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Introduction

DA from model-driven to (a bit more) data-driven

Model-driven DA in geosciences
» In geosciences we possess a “good knowledge” of the laws governing the system.
» The DA ability to combine model and data has been pivotal to the success of DA.

» Using the model, information propagates from observed to unobserved regions.

improves/complements
models by learning from
» But models are not perfect and data

neither complete.

Observations
best
combines model and
observations and brings
synergy

» Recently, machine learning tools
have shown formidable in retrieving
hidden dynamics only from data.

How making DA and ML joining forces
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ML and DA: their (different?) “realms”and “goals”
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ML and DA: their (different?) “realms”and “goals”

Goodness of the data (or our belief)
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What this talk talks about
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What this talk talks about
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What this talk talks about
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Outline

9 non-intrusive ML to supplement physical models
@ ML to estimate local Lyapunov exponents
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non intYUSive ML

Part I: “non intrusive” ML - A tool supplementing physical models

» We already proved that is possible to estimate the LE using DA (Chen, et al. 2021).

» Here we investigate how to use ML for real-time estimate the LLEs based on the system’s state (Ayers
et al., 2022, ArXiv).

Rossler model Lorenz 63 model

LLE distribution LLE distribution

Prediction with Multi Layer Perceptor Prediction with Convolutional Neural Network
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non intr‘JSive ML

“non intrusive” ML - A tool supplementing physical models

» Very good prediction of LLE3.
» Good prediction of LLE;
» LLE> more difficult to predict

» Accuracy of the prediction strongly depends on
“where we are” on the attractor <= Areas of
high heterogeneity are difficult to map.

The ML-based information can be used in
real-time to operate decision such as increasing
spatio-temporal resolution, increasing/reducing
ensemble size or locate/remove observations.

Machine learning in geophysical

CNN, 6 time steps
Rossler Lorenz 63
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data assimilation
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Outline

e Data driven DA - Combining data assimilation and machine learning
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Combining ML with DA

Initialisation DA step 7.0 ML/DL step .
L— (A*,x] )
choose Ag estimate x7 update A

YLo

© Build a full model of the observed process.

@ Infer the model error and build an hybrid physical/data-driven model.
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Data-driven DA Emulator generator
Outline

e Data driven DA - Combining data assimilation and machine learning
@ DA-ML to emulate an hidden dynamics
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Emulating a model by combining DA and ML

Emulation of the resolvent combining DA

and ML:
Xps1 = M(xp) % Gw (%) + €, ’Initialization: W‘
Cycle
where Gw is a neural network D I_DX ) ; ________________________ o
parameterised by W and €}' is a stochastic ! step |
Hoise. i | Fix W, Estimate x¥,; and P%, ;- using yobs | |
1 1
1 1
1 1
» For the DA part we use the E ML step < ,> E
! :
1 1

’ Fix x¥.; and P, Estimate W ‘

» For the ML part we train a

’ Stop if converged ‘

Machine learning in geophysical data assimilation 14 / 30



Proposed DA+ML algorithm

» Step 1 - Data Assimilation: estimate the state field x1.x (the analysis) and associated (analysis) error covariance,
P, based on the fixed model parameters W and using sparse and noisy data, y.

» Step 2 - Machine learning: using x1.x and Py from DA estimate W

@ The neural network can be expressed as a parametric function Gw (xx) = Xg + fun(Xk, W) where fon is a
neural network and W its weights; fnn is composed of convolutive layers.

@ The determination of the optimal W is done in the training phase by minimising the loss function:

K—Ng—1 N

R ID>
k=0 i=1

where Nt is the number of time steps corresponding to the forecast lead time on which the error between the
simulation and the target is minimised (with “coordinate descent” ).

2

)

-1
Pk

‘g\(;v) (%K) — Xkyi

@ P, is a symmetric, semi-definite positive matrix estimated by analysis error covariances from the DA step.

