Localization, ensemble inequivalence and negative temperatures in the
 Discrete Non-Linear Schrödinger Equation

Giacomo Gradenigo

Gran Sasso Science Institute

In collaboration with:
DNLSE: Roberto Livi \& Stefano Iubini (Florence), Satya N. Majumdar (Paris).
Random Lasers (in progress): Jacopo Niedda, Luca Leuzzi, Giorgio Parisi (Rome)

SM\&FT 2022, Bari, 19-21 December

Summary

1) Large Deviations and Localization
2) Discrete Non-Linear Schrödinger Equation (DNLSE)
3) DNLSE: State of the art and the problem of ensembles
4) Localization mechanism
5) Ensemble inequivalence, negative temperature, order parameter
6) Open Directions and Conclusions

The 'Linear Statistic' problem

Linear Statistic Problem: probability distribution of a sum of random variables

$$
P_{N}(M)=\int \prod_{i=1}^{N} d m_{i} p\left(m_{1}, \ldots, m_{N}\right) \delta\left(M-\sum_{i=1}^{N} m_{i}\right)
$$

Simple case: independent identically distributed random variables

$$
\begin{aligned}
& p\left(m_{1}, \ldots, m_{N}\right)=\prod_{i=1}^{N} p\left(m_{i}\right) \quad \begin{array}{ll}
\langle m\rangle<\infty & \text { Finite mean } \\
\left\langle m^{2}\right\rangle<\infty
\end{array} \quad \text { Finite variance } \\
& |M-N\langle m\rangle| \sim \sqrt{N} \quad \square \quad P_{N}(M)=\frac{1}{\sqrt{2 \pi \sigma N}} e^{-\frac{(X-N\langle m\rangle)^{2}}{2 \sigma^{2} N}}
\end{aligned}
$$

Central Limit Theorem

$$
|M-N\langle m\rangle| \sim N \quad \xrightarrow{\text { Large Deviations }}
$$

‘Linear Statistic’ and Large Deviations

Linear Statistic Problem: probability distribution of a sum of random variables

$$
P_{N}(M)=\int \prod_{i=1}^{N} d m_{i} p\left(m_{1}, \ldots, m_{N}\right) \delta\left(M-\sum_{i=1}^{N} m_{i}\right)
$$

Simple case: independent identically distributed random variables

$$
p\left(m_{1}, \ldots, m_{N}\right)=\prod_{i=1}^{N} p\left(m_{i}\right) \quad \begin{array}{ll}
\langle m\rangle<\infty & \text { Finite mean } \\
\left\langle m^{2}\right\rangle<\infty & \text { Finite variance }
\end{array}
$$

Fat tailed distribution

$$
e^{-m}<p(m)<\frac{1}{m^{2}}
$$

Localization

$$
|M-N\langle m\rangle| \sim N \quad \square \quad P_{N}(M) \sim p(M)
$$

Large Deviations

‘Linear Statistic and Large Deviations

Mass transport model: stationary partition function

$$
\mathcal{Z}_{N}(M)=\int_{0}^{\infty} \prod_{i=1}^{N} d m_{i} \prod_{i=1}^{N} p\left(m_{i}\right) \delta\left(M-\sum_{i=1}^{N} m_{i}\right)
$$

> Fat tailed distribution

$$
e^{-m}<p(m)<\frac{1}{m^{2}}
$$

Localization
'Nature of the condensate in mass transport models', Majumdar, Evans, Kia, PRL 94, 180601 (2006)

Participation Ratio

Partition function

$$
\mathcal{Z}_{N}(M) \sim p(M)
$$

Whole sum is taken up by a single variable

$$
Y_{2}(M)=\left\langle\frac{\sum_{i=1}^{n} m_{i}^{2}}{\left(\sum_{i=1}^{N} m_{i}\right)^{2}}\right\rangle
$$

