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Confining potential

Heavy quark potential – free energy of a static quark-antiquark
configuration separated by a distance d.〈

W (d, t)
〉
= exp(−tV (d, t)) , lim

t→∞
V (d, t) = − π
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Field energy

Energy density can be found from

ϵ(x) =
1

2
(E⃗(x)2 + B⃗(x)2)

◦ The chromoelectric field between a static quark and an antiquark
forms tube-like structures connecting them. This creates a linear
confining potential.

◦ The field distributions can be extracted from the lattice simulations,
and used to visualize the flux tube, and study its structure.
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Field energy

Energy density can be found from

ϵ(x) =
1

2
(E⃗(x)2 + B⃗(x)2)

Bali, Schilling, Schlichter (1994)
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Two interpretations of a flux tube

▶ Abrikosov vortex in a dual superconductor:
narrow exponentially decaying profile, characterised by London
penetration length λ;

▶ fluctuating quantum Nambu-Goto string:
Gaussian profile, logarithmic widening with distance.
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Geometry

d

xt

xl

Ex(xt)

The system has cylindrical symmetry, so we can limit ourselves to studying
just the (xl, xt) plane.
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Measuring the flux tube

Disconnected correlator

〈
±F 2

µν

〉
=

β

a4

[〈
TrW TrUp

〉
⟨TrW ⟩

−
〈
TrUp

〉]

t

W
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xl

xt
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Measuring the flux tube

Disconnected correlator

〈
±F 2

µν

〉
=

β

a4

[〈
TrW TrUp

〉
⟨TrW ⟩

−
〈
TrUp

〉]
▶ Samples squares of the fields

▶ Includes all SU(3) components and fluctuations

▶ Hard to determine the part that corresponds to linear behavior
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Measuring the flux tube

Stress-energy tensor

Tµν(x) =
1

g20

(
F a
µα(x)F

a
αν(x)− gµν

1

4
F a
αβ(x)F

a
αβ(x)

)
, ϵ(x) = −T44(x)

▶ Directly sample energy density

▶ Includes all SU(3) components and fluctuations

▶ Special renormalization procedure Suzuki (2015)

▶ Hard to determine the part that corresponds to linear behavior
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Measuring the flux tube
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, ϵ(x) = −T44(x)

Yanagihara, Iritani, Kitazawa, Asakawa, Hatsuda (2019)
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Measuring the flux tube

Connected correlator

ρconnW,µν =
⟨Tr(WLUPL

∗)⟩
⟨Tr(W )⟩

− 1

N

⟨Tr(UP ) Tr(W )⟩
⟨Tr(W )⟩

≡ a2g Fµν

W

UP

L (Schwinger line)
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Measuring the flux tube

Connected correlator

ρconnW,µν =
⟨Tr(WLUPL

∗)⟩
⟨Tr(W )⟩

− 1

N

⟨Tr(UP ) Tr(W )⟩
⟨Tr(W )⟩

≡ a2g Fµν

▶ Samples field itself

▶ Gives an average projection onto the color vector defined by the
Wilson/Polyakov loop

▶ Ignores fluctuations

▶ Needs renormalization

▶ There is a way to extract the part generating linear behavior
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Measuring the flux tube

Connected correlator

ρconnW,µν =
⟨Tr(WLUPL
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Aims

Zero temperature SU(3)

▶ Extract string tension σ from the flux tube,

▶ Mean square width w, logarithmic widening,

▶ London penetration length λ,

▶ Flux tube profile - compare different parametrizations,

Finite temperature SU(3)

▶ Disappearance of the flux tube above Tc,

▶ Linear widening of the flux tube for T close to Tc,

QCD width dynamical fermions

▶ Screening and string breaking.
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Extensions

Flux tubes for more complex configurations

▶ Baryons,

▶ Tetraquarks, pentaquarks,

▶ “Non-tubes” (diquarks, adjoint quarks).
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Cardoso, Cardoso, Bicudo (2011)
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Subtraction of the “perturbative” field

Full field distribution measured using the connected correlator

To improve the signal-to-noise ratio a smearing procedure was applied:

◦ one step of 4-dimensional hypercubic smearing on the temporal links
(HYPt)

◦ NHYP3d steps of hypercubic smearing restricted to the three spatial
directions (HYP3d)

Results:

◦ Chromomagnetic field is compatible with zero

◦ Longitudinal chromoelectric field shows a tube-like structure

◦ Transverse chromoelectric field is smaller than longitudinal but
nonzero
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Simulation results: longitudinal field

β = 6.240, d = 8a = 0.511 fm
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Simulation results: transverse field

β = 6.240, d = 8a = 0.511 fm
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Subtraction procedure

We expect that the full field is a sum of two parts: perturbative part which
behaves like an electrostatic field, and nonperturbative part that forms the
flux tube

E⃗ = E⃗C + E⃗NP

To separate these fields following assumptions are made:

◦ E⃗C is a potential field (∇⃗ × E⃗C = 0),

◦ E⃗NP is purely longitudinal (ENP
y = 0),

◦ both E⃗C and E⃗NP are zero at large transverse separations from the
quark-antiquark axis.

