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Introduction

DA from model-driven to (a bit more) data-driven

Model-driven DA in geosciences
I In geosciences we possess a “good knowledge” of the laws governing the system.
IThe DA ability to combine model and data has been pivotal to the success of DA.
IUsing the model, information propagates from observed to unobserved regions.

IBut models are not perfect and
neither complete.

IRecently, machine learning tools
have shown formidable in retrieving
hidden dynamics only from data.

Data-driven DA
How making DA and ML joining forces
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Introduction

ML and DA: their (different?) “realms” and “goals”
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non intrusive ML non intrusive ML

Part I: “non intrusive” ML - A tool supplementing physical models

IWe already proved that is possible to estimate the LE using DA (Chen, et al. 2021).
IHere we investigate how to use ML for real-time estimate the LLEs based on the system’s state (Ayers
et al., 2022, ArXiv).

Rossler model

LLE distribution

Prediction with Multi Layer Perceptor

Lorenz 63 model

LLE distribution

Prediction with Convolutional Neural Network
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non intrusive ML non intrusive ML

“non intrusive” ML - A tool supplementing physical models

IVery good prediction of LLE3.

IGood prediction of LLE1

ILLE2 more difficult to predict

IAccuracy of the prediction strongly depends on
“where we are” on the attractor ⇐⇒ Areas of
high heterogeneity are difficult to map.

The ML-based information can be used in
real-time to operate decision such as increasing
spatio-temporal resolution, increasing/reducing
ensemble size or locate/remove observations.

Ayers et al., (submitted).
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Data-driven DA

Combining ML with DA

DA+ML for two complementary goals

1 Build a full model of the observed process.
2 Infer the model error and build an hybrid physical/data-driven model.
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Data-driven DA Emulator generator

Emulating a model by combining DA and ML

Emulation of the resolvent combining DA
and ML:

xk+1 =M(xk) ≈ GW(xk) + εm
k ,

where GW is a neural network
parameterised by W and εm

k is a stochastic
noise.

IFor the DA part we use the Finite-Size
Ensemble Kalman Filter (EnKF-N).

IFor the ML part we train a neural net

Brajard et al, 2020

Proposed DA+ML algorithm

Initialization: W

Fix W, Estimate xa
1:K and Pa

1:K using yobs
DA step

Fix xa
1:K and Pa

1:K , Estimate W
ML step

Cycle

Stop if converged
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Data-driven DA Emulator generator

Proposed DA+ML algorithm

I Step 1 - Data Assimilation: estimate the state field x1:K (the analysis) and associated (analysis) error covariance,
Pk, based on the fixed model parameters W and using sparse and noisy data, y.

I Step 2 - Machine learning: using x1:K and Pk from DA estimate W

The neural network can be expressed as a parametric function GW(xk) = xk + fnn(xk, W) where fnn is a
neural network and W its weights; fnn is composed of convolutive layers.
The determination of the optimal W is done in the training phase by minimising the loss function:

L(W) =
K−Nf −1∑

k=0

Nf∑
i=1

∥∥∥G(i)
W (xk)− xk+i

∥∥∥2

P−1
k

,

where Nf is the number of time steps corresponding to the forecast lead time on which the error between the
simulation and the target is minimised (with “coordinate descent” Bocquet et al 2020).
Pk is a symmetric, semi-definite positive matrix estimated by analysis error covariances from the DA step.
This time-dependent matrix, Pk, plays the role of the surrogate model error covariance matrix and gives
different weights to each state during the optimisation process.

A. Carrassi Machine learning in geophysical data assimilation 15 / 30



Data-driven DA Emulator generator

Emulating the underlying dynamics: Power spectrum density

Lorenz 96

IAfter one cycle, some frequencies are
favoured (see the peak at ∼ 0.8Hz) and
indicate that the periodic signals are
learnt first.

IAt convergence, the surrogate model
reproduces the spectrum up to 5 Hz but then
adds high-frequency noise.

ILow frequencies are better observed
and better reproduced after the DA step.

IThe PSD has been computed using a long
simulation (16, 000 time steps), which means
that the surrogate model is very stable.

A. Carrassi Machine learning in geophysical data assimilation 16 / 30



Data-driven DA Emulator generator

Emulating the underlying dynamics: Lyapunov spectrum

Lorenz 96

IAccurate unstable spectrum ⇒ Same
error growth rate and Kolmogorov
entropy, as the true model.

ILess accurate reconstruction of the
neutral and quasi-neutral part of the
spectrum.

IThis is similar to what found in Pathak et al
2017 . Possibly due to the slower convergence
(linear vs exponential) of the neutral exps
Carrassi et al 2022.

IThe stable part of the spectrum is shifted
toward smaller values ⇒ PDFs contracts
faster than in the true model, i.e. surrogate
model more dissipative than the truth.
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Data-driven DA Emulator generator

Forecast skill

Hovmøller plot of the true and surrogate models (in Lyapunov time∗, LT)

IThe simulations start from the same initial
conditions.

IGood prediction until 2 LTs. Error
saturation at 4-5 LTs.

I (*): the time for the error to grow by a
factor e.