$M \sim m_{i}$

$$
M<N\langle m\rangle \Longrightarrow Y_{2}(M) \sim 1 / N
$$

$$
M>N\langle m\rangle \Longrightarrow Y_{2}(M)=\mathcal{O}(1)
$$

Linear statistic: from non-equilibrium

Important
references $\quad\left\{\begin{array}{l}\text { 'Nature of the Condensate in Mass Transport Models' } \\ \text { (S.N. Majumdar, M.R. Evans, R. K. P. Zia, PRL 94, 180601, 2005) } \\ \text { 'Constraint-Driven Condensation in Large Fluctuations of Linear Statistics' } \\ \text { (J. Stzavits-Nossan, M.R. Evans, S.N. Majumdar, PRL 112, 020602, 2014) }\end{array}\right.$

Some previous
Non-equilibrium results
['Participation Ratio for Constraint-Driven Condensations with Superextensive Mass’ (G. Gradenigo, E. Bertin, Entropy, 2017, arXiv:1708.08872)
‘A First-Order Dynamical Transition for a Driven Run-and-Tumble particle’
(G. Gradenigo, S. N Majumdar, JSTAT, 2019, arXiv:1812.07819)
... to equilibrium statistical mechanics

'Localization in Discrete Non-Linear Schrödinger Equation'

SYSTEM DESCRIBED: BOSE-EINSTEIN CONDENSATE in a periodic potential (optical traps)

- 'Discrete solitons and breathers with dilute Bose-Einstein condensates ', Trombettoni, Smerzi, PRL 86, 2353 (2001)
- 'Discrete Breathers in Bose-Einstein Condensates', Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011)
- 'Non-equilibrium discrete non-linear Schrodinger equation’, Iubini, Lepri, Politi, Phys. Rev. E 86, 011108 (2012)

Linear statistic: from non-equilibrium

Important
references
'Nature of the Condensate in Mass Transport Models'
(S.N. Majumdar, M.R. Evans, R. K. P. Zia, PRL 94, 180601, 2005)
'Constraint-Driven Condensation in Large Fluctuations of Linear Statistics’
(J. Stzavits-Nossan, M.R. Evans, S.N. Majumdar, PRL 112, 020602, 2014)

Some previous
Non-equilibrium results
['Participation Ratio for Constraint-Driven Condensations with Superextensive Mass’ (G. Gradenigo, E. Bertin, Entropy, 2017, arXiv:1708.08872)
'A First-Order Dynamical Transition for a Driven Run-and-Tumble particle’
(G. Gradenigo, S. N Majumdar, JSTAT, 2019, arXiv:1812.07819)
... to equilibrium statistical mechanics

'Localization in Discrete Non-Linear Schrödinger Equation’

'Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation', G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, EPJ-E 44, 1-6 (2021)
'Localization transition in the discrete nonlinear Schrödinger equation: ensembles inequivalence and negative temperatures', G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, J. Stat. Mech. 023201 (2021)

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical description of Bose-Einstein condensate

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\mathrm{ext}}(\mathbf{x})\right] \Psi(\mathbf{x})-\frac{\nu}{2}|\Psi(\mathbf{x})|^{2} \Psi(\mathbf{x})=0
$$

Gross-Pitaevskii Equation: non-linear equation for the condensate wavefunction 'order parameter' of a quantum transition (semiclassical approximation)

$$
\Psi(\mathbf{x})=\langle\hat{\psi}(\mathbf{x})\rangle
$$

Classical field Expectation on ground state of quantum field

EQUILIBRIUM STATISTICAL MECHANICS

Hamiltonian system on a lattice

$$
\mathcal{H}=\sum_{i=1}^{N} \Psi_{i}^{*} \Psi_{i+1}+\Psi_{i+1}^{*} \Psi_{i}+\frac{\nu}{2} \sum_{i=1}^{N}\left|\Psi_{i}\right|^{4}
$$

Canonical conjugate variables

$$
\left\{\Psi_{i}^{*}, \Psi_{j}\right\}=i \delta_{i j} / \hbar \quad i \dot{\Psi}_{i}=-\frac{\partial \mathcal{H}}{\partial \Psi_{i}^{*}}
$$

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\quad\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$
$i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}$

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}$

PARTICLES NUMBER (conserved)
$A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}$
$\underset{\substack{\text { PHENOMENON } \\ \text { ondensate wavefunction } \\ \text { (numerical evidences) } \\ \text { (numed high enegies }}}{ }\left|\psi_{i}\right|^{2} \uparrow$

1) WHICH KIND OF PHASE TRANSITION ?
2) WHICH STATISTICAL ENSEMBLE?
3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)
4) IS DISORDER NECESSARY FOR LOCALIZATION?

