Stochastic normalizing flows as non-equilibrium transformations

Alessandro Nada

Università degli Studi di Torino Simons Collaboration on Confinement and QCD Strings

20th December 2022

SM&FT 2022 - The XIX Workshop on Statistical Mechanics and nonpertubative Field Theory

Based on:

M. Caselle, E. Cellini, A. N., M. Panero, JHEP 07 (2022) 015, [arXiv:2201.08862]

Normalizing Flows

sample from a complex target distribution using neural network architectures

Jarzynski's equality in MCMC

computing ratios of Zs using stochastic out-of-equilibrium evolutions

∜

Stochastic Normalizing Flows

joint architecture of deterministic transformations (NFs) and a stochastic non-equilibrium trajectory towards the target distribution

Configurations sampled sequentially in a Markov Chain are autocorrelated

 $\cdots \rightarrow \phi^{(t)} \rightarrow \phi^{(t+1)} \rightarrow \cdots \rightarrow \phi^{(t+n)} \sim p$

When a critical point (e.g. continuum limit) is approached the autocorrelation diverges \rightarrow critical slowing down

What if every new configuration is sampled independently from the previous one?

Configurations sampled sequentially in a Markov Chain are autocorrelated

 $\cdots \rightarrow \phi^{(t)} \rightarrow \phi^{(t+1)} \rightarrow \cdots \rightarrow \phi^{(t+n)} \sim p$

When a critical point (e.g. continuum limit) is approached the autocorrelation diverges \rightarrow critical slowing down

What if every new configuration is sampled independently from the previous one?

Normalizing Flows are an efficient and expressive deep generative model that can provide the mapping between the target Boltzmann distribution $p(\phi)$ and some tractable prior $q_0(z)$

Configurations sampled sequentially in a Markov Chain are autocorrelated

 $\cdots \rightarrow \phi^{(t)} \rightarrow \phi^{(t+1)} \rightarrow \cdots \rightarrow \phi^{(t+n)} \sim p$

When a critical point (e.g. continuum limit) is approached the autocorrelation diverges \rightarrow critical slowing down

What if every new configuration is sampled independently from the previous one?

Normalizing Flows are an efficient and expressive deep generative model that can provide the mapping between the target Boltzmann distribution $p(\phi)$ and some tractable prior $q_0(z)$

→ successfully applied in LFTs in 2d: ϕ^4 scalar field theory [Albergo et al.; 2019], [Kanwar et al.; 2020], [Nicoli et al.; 2020], [Del Debbio et al.; 2021], SU(N) [Boyda et al.; 2020], fermionic theories [Albergo et al.; 2021], U(1) and SU(N) with fermions [Abbott et al.; 2022], Schwinger model [Finkenrath et al.; 2022], [Albergo et al.; 2022] ...

 \rightarrow strongly related to the idea of trivializing maps [Lüscher; 2009], [Bacchio et al.; 2022]

Normalizing flows are a deterministic mapping

$$g_{\theta}(y_0) = (g_N \circ \cdots \circ g_1)(y_0)$$
 $y_0 \sim q_0$

composed of N invertible transformations \rightarrow the **coupling layers** g_i

Normalizing flows are a deterministic mapping

$$g_{\theta}(y_0) = (g_N \circ \cdots \circ g_1)(y_0)$$
 $y_0 \sim q_0$

composed of N invertible transformations \rightarrow the **coupling layers** g_i

At each layer the field variables y are transformed

$$y_{n+1} = g_n(y_n)$$

e.g. affine transformations whose parameters are neural networks (\rightarrow RealNVP architecture)

Generated distribution:

$$q_{\theta}(y_N) = q_0(g_{\theta}^{-1}(y_N)) \prod_n |\det J_n(y_n)|^{-1}$$

depends on the prior q_0 (e.g. a normal distribution) and on the Jacobian of each coupling layer

4

 ${\sf training} \to {\sf iterative}$ procedure that brings the generated distribution q_θ as close as possible to the target p