A. Carrassi Machine learning in geophysical data assimilation 18 / 30



Data-driven DA Inferring parametrizations

Outline

1 Introduction

2 non-intrusive ML to supplement physical models
ML to estimate local Lyapunov exponents

3 Data driven DA - Combining data assimilation and machine learning
DA-ML to emulate an hidden dynamics
DA-ML to infer unresolved scales parametrization

4 (an example of) Ongoing directions
Sea-ice melt ponds parametrizations with ML and DA

5 Conclusions

6 Bibliography

A. Carrassi Machine learning in geophysical data assimilation 19 / 30



Data-driven DA Inferring parametrizations

Combined DA-ML to infer unresolved scales parametrizations

The objective is to produce a hybrid (physical/data-driven) model

x(t+ δt) =Mϕ[x(t)] +MUN[x(t)],
where:

x(t) is the state of the dynamical system
Mϕ is the physical model (assumed to be known a priori)
MUN is the unresolved component of the dynamics to be inferred from data
δt is the integration time step

MUN is approximated by a data-driven model represented under the form of a neural network whose
parameters are θ: Mθ[x(t)]
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Data-driven DA Inferring parametrizations

Proposed approach

Simplified description of the algorithm:
1 Estimating the state xa

1:K . At each time tk, we calculate a forecast xf :

xf
k+1 = xf(tk + ∆t) = (Mϕ)Nc (xa

k)

An observation yk+1 is assimilated with strongly coupled EnKF to produce an analysis xa
k+1

2 Determining an estimation of the unknown part of the model. We assume that:

x(t + ∆t) ≈ (Mϕ)Nc(x(t)) + Nc · MUN[x(t)]
x(t) ≈ xa(t)

We consider thatMUN(xk) ≈ zk+1 = 1/Nc ·
(
xa

k+1 − xf
k+1
)

=⇒ The “target” (i.e. the model error)
is estimated using the analysis increments (Carrassi and Vannitsem, 2011).

3 Training a neural networkMθ by minimising the loss L(θ) =
∑K−1

k=0 ||Mθ(xa
k)− zk+1||2

4 Using the hybrid modelMϕ +Mθ to produce new simulations (e.g. to make forecasts).

Brajard et al, 2021
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Data-driven DA Inferring parametrizations

Experiments with the coupled atmosphere-ocean MAOOAM
IMAOOAM: Modular arbitrary-order ocean-atmosphere
model (Le Cruz et al, 2016)

IA two-layer QG atmosphere coupled, thermally and
mechanically, to a QG shallow-water ocean layer in the
β-plane.

IMAOOAM is resolved in spectral space, for streamfunction
and potential temperature, with adjustable resolution.

IWe implement a strongly coupled EnKF (Tondeur et al

2020).
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Data-driven DA Inferring parametrizations

Experiments with MAOOAM

1 Truth: na = 20 and no = 8 modes for atmosphere and ocean. Total dimension Nx = 56.
2 Truncated: na = 10 and no = 8 modes for atmosphere and ocean. Total dimension Nx = 36.

IThe truncated model is missing 20 high-order atmospheric variables
IThere is not locality in spectral space so the NN is made of 3 layers multi-layer perceptrons

RMSE-f of hybrid and truncated MAOOAM models
RMSE-f(lead time τ) ψo,2(2 years) θo,2(2 years) ψa,1(1 day)
Truncated 0.23 0.21 0.36
Coupled DA-ML hybrid 0.10 0.06 0.28

The hybrid models have superior skill than the truncated model.
The improvement is larger for the ocean that is fully resolved =⇒ Enhanced representation of
the atmosphere-ocean coupling processes thanks to coupled DA.
The atmosphere is improved less: the hybrid is not very good in representing the fast processes.
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Data-driven DA Inferring parametrizations

Numerical experiments: atmosphere-ocean model MAOOAM

IThe truncated model visits areas of the phase space that are not admitted in the real dynamics.

IDiscrepancies are reduced by the hybrid models.
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(an example of) Ongoing directions Sea-ice melt ponds parametrizations with ML and DA

Parametrization of sea-ice melt ponds with DA and ML
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(an example of) Ongoing directions Sea-ice melt ponds parametrizations with ML and DA

Parametrization of sea-ice melt ponds with DA and ML

IVery good accuracy (R2 score ≈> 0.98) when the
NN is trained on the model output (i.e. with synthetic
data)

IFeature selection for model reduction performed
using Shannon mutual information.

IMoving to training on real data (in situ Sheeba
dataset)
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Conclusions

Conclusions

IWe showed three ways on how using ML in geophysical DA and forecasting: (1) to supplement a
physical model, (2) to infer parametrization of unresolved/poorly known processes, and, (3) to fully
emulate an hidden dynamics.

IWe studied the potential for ML to estimate LLEs: Greater accuracy is associated with local
homogeneity of the LLEs on the system attractor.

IWe developed a combined DA+ML approach whereby DA is instrumental to handle partial and noisy
data and then inform the ML algorithm.

IThis flow of information from DA to ML includes a state-dependent estimate of the uncertainty
about the state that is key in the ML optimization step.

IThe DA+ML approach is very flexible: any DA or ML algorithm can be plug-in.
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