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$
$i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}$

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}$

PARTICLES NUMBER (conserved)
$A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}$

The 'Fundamental Ensemble' : MICROCANONICAL
Microcanonical
Partition function

$$
\Omega_{N}(A, E)=\int \prod_{i=1}^{N} d \psi_{i} \delta\left(A-\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}\right) \underbrace{\delta\left(E-\mathcal{H}\left[\psi_{i}^{*}, \psi_{i}\right]\right)}_{\text {Particle number conservation }}
$$

DNLSE theory: equilibrium stat mech state of the art

'Statistical Mechanics of a Discrete Non-Linear System', K.O. Rasmussen, T. Cretegny, P.G. Kevridis, N. Gronbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)

Microcanonical
Grand Canonical $\mathcal{Z}_{N}(\mu, \beta)=\int_{0}^{\infty} d A d E e^{-\beta E-\mu A} \Omega_{N}(A, E)$
Grand Canonical: exact solution with trasfer matrix techniques!

Transition line at infinite temperature: $\beta=0$

$$
h=2 a^{2}
$$

PROBLEM

Many numerical evidences that the localized phase has negative temperature, $\mathrm{T}<0$
'Discrete Breathers and Negative-Temperature States', S. Iubini, R. Franzosi, R. Livi, G.-L. Oppo, A. Politi, New J. Phys. 15, 023032 (2013)

Discrete Non-Linear Schrödinger Equation (DNLS)

Condensate wave-function (order parameter) $\quad\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$
$i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}$

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}$

PARTICLES NUMBER (conserved)
$A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}$

PHENOMENON $\quad\left|\psi_{i}\right|^{2} \uparrow \quad \mathcal{H}=E<E_{c} \quad\left|\psi_{i}\right|^{2} \uparrow \quad \mathcal{H}=E>E_{c}$
Condensate wavefunction localize at high enegies (numerical evidences)

ONLY THE MICROCANONICAL IS CORRECT: GO FOR IT!

Neglect hopping terms (a-posteriori argument)

$$
\underbrace{\Omega_{N}(A, E)=\int \prod_{i=1}^{N} d \psi_{i} \delta \underbrace{\left(A-\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}\right)}_{\text {Energy conservation }} \delta}_{\text {Particle number conservation }}
$$

WHEN ENSEMBLES ARE EQUIVALENT

EQUIVALENCE IS WHEN, FOR FIXED A AND E, YOU HAVE REAL SOLUTIONS $\boldsymbol{\beta}_{\mathbf{0}}$ AND $\boldsymbol{\mu}_{\mathbf{0}}$ FOR SADDLE-POINT EQUATIONS

$$
\begin{gathered}
\Omega_{N}(A, E)=\exp \left\{\mu_{0} A+\beta_{0} E+N \log \mathcal{Z}\left(\mu_{0}, \beta_{0}\right)\right\} \\
\beta_{0}, \mu_{0} \in \mathbb{R}
\end{gathered}
$$

$$
\begin{aligned}
\frac{A}{N} & =-\frac{\partial}{\partial \mu} \log [\mathcal{Z}(\mu, \beta)]=\frac{\langle\mathcal{A}\rangle_{\beta_{0}, \mu_{0}}}{N} \\
\frac{E}{N} & =-\frac{\partial}{\partial \beta} \log [\mathcal{Z}(\mu, \beta)]=\frac{\langle\mathcal{H}\rangle_{\beta_{0}, \mu_{0}}}{N}
\end{aligned}
$$