 $\textbf{loss} \rightarrow \textbf{quantity}$ the training algorithm minimizes in order to reach the target

Typical choice is the **Kullback-Leibler** divergence: measure of the "similarity" between two distributions

$$ilde{D}_{\mathsf{KL}}(q_{ heta} \| p) = \int \mathrm{d}\phi \, q_{ heta}(\phi) \left[\ln q_{ heta}(\phi) - \ln p(\phi)
ight]$$

 ${\sf training} \to {\sf iterative}$ procedure that brings the generated distribution q_θ as close as possible to the target p

 $\textbf{loss} \rightarrow \textbf{quantity}$ the training algorithm minimizes in order to reach the target

Typical choice is the **Kullback-Leibler** divergence: measure of the "similarity" between two distributions

$$ilde{\mathcal{D}}_{\mathsf{KL}}(q_{ heta} \| p) = \int \mathrm{d}\phi \, q_{ heta}(\phi) \left[\ln q_{ heta}(\phi) - \ln p(\phi)
ight]$$

Typical issues:

multi-modal distributions

in the presence of multiple vacua the training procedure "picks" only one

"mode-collapse": only one mode of the distribution is sampled by the flow [Hackett et al.; 2021], [Abbott et al.; 2022]

scalability

not clear how the training times scale when approaching the continuum limit [Del Debbio et al.; 2021]

Compute v.e.v. with a reweighting step

(not the only possibility: see independent MH)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathrm{d}\phi \, \mathcal{O}(\phi) q_{\theta}(\phi) \frac{p(\phi)}{q_{\theta}(\phi)} = \frac{Z_0}{Z} \int \mathrm{d}\phi \underbrace{q_{\theta}(\phi)}_{\text{sample}} \underbrace{\mathcal{O}(\phi) \tilde{w}(\phi)}_{\text{measure}} = \frac{\langle \mathcal{O}(\phi) \tilde{w}(\phi) \rangle_{\phi \sim q_{\theta}}}{\langle \tilde{w}(\phi) \rangle_{\phi \sim q_{\theta}}}$$

and the with weight

$$ilde{w}(\phi) = \exp\left(-\left\{S[\phi] - S_0[g_{ heta}^{-1}(\phi)] - \log J
ight\}
ight) \sim rac{p}{q_{ heta}}$$

Compute v.e.v. with a reweighting step

(not the only possibility: see independent MH)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathrm{d}\phi \, \mathcal{O}(\phi) q_{\theta}(\phi) \frac{p(\phi)}{q_{\theta}(\phi)} = \frac{Z_0}{Z} \int \mathrm{d}\phi \underbrace{q_{\theta}(\phi)}_{\text{sample}} \underbrace{\mathcal{O}(\phi) \tilde{w}(\phi)}_{\text{measure}} = \frac{\langle \mathcal{O}(\phi) \tilde{w}(\phi) \rangle_{\phi \sim q_{\theta}}}{\langle \tilde{w}(\phi) \rangle_{\phi \sim q_{\theta}}}$$

and the with weight

$$ilde{w}(\phi) = \exp\left(-\left\{S[\phi] - S_0[g_{ heta}^{-1}(\phi)] - \log J\right\}\right) \sim rac{p}{q_{ heta}}$$

Get Z directly by sampling from q_{θ}

$$Z = \int \mathrm{d}\phi \, \exp(-S[\phi]) = Z_0 \int \mathrm{d}\phi \, q_\theta(\phi) \tilde{w}(\phi) = Z_0 \langle \tilde{w}(\phi) \rangle_{\phi \sim q_\theta}$$

[Nicoli et al.; 2020]