@ This time-dependent matrix, P, plays the role of the surrogate model error covariance matrix and gives
different weights to each state during the optimisation process.
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Data-driven DA Emulator generator

Emulating the underlying dynamics: Power spectrum density

Lorenz 96
» After one cycle, some frequencies are

s Surrogate (1 cycle) favoured (see the peak at ~ 0.8Hz) and
. ] l"hs\ — True indicate that the periodic signals are
1004 ! ‘.\\ surrogate learnt first.
o2 ] "
N » At convergence, the surrogate model
o A reproduces the spectrum up to 5 Hz but then
D 1074 . adds high-frequency noise.
» Low frequencies are better observed
1076 4 and better reproduced after the DA step.
1078 4 » The PSD has been computed using a long

simulation (16,000 time steps), which means
that the surrogate model is very stable.

o 2 4 6
frequency [Hz]

oo -
=
o
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Data-driven DA Emulator generator

Emulating the underlying dynamics: Lyapunov spectrum

Lorenz 96
» Accurate unstable spectrum = Same
24
error growth rate and Kolmogorov
s entropy, as the true model.

» Less accurate reconstruction of the
neutral and quasi-neutral part of the
spectrum.

» This is similar to what found in
. Possibly due to the slower convergence
(linear vs exponential) of the neutral exps

n-th Lyapunov exponent

—6 { —e— True » The stable part of the spectrum is shifted
Surrogate toward smaller values = PDFs contracts

T T T T T T T T faster than in the true model, i.e. surrogate
0 5 10 15 20 25 30 35 40 model more dissipative than the truth.
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Data-driven DA Emulator generator

Forecast skill

True

Surrogate

Su-Tr

A. Carrassi

20

Hovmgller plot of the true and surrogate models (in Lyapunov time*, LT)
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» The simulations start from the same initial
conditions.

» Good prediction until 2 LTs. Error
saturation at 4-5 LTs.

» (*): the time for the error to grow by a
factor e.
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Data-driven DA Inferring parametrizations
Outline

e Data driven DA - Combining data assimilation and machine learning

@ DA-ML to infer unresolved scales parametrization
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Data-driven DA Inferring parametrizations

Combined DA-ML to infer unresolved scales parametrizations

The objective is to produce a hybrid (physical/data-driven) model

x(t + 6t) = M?[x(t)] + MUN[x(0)],

where:

(]

x(t) is the state of the dynamical system
M? is the physical model (assumed to be known a priori)

MY is the unresolved component of the dynamics to be inferred from data

4t is the integration time step

MUY is approximated by a represented under the form of a neural network whose
parameters are 8: Mg[x(t)]
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Proposed approach

Simplified description of the algorithm:

@ Estimating the state x%. .. At each time t, we calculate a forecast x:
£ £ ¢
Xpi1 =X (t, + At) = (M?)™ (x})

An observation yx41 is assimilated with strongly coupled EnKF to produce an analysis xj,

© Determining an estimation of the unknown part of the model. We assume that:
o x(t+ At) &~ (MP)Ne(x(t)) + Ne - MUN[x(2)]
o x(t) = x*(t)

We consider that MYN(xy) & z41 = 1/N. - (XZH = xfcﬂ) = The “target” (i.e. the model error)
is estimated using the analysis increments

© Training a neural network Mg by minimising the loss L(0 Z HMe x2) — zg 1| ?
@ Using the hybrid model M¥ 4+ Mg to produce new simulations (e.g. to make forecasts).
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Experiments with the coupled atmosphere-ocean MAOOAM

» MAOOAM: Modular arbitrary-order ocean-atmosphere

model

a) 2-layer atl,msphe;e coupled to 1-layer E:&;
» A two-layer QG atmosphere coupled, thermally and ocean configuration gs
. . b) includes friction at boundaries for 58
mechanically, to a QG shallow-water ocean layer in the atmosphere and wind stress at A-0 boundary & §

B-plane.
. . . Sroory, _ o,
» MAOOAM is resolved in spectral space, for streamfunction e ¢

and potential temperature, with adjustable resolution.

| Loyer 2 Q.
0.06 Y1 [iayer £Sy
0.05
£ 004 h
0.03 Ocea
0.02 MAOOAM {8y mechanical coupling
0.1 (y thermal + radiative
0.05 4 6 * coupling
o 2
jocn o
03 005 4 e x10 ~ €
2 a) includes thermal and radiative heat g2
transport between atmosphere and ocean as E;; g
i function of T, To- £5
» We implement a strongly coupled EnKF G OF 1 ] 16 =g
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Data-driven DA Inferring parametrizations

Experiments with MAOOAM

@ Truth: n, = 20 and n, = 8 modes for atmosphere and ocean. Total dimension N, = 56.

© Truncated: n, = 10 and n, = 8 modes for atmosphere and ocean. Total dimension N, = 36.