These assumptions, together with the calculated values of E⃗, uniquely
determine the field parts.
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Subtraction procedure: perturbative part

β = 6.240, d = 8a = 0.511 fm
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Subtraction procedure: nonperturbative part

β = 6.240, d = 8a = 0.511 fm
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Field derivatives

Considering that, in our case, the fields are time-independent, and B⃗ = 0,
nonzero derivatives of the fields

ρel = ∇⃗ · E⃗ ,

J⃗mag = ∇⃗ × E⃗ ,

allow one to write the force density f⃗ as

f⃗ = ρel · E⃗ + J⃗mag × E⃗ .
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Field derivatives

ρel = ∇⃗ · E⃗ = ∇⃗ · E⃗C + ∇⃗ · E⃗NP = ρCel + ρNP
el

Since the nonperturbative field is purely longitudinal

∇⃗ · E⃗NP =
∂

∂x
ENP

x ,

We expect the flux tube to be constant in the longitudinal direction, so
ρNP
el should be close to zero.

J⃗mag = ∇⃗ × E⃗ = ∇⃗ × E⃗C + ∇⃗ × E⃗NP = J⃗ NP
mag

Due to the rotational symmetry, in our case, the only nonzero component
of J⃗mag is (Jmag)z winding around the quark-antiquark axis.
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Smearing as an effective renormalization

The connected field operator that we use undergoes a nontrivial
renormalization , depending on both xl and xt, which has to be taken into
account if we want to reach the continuum limit. Battelli, Bonati (2019)

Our smearing procedure effectively works as a renormalization, restoring
the continuum scaling. To check it we perform simulations on three
lattices corresponding to the same physical quark-antiquark distance
d = 0.512 fm, but having different lattice steps a.
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Optimal number of smearing steps

The optimal number of smearing steps depends on

◦ Observable that we are interested in

◦ Coordinates xl and xt (large coordinates require more smearing steps)

In general, scaling seems to be better at the maximum of the observable.
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Electric charge distribution
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Magnetic current distribution
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Confining force

Let us cut our space in two by a plane y = 0, that contains the
quark-antiquark line.

F⃗ =

∫
y>0

d3r⃗ J⃗mag × E⃗NP =

= −2êy

∫ d

0
dxl

∫ ∞

0
dxt xtf

NP(xl, xt) ≡ −êyF

Force F⃗ acts perpendicular to the cut plane “squeezing” the flux tube. We
estimate this force and compare it with different estimations of the string
tension.
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String tension

String tension σ can be estimated from the integration of the energy of
the nonperturbative field E⃗NP over the transverse cross-section going
through the midpoint of the flux tube

σint =

∫
d2xt

(ENP
x (d/2, xt))

2

2
=

= π

∫
dxt xt (E

NP
x (d/2, xt))

2 .

An alternative approach would be to estimate the string tension from the
nonperturbative field at the position of the quark

σ0 = gEx(0) .

Finally, one can compare these results with
√
σNS = 0.464 GeV used in

setting the physical scale for our simulations Necco, Sommer (2002)
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Confining force

β
√
F [GeV]

√
σint [GeV]

√
σ0 [GeV]

√
σNS [GeV]

6.240 0.4859(4)+645 0.4742(12) 0.56353(81)

6.544 0.5165(8)+611
−214 0.4692(16) 0.5962(38) 0.464

6.769 0.5297(22)+547
−322 0.4672(49) 0.617(16)
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Conclusions

◦ Field and energy density distributions in the presence of static quark
configurations can be measured on the lattice using connected and
disconnected correlators, respectively.

◦ To distinguish confining and nonconfining scenarios on the distances
available for simulation, we need a way to separate the field part that
generates a linear potential. Such separation is proposed for the field
distributions, based on the “zero curl subtraction”.

◦ The string tension σ extracted from the projected field distribution is close
to the one obtained from the quark-antiquark potential, suggesting that the
average field value along the color direction defined by the source is creating
the main contribution to the energy.
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