Compute v.e.v. with a reweighting step

(not the only possibility: see independent MH)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathrm{d}\phi \, \mathcal{O}(\phi) q_{\theta}(\phi) \frac{p(\phi)}{q_{\theta}(\phi)} = \frac{Z_0}{Z} \int \mathrm{d}\phi \underbrace{q_{\theta}(\phi)}_{\text{sample}} \underbrace{\mathcal{O}(\phi) \tilde{w}(\phi)}_{\text{measure}} = \frac{\langle \mathcal{O}(\phi) \tilde{w}(\phi) \rangle_{\phi \sim q_{\theta}}}{\langle \tilde{w}(\phi) \rangle_{\phi \sim q_{\theta}}}$$

and the with weight

$$ilde{w}(\phi) = \exp\left(-\left\{S[\phi] - S_0[g_{ heta}^{-1}(\phi)] - \log J
ight\}\right) \sim rac{p}{q_{ heta}}$$

Get Z directly by sampling from q_{θ}

$$Z = \int \mathrm{d}\phi \, \exp(-S[\phi]) = Z_0 \int \mathrm{d}\phi \, q_ heta(\phi) ilde w(\phi) = Z_0 \langle ilde w(\phi)
angle_{\phi \sim q_ heta}$$

And the loss:

$$ilde{\mathcal{D}}_{ extsf{KL}}(q_{ heta}\|p) = - \langle \ln ilde{w}(\phi)
angle_{\phi \sim q_{ heta}} + \ln rac{Z}{Z_0}$$

[Nicoli et al.; 2020]

Jarzynski's equality in MCMC simulations

Free-energy differences (at equilibrium) directly calculated with an average over **non-equilibrium processes** [Jarzynski; 1997]:

$$\frac{Z}{Z_0} = \langle \exp\left(-W\right) \rangle_f$$

Jarzynski's equality in MCMC simulations

Free-energy differences (at equilibrium) <u>directly</u> calculated with an average over **non-equilibrium processes** [Jarzynski; 1997]:

$$\frac{Z}{Z_0} = \langle \exp\left(-W\right) \rangle_f$$

For an MCMC

 \blacktriangleright the stochastic evolution starts from a configuration sampled from q_0 and reaches the target p

$$q_0 = \exp(-S_0)/Z_0 \to \cdots \to p = \exp(-S)/Z$$

- ▶ *N* intermediate MC steps each with a different transition probability $P_{\eta_n}(y_n \to y_{n+1})$ (i.e.: the action S_{η_n} changes)
- η_n is a **protocol** that interpolates the parameters of the theory between q_0 and p

$$q_0 \simeq e^{-S_{\eta_0}}
ightarrow e^{-S_{\eta_1}}
ightarrow \cdots
ightarrow p \simeq e^{-S_{\eta_N}}$$

Jarzynski's equality in MCMC simulations

Free-energy differences (at equilibrium) <u>directly</u> calculated with an average over **non-equilibrium processes** [Jarzynski; 1997]:

$$\frac{Z}{Z_0} = \langle \exp\left(-W\right) \rangle_f$$

For an MCMC

 \blacktriangleright the stochastic evolution starts from a configuration sampled from q_0 and reaches the target p

$$q_0 = \exp(-S_0)/Z_0 \to \cdots \to p = \exp(-S)/Z$$

- ▶ *N* intermediate MC steps each with a different transition probability $P_{\eta_n}(y_n \to y_{n+1})$ (i.e.: the action S_{η_n} changes)
- η_n is a **protocol** that interpolates the parameters of the theory between q_0 and p

$$q_0 \simeq e^{-S_{\eta_0}}
ightarrow e^{-S_{\eta_1}}
ightarrow \cdots
ightarrow p \simeq e^{-S_{\eta_N}}$$

Along the process we compute the work

$$W = \sum_{n=0}^{N-1} \left\{ S_{\eta_{n+1}} \left[\phi_n \right] - S_{\eta_n} \left[\phi_n \right] \right\}$$

Works well also in LFT: the SU(3) equation of state in (3 + 1)D [Caselle et al.; 2018]

A common framework: Stochastic Normalizing Flows

We realized that Jarzynski's relation is the same formula used to extract Z in NFs:

$$rac{Z}{Z_0} = \langle ilde{w}(\phi)
angle_{\phi \sim q_{ heta}} = \langle \exp(-W)
angle_{ ext{f}}$$

as for deterministic mappings $\langle \dots \rangle_{\phi \sim q_{\theta}} = \langle \dots \rangle_{f}$.