» The truncated model is missing 20 high-order atmospheric variables

» There is not locality in spectral space so the NN is made of 3 layers multi-layer perceptrons

RMSE-f of hybrid and truncated MAOOAM models

RMSE-f(lead time 7)
Truncated
Coupled DA-ML hybrid

10,2(2 years)
0.23
0.10

00,2(2 years)
0.21
0.06

Ya,1(1 day)
0.36
0.28

@ The hybrid models have superior skill than the truncated model.

@ The improvement is larger for the ocean that is fully resolved = Enhanced representation of
the atmosphere-ocean coupling processes thanks to coupled DA.

@ The atmosphere is improved less: the hybrid is not very good in representing the fast processes.
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Data-driven DA Inferring parametrizations

Numerical experiments: atmosphere-ocean model MAOOAM

Reconstruction of the model attractor

hybrid model (DA)

Truncated model

True model
0.0003
0.0002
>

0.0001 } s
= 00000

-0.0001

-0.0002

-0.0003

0020 0.025 0030 0035 0040 0045 0050 0.055 0060 0.020 0025 0.030 0.035 0.040 0045 0050 0.055 0060 020 0.025 0030 0035 0.040 0.045 0.050 0.055 0.060
W, Va1 Va1

» The truncated model visits areas of the phase space that are not admitted in the real dynamics.

» Discrepancies are reduced by the hybrid models.
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mple of) Ongoing directions Sea-ice melt ponds parametrizations with ML and DA

Outline

e (an example of) Ongoing directions
@ Sea-ice melt ponds parametrizations with ML and DA
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Sea-ice melt ponds parametrizations with ML and DA

(an example of) Ongoing directions

Parametrization of sea-ice melt ponds with DA and ML

Sea Ice and Albedo:
The Role of Melting/Melt Ponds on Albedo

¢ Each year melting of sea ice occurs, melt ponds form on
the surface of the ice.

© The evolution of melt ponds in the summer is one of the
main factors affecting the polar climate system.

® The impact of melt ponds on the climate system will
increase as climate change continues.

Melt ponds are spatially irregular, sub-grid scale, and
their evolution is dependent on many competing factors.
Therefore they have to parametrised.

26 / 30
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(an example of) Ongoing directions Sea-ice melt ponds parametrizations with ML and DA

Parametrization of sea-ice melt ponds with DA and ML

Icepack - A column physics sea

* lIcepack is a state-of-the-art
column physics model
representing many crucial sea ice
processes (thermodynamics,
ridging, biogeochemistry, and
associated area and thickness
changes).

A. Carr

"

g

Sublimation /
condensation Wind drag

New ice formation

Brine
transport | |02 A .

Water flux

e Heat flux

Solar radiation
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mple of) Ongoing di S Sea-ice melt ponds parametrizations with ML and DA

Parametrization of sea-ice melt ponds with DA and ML

Locations of Icepack Simulations

/

Area Fraction Ave |ce Thick (m)

100 45

0.98 v 4.01

0.96 3.5 ’
0.94 53.0 \

092 Cw 2.51 w

0.90 MPP 2.0

I
Year Year
Pond Albedo 08 Eff Pond Area
0.40
0.35 07
030/ | 0.6
» Very good accuracy (R2 score &> 0.98) when the 0251 | { o3 ‘
. . . . . 0.20
NN is trained on the model output (i.e. with synthetic 015 ‘ ~ 03] [
| | I 02
0.10
data) =[N IARET LU
000l L | L0 0V G O S O W
» Feature selection for model reduction performed S FSTESEELE PSS
using Shannon mutual information. Year Year

» Moving to training on real data (in situ Sheeba
dataset)
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Conclusions

Conclusions

» We showed three ways on how using ML in geophysical DA and forecasting: (1) to supplement a
physical model, (2) to infer parametrization of unresolved/poorly known processes, and, (3) to fully
emulate an hidden dynamics.

» We studied the potential for ML to estimate LLEs: Greater accuracy is associated with local
homogeneity of the LLEs on the system attractor.

» We developed a combined DA+ML approach whereby DA is instrumental to handle partial and noisy
data and then inform the ML algorithm.

» This flow of information from DA to ML includes a state-dependent estimate of the uncertainty
about the state that is key in the ML optimization step.

» The DA+ML approach is very flexible: any DA or ML algorithm can be plug-in.
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