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Normalizing flows and Jarzynski’s equality?

Normalizing Flows

sample from a complex target distribution using
neural network architectures

Jarzynski’s equality in MCMC

computing ratios of Zs using stochastic
out-of-equilibrium evolutions

⇓

Stochastic Normalizing Flows

joint architecture of deterministic transformations (NFs) and a stochastic non-equilibrium
trajectory towards the target distribution
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Normalizing flows in lattice field theory

Configurations sampled sequentially in a Markov Chain are autocorrelated

· · · → φ(t) → φ(t+1) → · · · → φ(t+n) ∼ p

When a critical point (e.g. continuum limit) is approached the autocorrelation diverges

→ critical slowing down

What if every new configuration is sampled independently from the previous one?

Normalizing Flows are an efficient and expressive deep generative model that can provide the
mapping between the target Boltzmann distribution p(φ) and some tractable prior q0(z)

→ successfully applied in LFTs in 2d: φ4 scalar field theory [Albergo et al.; 2019], [Kanwar et al.;

2020], [Nicoli et al.; 2020], [Del Debbio et al.; 2021], SU(N) [Boyda et al.; 2020], fermionic theories
[Albergo et al.; 2021], U(1) and SU(N) with fermions [Abbott et al.; 2022], Schwinger model
[Finkenrath et al.; 2022], [Albergo et al.; 2022] . . .

→ strongly related to the idea of trivializing maps [Lüscher; 2009], [Bacchio et al.; 2022]
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Normalizing flows: structure

Normalizing flows are a deterministic mapping

gθ(y0) = (gN ◦ · · · ◦ g1)(y0) y0 ∼ q0

composed of N invertible transformations → the coupling layers gi

At each layer the field variables y are transformed

yn+1 = gn(yn)

e.g. affine transformations whose parameters are neural networks (→ RealNVP architecture)

Generated distribution:
qθ(yN) = q0(g−1

θ (yN))
∏
n

|det Jn(yn)|−1

depends on the prior q0 (e.g. a normal distribution) and on the Jacobian of each coupling layer
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Normalizing flows: training and issues

training → iterative procedure that brings the generated distribution qθ as close as possible to
the target p

loss → quantity the training algorithm minimizes in order to reach the target

Typical choice is the Kullback-Leibler divergence: measure of the “similarity” between two
distributions

D̃KL(qθ‖p) =

∫
dφ qθ(φ) [ln qθ(φ)− ln p(φ)]

Typical issues:

I multi-modal distributions
in the presence of multiple vacua the training procedure “picks” only one

“mode-collapse”: only one mode of the distribution is sampled by the flow [Hackett et al.;

2021], [Abbott et al.; 2022]

I scalability
not clear how the training times scale when approaching the continuum limit [Del Debbio et

al.; 2021]
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Normalizing flows and the free energy

Compute v.e.v. with a reweighting step (not the only possibility: see independent MH)

〈O〉 =
1

Z

∫
dφO(φ)qθ(φ)

p(φ)

qθ(φ)
=

Z0

Z

∫
dφ qθ(φ)︸ ︷︷ ︸

sample

O(φ)w̃(φ)︸ ︷︷ ︸
measure

=
〈O(φ)w̃(φ)〉φ∼qθ

〈w̃(φ)〉φ∼qθ

and the with weight

w̃(φ) = exp
(
−
{
S[φ]− S0[g−1

θ (φ)]− log J
})
∼

p

qθ

Get Z directly by sampling from qθ [Nicoli et al.; 2020]

Z =

∫
dφ exp(−S[φ]) = Z0

∫
dφ qθ(φ)w̃(φ) = Z0〈w̃(φ)〉φ∼qθ

And the loss:

D̃KL(qθ‖p) = −〈ln w̃(φ)〉φ∼qθ + ln
Z

Z0
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Jarzynski’s equality in MCMC simulations

Free-energy differences (at equilibrium) directly calculated with an average over non-equilibrium
processes [Jarzynski; 1997]:

Z

Z0
= 〈exp (−W )〉f

For an MCMC

I the stochastic evolution starts from a configuration sampled from q0 and reaches the target p

q0 = exp(−S0)/Z0 → · · · → p = exp(−S)/Z

I N intermediate MC steps each with a different transition probability Pηn (yn → yn+1) (i.e.:
the action Sηn changes)

I ηn is a protocol that interpolates the parameters of the theory between q0 and p

q0 ' e−Sη0 → e−Sη1 → · · · → p ' e−SηN

Along the process we compute the work

W =

N−1∑
n=0

{
Sηn+1 [φn]− Sηn [φn]

}

Works well also in LFT: the SU(3) equation of state in (3 + 1)D [Caselle et al.; 2018]
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A common framework: Stochastic Normalizing Flows

We realized that Jarzynski’s relation is the same formula used to extract Z in NFs:

Z

Z0
= 〈w̃(φ)〉φ∼qθ = 〈exp(−W )〉f

as for deterministic mappings 〈. . . 〉φ∼qθ = 〈. . . 〉f.