The "work" is simply

$$W(y_0,\ldots,y_N)=S(y_N)-S_0(y_0)-Q(y_1,\ldots,y_N)=-\ln \tilde{w}(\phi)$$

where the "heat" Q is

normalizing flows

stochastic non-equilibrium evolutions

$$y_0
ightarrow y_1 = g_1(y_0)
ightarrow \cdots
ightarrow y_N$$
 $Q = \sum_{n=0}^{N-1} \ln |\det J_n(y_n)|$

$$y_0 \stackrel{P_{\eta_1}}{\to} y_1 \stackrel{P_{\eta_2}}{\to} \cdots \stackrel{P_{\eta_N}}{\to} y_N$$
$$Q = \sum_{n=0}^{N-1} S_{\eta_{n+1}}(y_{n+1}) - S_{\eta_{n+1}}(y_n)$$

A common framework: Stochastic Normalizing Flows

We realized that Jarzynski's relation is the same formula used to extract Z in NFs:

$$rac{Z}{Z_0} = \langle ilde{w}(\phi)
angle_{\phi \sim q_ heta} = \langle \exp(-W)
angle_{ ext{f}}$$

as for deterministic mappings $\langle \dots \rangle_{\phi \sim q_{\theta}} = \langle \dots \rangle_{f}$.

The "work" is simply

$$W(y_0,\ldots,y_N)=S(y_N)-S_0(y_0)-Q(y_1,\ldots,y_N)=-\ln \tilde{w}(\phi)$$

where the "heat" Q is

normalizing flows

stochastic non-equilibrium evolutions

$$y_{0} \rightarrow y_{1} = g_{1}(y_{0}) \rightarrow \cdots \rightarrow y_{N}$$

$$y_{0} \stackrel{P_{\eta_{1}}}{\rightarrow} y_{1} \stackrel{P_{\eta_{2}}}{\rightarrow} \cdots \stackrel{P_{\eta_{N}}}{\rightarrow} y_{N}$$

$$Q = \sum_{n=0}^{N-1} \ln |\det J_{n}(y_{n})|$$

$$Q = \sum_{n=0}^{N-1} S_{\eta_{n+1}}(y_{n+1}) - S_{\eta_{n+1}}(y_{n})$$

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

$$y_0 \to g_1(y_0) \stackrel{P_{\eta_1}}{\to} y_1 \to g_2(y_1) \stackrel{P_{\eta_2}}{\to} \cdots \stackrel{P_{\eta_N}}{\to} y_N$$
$$Q = \sum_{n=0}^{N-1} S_{\eta_{n+1}}(y_{n+1}) - S_{\eta_{n+1}}(g_n(y_n)) + \ln |\det J_n(y_n)|$$

Alessandro Nada (UniTo)

The proper KL divergence is

$$\tilde{D}_{\mathsf{KL}}(q_0 P_f \| p P_r) = \int \mathrm{d}y_0 \, \mathrm{d}y_1 \dots \, \mathrm{d}y_N \, q_0(y_0) P_f[y_0, y_1, \dots, y_N] \ln \frac{q_0(y_0) P_f[y_0, y_1, \dots, y_N]}{p(y_N) P_r[y_N, y_{N-1}, \dots, y_0]}$$

 \rightarrow measure of how reversible the process is!

The proper KL divergence is

$$\tilde{D}_{\mathsf{KL}}(q_0 P_f \| p P_r) = \int \mathrm{d}y_0 \, \mathrm{d}y_1 \dots \mathrm{d}y_N \, q_0(y_0) P_f[y_0, y_1, \dots, y_N] \ln \frac{q_0(y_0) P_f[y_0, y_1, \dots, y_N]}{p(y_N) P_r[y_N, y_{N-1}, \dots, y_0]}$$

 \rightarrow measure of how reversible the process is!