WHY ENSEMBLES ARE NOT EQUIVALENT

$$
\xlongequal[\text { Grand-Canonical }]{\mathcal{Z}_{N}(\mu, \beta)}=\int_{\text {Laplace Transform }}^{\infty} d A d E e^{-\mu A} e^{-\beta E} \underbrace{\Omega_{N}(A, E)}_{\text {Micro-Canonical }}=\int \prod_{i=1}^{N} d \psi_{i} e^{-\mu \sum_{i=1}^{N}\left|\psi_{i}\right|^{2}} e^{-\beta \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}}
$$

$$
\mathcal{Z}(\mu, \beta)=2 \pi \int_{0}^{\infty} d r r e^{-\left(\mu r^{2}+\beta r^{4}\right)}=\frac{e^{\mu^{2} /(4 \beta)} \sqrt{\pi} \mu \operatorname{Erfc}\left(\frac{\mu}{2 \sqrt{\beta}}\right)}{2 \sqrt{\beta}}
$$

$$
\Omega_{N}(A, E)=\int_{\mu_{0}-i \infty}^{\mu_{0}+i \infty} d \mu \int_{\beta_{0}-i \infty}^{\beta_{0}+i \infty} d \beta e^{\mu A+\beta E+N \log \mathcal{Z}(\mu, \beta)}
$$

$$
E>E_{\mathrm{th}} \quad \Longrightarrow \quad \begin{gathered}
\text { No real saddle point } \\
\text { Must take analytic prolungation }
\end{gathered}
$$

$$
\lim _{\substack{\beta_{0} \rightarrow 0 \\ \mu_{0}=1 / a}}\langle\mathcal{H}\rangle_{\beta_{0}, \mu_{0}}=E_{\mathrm{th}}<\infty
$$

$$
\frac{E}{N}=-\frac{\partial}{\partial \beta} \log [\mathcal{Z}(\mu, \beta)]=\frac{\langle\mathcal{H}\rangle_{\beta_{0}, \mu_{0}}}{N}
$$

WHY ENSEMBLES ARE NOT EQUIVALENT

$$
\underset{\text { Grand-Canonical }}{\mathcal{Z}_{N}(\mu, \beta)}=\int_{0}^{\infty} d A d E e^{-\beta E-\mu A} \Omega_{N}(A, E)=\left[\int_{\substack{\text { Every degree of freedom contributes } \\ \text { identically to the partition function }}}^{\left[\int d \psi e^{-\mu|\psi|^{2}-\beta|\psi|^{4}}\right]^{N}}\right.
$$

$$
E>E_{\mathrm{th}} \quad \Longrightarrow \quad \text { LOCALIZATION }
$$

$$
\lim _{\substack{\beta_{0} \rightarrow 0 \\ \mu_{0}=1 / a}}\langle\mathcal{H}\rangle_{\beta_{0}, \mu_{0}}=E_{\text {th }}<\infty
$$

Our Microcanonical Calculation

$$
E_{\mathrm{th}}=2 A^{2}
$$

(a-posteriori argument to neglect hopping terms)

Sketchy mechanism of localization $E>E_{\text {th }}$

1) Cannot reach such energy by equal sharing among d.o.f.
2) The amount $E_{\text {th }}$ is identically distributed among the degrees of freedom (infinite temperature background)
3) Excess energy is put into the localized phase

THE LARGE DEVIATIONS APPROACH

Microcanonical
Ensemble

$$
\Omega_{N}(A, E)=\int \prod_{i=1}^{N} d \psi_{i} \delta\left(A-\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}\right) \delta\left(E-\sum_{i=1}^{N}\left|\psi_{i}\right|^{4}\right)
$$

Release constraint on 'particle number'

$$
\Omega_{N}(\mu, E)=\int \prod_{i=1}^{n} d \psi_{i} e^{-\mu \sum_{i=1}^{N}\left|\psi_{i}\right|^{2}} \delta\left(E-\sum_{i=1}^{N}\left|\psi_{i}\right|^{4}\right)
$$

Change of variables

$$
\Omega_{N}(\mu, E) \approx \int \prod_{i=1}^{n}\left[d \varepsilon_{i} \frac{e^{-\mu \sqrt{\varepsilon_{i}}}}{\sqrt{\varepsilon_{i}}}\right] \delta\left(E-\sum_{i=1}^{N} \varepsilon_{i}\right)
$$