The “work” is simply

W (y0, . . . , yN) = S(yN)− S0(y0)− Q(y1, . . . , yN) = − ln w̃(φ)

where the “heat” Q is

normalizing flows

y0 → y1 = g1(y0)→ · · · → yN

Q =

N−1∑
n=0

ln |det Jn(yn)|

stochastic non-equilibrium evolutions

y0

Pη1→ y1

Pη2→ · · ·
PηN→ yN

Q =

N−1∑
n=0

Sηn+1 (yn+1)− Sηn+1 (yn)

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

y0 → g1(y0)
Pη1→ y1 → g2(y1)

Pη2→ · · ·
PηN→ yN

Q =

N−1∑
n=0

Sηn+1 (yn+1)− Sηn+1 (gn(yn)) + ln |det Jn(yn)|
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A common framework: Stochastic Normalizing Flows

The proper KL divergence is

D̃KL(q0Pf‖pPr) =

∫
dy0 dy1 . . . dyN q0(y0)Pf[y0, y1, . . . , yN ] ln

q0(y0)Pf[y0, y1, . . . , yN ]

p(yN)Pr[yN , yN−1, . . . , y0]

→ measure of how reversible the process is!

In general we have simply

D̃KL(q0Pf‖pPr) = 〈W 〉f + ln
Z

Z0

If we go back to NFs: the same definition simplifies (using the change of variables theorem) to

D̃KL(q0Pf‖pPr)→ D̃KL(qθ‖p) = −〈ln w̃(φ)〉φ∼qθ + ln
Z

Z0

due to the deterministic nature of the mapping.
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Testing SNFs in the 2D φ4 model

Theory

S(φ) =
∑
x∈Λ

−2κ
∑
µ=0,1

φ(x)φ(x + µ̂) + (1− 2λ)φ(x)2 + λφ(x)4

target parameters κ = 0.2 and λ = 0.022 (as in [Nicoli et al.; 2020]): unbroken symmetry phase

Goals

I can we train SNFs efficiently?

I can we improve both on NFs and on stochastic evolutions?

Metric

we use the Effective Sample Size to evaluate SNFs

ESS =
〈w̃〉2f
〈w̃2〉f

Takes values between 0 and 1 (perfect training)
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Comparing stochastic evolutions with (S)NFs on a Ns × Nt = 16× 8 lattice,

0 100 200 300 400 500
nsb

0.0

0.2

0.4

0.6

0.8

1.0
E

S
S

nab = 0

nab = 6, CNN

nab = 12, CNN

nab = 24, CNN

nab = 48, CNN

on the x-axis: nsb = # of stochastic updates

different colors: nab = # of coupling layers
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Training length: 104 epochs for all volumes. Slowly-improving regime reached fast

0 100 200 300 400 500
nsb

0.0

0.2

0.4

0.6

0.8

1.0
E

S
S

Ns = 16, nab = 0
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Ns = 48, nab = 0

Ns = 64, nab = 0

Ns = 16, nab = 24, CNN

Ns = 32, nab = 24, CNN

Ns = 48, nab = 24, CNN

Ns = 64, nab = 24, CNN

Interesting behaviour for all volumes: a peak for nsb = nab?
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SNFs with nsb = nab as a possible recipe for efficient scaling
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Conclusions

The common framework between Jarzynski’s equality and NFs is now explicit

General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs vs. stochastic evolutions

I Jarzynski’s equality provides a way to compute Z and 〈O〉 (which works well also in LGTs,
see SU(3) e.o.s. [Caselle et al.; 2018])

I SNFs might be an even better method!

I trade-off: training for less MCMC updates

I very interesting for thermodynamic applications (or similar)

SNFs vs. normalizing flows

I improve scalability and interpretability?

I SNFs with CNNs and nsb = nab have a promising volume scaling at fixed training length

I training could be qualitatively “guided” towards the target by the protocol, but ultimately
might also be limited by it
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Thank you for your attention!
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Normalizing flows: affine layers

Transformations gn must be invertible + the Jacobian has to be efficiently computable

A class of coupling layers called affine layers meets this criteria

I The variables y are divided into two partitions A and B

I For each layer, one is kept “frozen” while the other is transformed following

gn :

{
yn+1

A = yn
A

yn+1
B = e−s(ynA)yn

B + t(yn
A )

I s and t are the neural networks where the trainable parameters θ are

I RealNVP architecture [Dinh et al.; 2016]

Natural choice for lattice variables: checkerboard (i.e. even-odd) partitioning

Affine block = even c. layer + odd c. layer
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Backpropagation

Also needed: an efficient way of computing the gradient of the loss with respect to the flow
parameters θ

∇θD̃KL(qθ‖p)

→ backpropagation algorithm: the overall gradient is calculated combining the intermediate
gradients at each layer n, which can be stored in memory during a forward pass through the flow

∇θL =
∂L
∂yN

∂yN

∂yN−1
. . .
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Out-of-equilibrium stochastic evolutions

Closer look at the average on the processes in the equality:

Z

Z0
= 〈exp (−W )〉f =

∫
dy0 dy1 . . . dyN q0(y0)Pf[y0, y1, . . . , yN ] exp(−W )

with

Pf[y0, y1, . . . , yN ] =

N−1∏
n=0

Pηn (yn → yn+1)

I the actual probability distribution at each step is NOT the equilibrium distribution
∼ exp(−Sηn ): it’s a non-equilibrium process!