In general we have simply

$$ilde{D}_{ ext{KL}}(q_0 P_{ ext{f}} \| p P_{ ext{r}}) = \langle W
angle_{ ext{f}} + \ln rac{Z}{Z_0}$$

If we go back to NFs: the same definition simplifies (using the change of variables theorem) to

$$ilde{D}_{\mathsf{KL}}(q_0 P_{\mathsf{f}} \| p P_{\mathsf{r}}) o ilde{D}_{\mathsf{KL}}(q_{ heta} \| p) = - \langle \ln ilde{w}(\phi)
angle_{\phi \sim q_{ heta}} + \ln rac{Z}{Z_0}$$

due to the deterministic nature of the mapping.

Theory

$$\mathcal{S}(\phi) = \sum_{x \in \Lambda} -2\kappa \sum_{\mu=0,1} \phi(x)\phi(x+\hat{\mu}) + (1-2\lambda)\phi(x)^2 + \lambda\phi(x)^4$$

target parameters $\kappa = 0.2$ and $\lambda = 0.022$ (as in [Nicoli et al.; 2020]): unbroken symmetry phase

Theory

$$\mathcal{S}(\phi) = \sum_{x \in \Lambda} -2\kappa \sum_{\mu=0,1} \phi(x)\phi(x+\hat{\mu}) + (1-2\lambda)\phi(x)^2 + \lambda\phi(x)^4$$

target parameters $\kappa = 0.2$ and $\lambda = 0.022$ (as in [Nicoli et al.; 2020]): unbroken symmetry phase

Goals

- can we train SNFs efficiently?
- can we improve both on NFs and on stochastic evolutions?

Metric

we use the Effective Sample Size to evaluate SNFs

$$\mathsf{ESS} = \frac{\langle \tilde{w} \rangle_{\mathsf{f}}^2}{\langle \tilde{w}^2 \rangle_{\mathsf{f}}}$$

Takes values between 0 and 1 (perfect training)

Comparing stochastic evolutions with (S)NFs on a $N_s \times N_t = 16 \times 8$ lattice,

on the x-axis: $n_{sb} = \#$ of stochastic updates different colors: $n_{ab} = \#$ of coupling layers

Training length: 10⁴ epochs for all volumes. Slowly-improving regime reached fast

Interesting behaviour for all volumes: a peak for $n_{sb} = n_{ab}$?

The common framework between Jarzynski's equality and NFs is now explicit General idea: use knowledge from non-equilibrium SM to create efficient SNFs The common framework between Jarzynski's equality and NFs is now explicit General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs vs. stochastic evolutions

- ▶ Jarzynski's equality provides a way to compute Z and ⟨O⟩ (which works well also in LGTs, see SU(3) e.o.s. [Caselle et al.; 2018])
- SNFs might be an even better method!
- trade-off: training for less MCMC updates
- very interesting for thermodynamic applications (or similar)

The common framework between Jarzynski's equality and NFs is now explicit General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs vs. stochastic evolutions

- ▶ Jarzynski's equality provides a way to compute Z and ⟨O⟩ (which works well also in LGTs, see SU(3) e.o.s. [Caselle et al.; 2018])
- SNFs might be an even better method!
- trade-off: training for less MCMC updates
- very interesting for thermodynamic applications (or similar)

SNFs vs. normalizing flows

- improve scalability and interpretability?
- ▶ SNFs with CNNs and $n_{sb} = n_{ab}$ have a promising volume scaling at fixed training length
- training could be qualitatively "guided" towards the target by the protocol, but ultimately might also be <u>limited</u> by it

Thank you for your attention!

