attached configurations. (a): dependence of

the difference f0�f̄ on � in the thermodynamical limit with f0 = ⌫ (see the text for the description); inset: correspondence

of the curve branches with the configuration of the chain. (b): behavior for a limited DNA chain with n = 30 superimposed

to the ideal behavior in the thermodynamic limit in the thermodynamical limit; the behavior of the finite size system in

the mechanical limit is reported by gray equilibrium branches. In both panels we used ⌫ = 2 and � = 0.9, 1.3, 1.7, 3, 10.
The critical temperature Tc corresponds to �c = �(2) ⇠ 0.495. In the inset of panel (a) we reported the behavior for

� = 3.

3.2. Comparison with experimental results

To show the effectiveness of the model in quantitatively capture the thermomechanical phase tran-
sition behavior of DNA we now compare our theoretical results with the unzipping experiments at
different ambient temperature. As a specific example, we can consider the behavior of DNA hairpins as
experimentally analyzed in [44]. Specifically, taking into account Eqs.(8) and (10), we find the expres-
sion of the (temperature-dependent) expectation value of the physical force in terms of the material
parameters of the model:

F̄ =

s

ke kt

✓
1� T

Tc

◆
. (21)

In Figure 9(a) we report the unzipping force versus the temperature. In order to fit the experiments
we fix l = 0.34 nm, ud = 0.0165 nm and, using two experimental points marked with a star in 9(a), we
can perform a best fit so to find kt = 20.03 pN, ke = 108.55 pN. Thus, we can predict the value of the
critical temperature as Tc ' 345.3K. The values of ke and ud can be compared with the values of the
parameters in the Morse potential used in some models of DNA (see for instance [27, 28]). We find
that the used material parameters are consistent with those reported in [27, 28]. As a matter of fact,
we find kt/l = 59 pN/nm = 0.0037 eV/Å2. Moreover, comparing the expression of the Morse potential
with the potential energy in Eq. (1) we have that D = ke l/2 = 18.45 pN nm = 0.115 eV. In Figure
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Overstretching experiments in DNA

Data from: Williams, M. C.; Rouzina, I.; Bloomfield, V. A., Thermodynamics of DNA 
Interactions from Single Molecule Stretching Experiments, Acc. Chem. Res. 2002, 35, 159-166 



C O N C L U S I O N S  A N D  P E R S P E C T I V E S

• We obtain a model allowing to deduce analytical formulas describing the 
(temperature-dependent) features observed in DNA

• The model is general and based on simple assumptions (use of spin variables): 
ion can be applied in more general contexts such as material science, biology, 
medicine, engineering (natural and artificial bio-inspired materials) 

• Applications to phenomena in biological processes such as cell adhesion where 
cells interact with each other or with their substrate using specialized proteins, or 
mechanics of axonal damage in traumatic brain injuries 

• Related works with softening and fracture
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