1) $\psi=r e^{i \phi} \quad$ Partition $=$ Probability distribution of
2) $r_{i}^{4}=\varepsilon_{i} \quad$ Function \quad fat tailed variables sum

$$
\begin{aligned}
e^{-\varepsilon_{i}}<\frac{e^{-\mu \sqrt{\varepsilon_{i}}}}{\sqrt{\varepsilon_{i}}}<\frac{1}{\varepsilon_{i}^{2}} \quad \longleftrightarrow \text { Localization } & \begin{array}{c}
E>N\langle\varepsilon\rangle_{\mu}=E_{\mathrm{th}} \\
\\
\Omega_{N}(\mu, E)
\end{array} \frac{e^{-\mu \sqrt{E-E_{\mathrm{th}}}}}{\sqrt{E-E_{\mathrm{th}}}}
\end{aligned}
$$

THE MAIN RESULT: MICROCANONICAL ENTROPY

Microcanonical Entropy

$$
S_{N}(A, E)=\mathrm{k} \log \left[\Omega_{N}(A, E)\right]
$$

The first, the one ... and the ONLY

$$
\varepsilon_{\mathrm{th}}=2 a^{2}
$$

Localized Phase Entropy
$S_{N}(A, E)=\underbrace{\Sigma_{0}(A)}+\overleftarrow{\bar{\Sigma}_{1}(E, A)}$
Background Entropy (energy indipendent)

$$
\Sigma_{0}(A)=N[1+\log (\pi a) .
$$

$\Delta E=E-E_{\mathrm{th}}$

THE MAIN RESULT: MICROCANONICAL ENTROPY

Microcanonical Entropy

$$
S_{N}(A, E)=N[1+\log (\pi a)]+\Sigma_{1}(\Delta E, A)
$$

Three regimes $\varepsilon=E / N$

$$
\begin{aligned}
\Sigma_{1}(E, A)= & \text { Gaussian } \\
\begin{array}{c}
\text { CONDENSATE } \\
\text { ENTROPY }
\end{array} & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1 / \sqrt{N} \\
-N^{1 / 3} \Psi(\zeta) & \text { Matching } \\
-N^{1 / 2} \sqrt{\varepsilon-\sigma_{\mathrm{th}}} & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1 / N^{1 / 3} \\
\text { Large Deviations } & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1
\end{aligned}
$$

THE MAIN RESULT: MICROCANONICAL ENTROPY

$$
\begin{gathered}
\Psi^{\prime}\left(\zeta_{c}\right)=\text { jump } \\
\zeta_{c}=N^{1 / 3}\left(\varepsilon_{c}-\varepsilon_{t h}\right) \\
\varepsilon_{c}=\varepsilon_{t h}+\frac{\zeta_{c}}{N^{1 / 3}}
\end{gathered}
$$

Finite-size correction to the critical line

$$
\underset{\substack{\text { CONDENSATE } \\
\text { ENTROPY }}}{\Sigma_{1}(E, A)}\left\{\begin{array}{l}
-\frac{N}{2 \sigma^{2}}\left(\varepsilon-\varepsilon_{\mathrm{th}}\right)^{2} \\
-N^{1 / 3} \Psi(\zeta) \\
-N^{1 / 2} \sqrt{\varepsilon-\varepsilon_{\mathrm{th}}}
\end{array}\right.
$$

Exact calculation of this function

$$
\varepsilon_{\mathrm{th}}=2 a^{2} \quad \zeta=N^{1 / 3}\left(\varepsilon-\varepsilon_{\mathrm{th}}\right)
$$

FIRST-ORDER MECHANISM

$$
\begin{gathered}
\Psi^{\prime}\left(\zeta_{c}\right)=\text { jump } \\
\zeta_{c}=N^{1 / 3}\left(\varepsilon_{c}-\varepsilon_{t h}\right) \\
\varepsilon_{c}=\varepsilon_{t h}+\frac{\zeta_{c}}{N^{1 / 3}}
\end{gathered}
$$