Transformations g_n must be invertible + the Jacobian has to be efficiently computable

A class of coupling layers called affine layers meets this criteria

- The variables y are divided into two partitions A and B
- For each layer, one is kept "frozen" while the other is transformed following

$$g_{n}: \begin{cases} y_{A}^{n+1} = y_{A}^{n} \\ y_{B}^{n+1} = e^{-s(y_{A}^{n})}y_{B}^{n} + t(y_{A}^{n}) \end{cases}$$

s and t are the neural networks where the trainable parameters θ are
 RealNVP architecture [Dinh et al.; 2016]

Natural choice for lattice variables: checkerboard (i.e. even-odd) partitioning

```
Affine block = even c. layer + odd c. layer
```

Also needed: an efficient way of computing the gradient of the loss with respect to the flow parameters θ

$$\nabla_{ heta} \tilde{D}_{\mathsf{KL}}(q_{ heta} \| p)$$

 \rightarrow **backpropagation** algorithm: the overall gradient is calculated combining the intermediate gradients at each layer *n*, which can be stored in memory during a forward pass through the flow

$$\nabla_{\theta} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial y_{N}} \frac{\partial y_{N}}{\partial y_{N-1}} \dots$$

Closer look at the average on the processes in the equality:

$$\frac{Z}{Z_0} = \langle \exp(-W) \rangle_f = \int \mathrm{d}y_0 \, \mathrm{d}y_1 \dots \mathrm{d}y_N \, q_0(y_0) \, P_f[y_0, y_1, \dots, y_N] \, \exp(-W)$$

with

$$P_{f}[y_{0}, y_{1}, \dots, y_{N}] = \prod_{n=0}^{N-1} P_{\eta_{n}}(y_{n} \to y_{n+1})$$

- the *actual* probability distribution at each step is NOT the equilibrium distribution $\sim \exp(-S_{\eta_n})$: it's a non-equilibrium process!
- the $\langle \ldots \rangle_f$ average is taken over as many evolutions as possible (all independent from each other!)

	normalizing flows	stochastic evolutions	SNFs
preparation	training	setting the protocol η_n	both
forward prob. $P_{\rm f}$	$P_{\mathrm{f}} = \prod_{n} P_{n}(y_{n} \rightarrow y_{n+1})$		
transition prob. P_n	$\delta(y_{n+1}-g_n(y_n))$	$P_{\eta_n}(y_n o y_{n+1})$	uses both
KL divergence	$ ilde{D}_{ extsf{KL}}(q_{ heta} \ p)$	$ ilde{D}_{ extsf{KL}}(q_0 P_{ extsf{f}} \ p P_{ extsf{r}})$	
"work"	$W=S-S_0-Q=-\ln ilde{w}$		
"heat" <i>Q</i>	$\sum_{n=0}^{N-1} \ln \det J_n(y_n) $	$\left \sum_{n=0}^{N-1} S_{\eta_{n+1}}(y_{n+1}) - S_{\eta_{n+1}}(y_n) \right $	both
e.v. $\langle \mathcal{O} \rangle$	$\frac{\langle \mathcal{O}(y_N)\tilde{w}(y_N)\rangle_{y_N \sim q_\theta}}{\langle \tilde{w}(y_N)\rangle_{y_N \sim q_\theta}}$	$\frac{\langle \mathcal{O}(y_N) \exp(-W(y_0 \to y_N))}{\langle \exp(-W(y_0 \to y_N)) \rangle_{\mathrm{f}}}$	<u>))_f</u>

Stochastic evolution

- \blacktriangleright protocol interpolates linearly between a normal distribution ($\kappa=\lambda=0)$ and the target parameters
- heatbath algorithm for the stochastic updates

Coupling layers and NN

- \blacktriangleright neural networks in affine transformations are CNNs with 1 hidden layer, 3 \times 3 kernel and 1 feature map
- \blacktriangleright also fully-connected networks were considered: 1 hidden layer and # neurons = # lattice sites
- affine layers uniformly distributed between MC updates

- Annealed Importance Sampling [Neal; 1998]: procedure equivalent to JE. Very popular in ML community. Used in SNF paper [Wu et al.; 2020]
- ▶ AIS \rightarrow generalized in Sequential Monte Carlo (SMC) samplers. Also well known in ML.
- SNF idea reworked in CRAFT approach [Matthews et al.; 2022]
- [Vaikuntanathan and Jarzynski; 2011]: related approach with deterministic mappings on top of non-equilibrium transformations. No neural networks.

