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Two pictures of the Universe
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The Hubble-Lemâıtre diagram

I At the background level, we can write luminosity distance as (datapoints
from Union2)
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1 + z

H0
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I For very low redshifts, these relations becomes independent on the chosen
cosmology and leads to an estimator of the Hubble rate today as
H0 = z/dL



Non-Gaussianities - Why?

I From gevolution2 we have a significant shift in the mean value of the
observed dL(z) in the real inhomogeneous Universe

I Average and dispersion are in good agreement with theoretical estimations
(Ben-Dayan, Gasperini, Marozzi, Nugier, Veneziano, 2013
Fleury, Clarkson, Maartens, 2017)

I Moreover we also have a significantly non-null skewness in the
distribution of dL(z)

2Adamek, Clarkson, Coates, Durrer, Kunz 2019



Non-Gaussianities - Physical reasons
I Initial conditions of the Universe are highly Gaussian. However

non-Gaussianities are generated afterwards

I General Relativity is a non-linear theory

I Gravitational collapse breaks validity of linear regime at late time

I Light-cone is distorted by the non-linear structures

I Data binning can introduce a spurious non-Gaussianity in the data



Averaging observables - Motivations

I In order to understand the statistic, we need a well-posed framework to
treat our theoretical observables

I Theoretical predictions can be done with different approaches: numerical
simulations, perturbation theory, effective field theory

I The well-posedness of the theoretical computations are then crucial to
correctly interpret observed data

I In this regard, a rigorous and well-posed prescription for evaluating
statistics from theory in the distribution of the observable quantities is
crucial

I In order to face these issues, we need to ask case by case what are the
physical observations whose we want to study the statistics...



A well-posed prescription for averaging cosmological
observables

I An observationally oriented prescription

〈dαL 〉 =
J(dαL )

J(1)
=
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where Σs are constant redshift hyper-surfaces

I This number count weighted average has been proven to be gauge
invariant and covariant even in the small redshift bin limit3

I Etherington relation dL(z) = (1 + z)2dA(z)

3F. Gasperini, Marozzi, Veneziano, 2020



From exact to leading order results
I Assuming stochastic inhomogeneities of the linear relativistic gravitational

potential ψ

ds2 = a2(η)
[
− (1 + 2Φ) dη2 + (1− 2Ψ)

(
dr 2 + r 2dΩ2

)]
(1)

where Φ ≡ ψ + 1
2
φ(2) and Ψ ≡ ψ + 1

2
ψ(2) which are delta correlated and

with null mean value

ψ~k = 0 ψ~k ψ~k′ = δ
(
~k + ~k ′

)
the leading order for the average is the second one in the perturbations of
the metric

I

dA ' d
(0)
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)
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)
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Skewness and kurtosis - theoretical expressions

I Within our framework, it is quite straightforward to evaluate standardised
moments

κα ≡
µα

(σ2)α/2
=

1

(σ2)α/2

〈(
dA

d
(0)
A

−m

)α〉
I For the third moment, we get µ3 = µQ

3 + µPB
3 + µLSS

3 where we defined
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]
I The fourth moment instead is simply µ4 = I [σ(1) 4]



Leading order terms

I Leading order expressions are independent of the measure in the small bin
approximation and returns for the distance
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I Non-linear leading terms are4
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4F., Gasperini, Marozzi, Veneziano 2015



Skewness - quadratic terms

I In the same manner, we can evaluate also the various terms in the third
moment

I According to what we have already found, we have

µQ
3 =

7

2
I [σ(1) 4]− 15

2

(
σ2
)2

= 3
(
σ2
)2

I As a consequence, the skewness sourced by quadratic perturbations is

κQ
3 = 3σ

I Recalling the results from the dispersion, we then have that

κQ
3 ∼ 10−2z

hence positive



Skewness - post-Born terms

I Post-Born terms involve several nested line-of-sight integrals and this
would provide in principle a lot of terms

I However, a careful evaluation simply returns

µPB
3 =6
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I Post-Born are sourced by the same kernel as the quadratic terms
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Skewness - Large Scale Structure

I µLSS
3 is the most interesting term since it contains the actual information

about the non-linearities in the LSS
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I These non-linearities source also higher-order correlation functions,

naturally sourcing non-Gaussian statistic since ψ~k1
ψ~k2
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Skewness - preliminary analytic results

1 2 3 4

-0.3

-0.2

-0.1

0.0

0.1

Z

S
ke
w
ne
ss

κ3
Q

κ3
PB

κ3
LSS

Total

I A competitive cancellation between quadratic and post-Born terms seems
to emerge. Similar to CMB spectra
(Marozzi, Fanizza, Di Dio, Durrer, 2016-2017-2018
Pratten, Lewis, 2016)

I The LSS term is strongly dependent on the small scales. Anyway, they
point in the right direction to explain the simulations outcome



Conclusions

I A large competitive effect between linear perturbations seems to
attenuate the skewness sourced by the linear gravitational potential and
looks promising in order to get the leading effect mainly sourced by the
correlation functions of the h.o. gravitational potential

I A better sampling of the non-linear perturbative scales is currently
ongoing. An important enhancing of the effect seems to emerge at small
redshifts

I Future developments are in order to a full comparison with

data/observations

I Finite-bin evaluations
I Doppler, Redshift-Space-Distrortion
I Higher-order moments (kurtosis)