I the 〈. . . 〉f average is taken over as many evolutions as possible (all independent from each
other!)
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Some comparisons

normalizing flows stochastic evolutions SNFs

preparation training setting the protocol ηn both

forward prob. Pf Pf =
∏

n Pn(yn → yn+1)

transition prob. Pn δ(yn+1 − gn(yn)) Pηn (yn → yn+1) uses both

KL divergence D̃KL(qθ‖p) D̃KL(q0Pf‖pPr)

“work” W = S − S0 − Q = − ln w̃

“heat” Q
N−1∑
n=0

ln |det Jn(yn)|
N−1∑
n=0

Sηn+1 (yn+1)− Sηn+1 (yn) both

e.v. 〈O〉 〈O(yN )w̃(yN )〉yN∼qθ
〈w̃(yN )〉yN∼qθ

〈O(yN ) exp(−W (y0→yN ))〉f
〈exp(−W (y0→yN ))〉f
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Technical details

Stochastic evolution

I protocol interpolates linearly between a normal distribution (κ = λ = 0) and the target
parameters

I heatbath algorithm for the stochastic updates

Coupling layers and NN

I neural networks in affine transformations are CNNs with 1 hidden layer, 3× 3 kernel and 1
feature map

I also fully-connected networks were considered: 1 hidden layer and # neurons = # lattice
sites

I affine layers uniformly distributed between MC updates
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Related works

I Annealed Importance Sampling [Neal; 1998]: procedure equivalent to JE. Very popular in ML
community. Used in SNF paper [Wu et al.; 2020]

I AIS → generalized in Sequential Monte Carlo (SMC) samplers. Also well known in ML.

I SNF idea reworked in CRAFT approach [Matthews et al.; 2022]

I [Vaikuntanathan and Jarzynski; 2011]: related approach with deterministic mappings on top of
non-equilibrium transformations. No neural networks.
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Taking cues from the SU(3) e.o.s.

Is there anything we can learn from out-of-equilibrium stochastic processes that we can apply to
stochastic normalizing flows?

Relevant application: large-scale computation of the SU(3) equation of state [Caselle et al.; 2018]

goal: extract the pressure with Jarzynski’s equality

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log〈e−WSU(Nc ) 〉f

evolution in β (inverse coupling) → changes lattice spacing a → changes temperature
T = 1/(aNt) in [f = T0 → T ] process

Important difference: the prior is not a random distribution, but a thermalized Markov chain at a
certain inverse coupling β0 (or temperature T0)

Observation: for systems with many d.o.f. (large volumes), Jarzynski’s equality “converges” more
easily to the right result when stochastic evolutions are very close to equilibrium (i.e. N is large,
evolution is slow). “Easy” way to obtain reversibility.
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SU(3) e.o.s. with Jarzynski’s equality

SU(3) pressure in (3 + 1)d across the deconfinement transition with Jarzynski’s equality
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Does it work for SNFs?
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More transparent comparison: error on the free-energy density

0 200 400
nsb
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∆
f

Ns ×Nt = 16× 8

nab = 0

nab = 6, CNN

nab = 12, CNN

nab = 24, CNN

nab = 48, CNN

0 200 400
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10−5

10−4

∆
f

Ns ×Nt = 64× 8

nab = 0

nab = 6, CNN

nab = 12, CNN

nab = 24, CNN

nab = 48, CNN

Overall computational cost difficult to assess
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CNN vs fully-connected networks with Nt × Ns neurons, 16× 8 lattice
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CNN vs fully-connected networks with Nt × Ns neurons, larger lattices
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SNFs not necessarily convenient for any NFs: poor performance with fully-connected NNs
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Error ratio
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The Second Law of Thermodynamics

We start from Clausius inequality ∫ B

A

dQ

T
≤ ∆S

that for isothermal transformations becomes
Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid for
a macroscopic system) becomes

〈W 〉f ≥ ∆F
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JE and the Second Law

Starting from Jarzynski’s equality〈
exp

(
−
W

T

)〉
f

= exp

(
−

∆F

T

)

and using Jensen’s inequality
〈exp x〉 ≥ exp〈x〉

(valid for averages on real x) we get

exp

(
−

∆F

T

)
=

〈
exp

(
−
W

T

)〉
f

≥ exp

(
−
〈W 〉f
T

)

from which we have
〈W 〉f ≥ ∆F

In this sense Jarzynski’s relation can be seen as a generalization of the Second Law.
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Crooks fluctuation theorem

Crooks theorem [Crooks; 1998]: another relation deeply connected with Jarzynski’s equality

PF (W )

PR(−W )
= e(W−∆F )

The PF ,R indicate the probability distribution of the work performed in the forward and reverse
realizations of the transformation.

JE is easily recovered by moving the exp(−W ) and PR factors and integrating in W on both
sides.

Wd = W −∆F is the dissipated work.
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