Is there anything we can learn from out-of-equilibrium stochastic processes that we can apply to stochastic normalizing flows?

Relevant application: large-scale computation of the SU(3) equation of state [Caselle et al.; 2018] goal: extract the pressure with Jarzynski's equality

$$\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \left(\frac{N_t}{N_s}\right)^3 \log\langle e^{-W_{\rm SU}(N_c)} \rangle_{\rm f}$$

evolution in β (inverse coupling) \rightarrow changes lattice spacing $a \rightarrow$ changes temperature $T = 1/(aN_t)$ in $[f = T_0 \rightarrow T]$ process

Is there anything we can learn from out-of-equilibrium stochastic processes that we can apply to stochastic normalizing flows?

Relevant application: large-scale computation of the SU(3) equation of state [Caselle et al.; 2018] goal: extract the pressure with Jarzynski's equality

$$\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \left(\frac{N_t}{N_s}\right)^3 \log\langle e^{-W_{\rm SU}(N_c)} \rangle_{\rm f}$$

evolution in β (inverse coupling) \rightarrow changes lattice spacing $a \rightarrow$ changes temperature $T = 1/(aN_t)$ in $[f = T_0 \rightarrow T]$ process

Important difference: the prior is not a random distribution, but a thermalized Markov chain at a certain inverse coupling β_0 (or temperature T_0)

Observation: for systems with many d.o.f. (large volumes), Jarzynski's equality "converges" more easily to the right result when stochastic evolutions are very close to equilibrium (i.e. *N* is large, evolution is slow). "Easy" way to obtain reversibility.

SU(3) e.o.s. with Jarzynski's equality

SU(3) pressure in (3+1)d across the deconfinement transition with Jarzynski's equality

Does it work for SNFs?

More transparent comparison: error on the free-energy density

Overall computational cost difficult to assess

CNN vs fully-connected networks with $N_t \times N_s$ neurons, 16 \times 8 lattice

CNN vs fully-connected networks with $N_t \times N_s$ neurons, larger lattices

SNFs not necessarily convenient for any NFs: poor performance with fully-connected NNs

Error ratio

We start from Clausius inequality

$$\int_{A}^{B} \frac{\mathrm{d}Q}{T} \leq \Delta S$$

that for isothermal transformations becomes

$$\frac{Q}{T} \leq \Delta S$$

If we use

$$\begin{cases} Q = \Delta E - W \quad (First Law) \\ F \stackrel{\text{def}}{=} E - ST \end{cases}$$

the Second Law becomes

 $W \ge \Delta F$

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid for a *macroscopic* system) becomes

$$\langle W \rangle_f \geq \Delta F$$

Starting from Jarzynski's equality

$$\left\langle \exp\left(-\frac{W}{T}\right)\right\rangle_{f} = \exp\left(-\frac{\Delta F}{T}\right)$$

and using Jensen's inequality

$$\langle \exp x \rangle \ge \exp \langle x \rangle$$

(valid for averages on real x) we get

$$\exp\left(-\frac{\Delta F}{T}\right) = \left\langle \exp\left(-\frac{W}{T}\right) \right\rangle_{f} \ge \exp\left(-\frac{\langle W \rangle_{f}}{T}\right)$$

from which we have

$$\langle W \rangle_f \geq \Delta F$$

In this sense Jarzynski's relation can be seen as a generalization of the Second Law.

Crooks theorem [Crooks; 1998]: another relation deeply connected with Jarzynski's equality

$$\frac{\mathcal{P}_F(W)}{\mathcal{P}_R(-W)} = e^{(W - \Delta F)}$$

The $\mathcal{P}_{F,R}$ indicate the probability distribution of the work performed in the forward and reverse realizations of the transformation.

JE is easily recovered by moving the $\exp(-W)$ and \mathcal{P}_R factors and integrating in W on both sides.

 $W_d = W - \Delta F$ is the dissipated work.