Finite-size correction to the critical line

$$
\Omega(A, E) \propto \underbrace{\exp \left\{-N^{1 / 3} \zeta^{2} /\left(2 \sigma^{2}\right)\right\}}_{\Omega_{\mathrm{deloc}}(\zeta, N)}+\underbrace{\exp \left\{-N^{1 / 3} \chi(\zeta)\right\}}_{\Omega_{\mathrm{loc}}(\zeta, N)}
$$

$$
P_{\mathrm{loc}}(\zeta, N)=\frac{\Omega_{\mathrm{loc}}(\zeta, N)}{\Omega_{\mathrm{loc}}(\zeta, N)+\Omega_{\mathrm{deloc}}(\zeta, N)} \quad \begin{array}{ll}
\zeta>\zeta_{c} & \Longrightarrow \lim _{N \rightarrow \infty} P_{\mathrm{loc}}(\zeta, N)=1 \\
\zeta<\zeta_{c} \Longrightarrow \lim _{N \rightarrow \infty} P_{\mathrm{loc}}(\zeta, N)=0
\end{array}
$$

40 ORDER PARAMETER: PARTICIPATION RATIO

$\Psi^{\prime}\left(\zeta_{c}\right)=$ jump

$$
\zeta_{c}=N^{1 / 3}\left(\varepsilon_{c}-\varepsilon_{t h}\right)
$$

$$
\varepsilon_{c}=\varepsilon_{t h}+\frac{\zeta_{c}}{N^{1 / 3}}
$$

Finite-size correction to the critical line

NEGATIVE TEMPERATURE - SUBEXTENSIVE ENTROPY

ORDER PARAMETER: PARTICIPATION RATIO

$$
\Psi^{\prime}\left(\zeta_{c}\right)=\mathrm{jump}
$$

Order Parameter $=$ Participation Ratio

$$
\mathcal{P}_{N}=\left\langle\frac{\sum_{i=1}^{N} \varepsilon_{i}^{2}}{\left(\sum_{i=1}^{N} \varepsilon_{i}\right)^{2}}\right\rangle_{\text {micro }}
$$

$$
\begin{aligned}
& \varepsilon>\varepsilon_{c} \quad \Longrightarrow \quad \lim _{N \rightarrow \infty} \mathcal{P}_{N}=c>0 \\
& \varepsilon<\varepsilon_{c} \quad \Longrightarrow \quad \lim _{N \rightarrow \infty} \mathcal{P}_{N} \sim 1 / N
\end{aligned}
$$

Consistent with non-analyticity of Entropy

ORDER PARAMETER: PARTICIPATION RATIO

$$
\Psi^{\prime}\left(\zeta_{c}\right)=\mathrm{jump}
$$

Order Parameter $=$ Participation Ratio

$$
\mathcal{P}_{N}=\left\langle\frac{\sum_{i=1}^{N} \varepsilon_{i}^{2}}{\left(\sum_{i=1}^{N} \varepsilon_{i}\right)^{2}}\right\rangle_{\text {micro }}
$$

$$
\begin{aligned}
& \varepsilon>\varepsilon_{c} \quad \Longrightarrow \quad \lim _{N \rightarrow \infty} \mathcal{P}_{N}=c>0 \\
& \varepsilon<\varepsilon_{c} \quad \Longrightarrow \quad \lim _{N \rightarrow \infty} \mathcal{P}_{N} \sim 1 / N
\end{aligned}
$$

Consistent with non-analyticity of Entropy

ORDER PARAMETER: PARTICIPATION RATIO

$$
\varepsilon_{c}=\varepsilon_{t h}+\frac{\zeta_{c}}{N^{1 / 3}}
$$

Consistent with non-analyticity of Entropy

$$
\begin{aligned}
\varepsilon>\varepsilon_{c} & \Longrightarrow \lim _{N \rightarrow \infty} \mathcal{P}_{N}=\left(\varepsilon-\varepsilon_{t h}\right)^{2} / \varepsilon^{2} \\
\varepsilon<\varepsilon_{c} & \Longrightarrow \lim _{N \rightarrow \infty} \mathcal{P}_{N} \sim 1 / N
\end{aligned}
$$ values coincide and the order parameter is continuous at the

ORDER PARAMETER: PARTICIPATION RATIO

Merging at $\mathbf{N}=\infty$ into a mixed-order transition?

FINALLY SOME FIGURES : Monte Carlo sampling of rare events

Entropy of the condensate As a function of size

Marginal distribution of energy on a single site (microcanonical)

Delocalized phase
Monotonous exponential decay

Localized \& pseudo-localized

Formation of a secondary peak, the "condensate bump"

Discrete Non-Linear Schrödinger Equation (DNLSE)

QUITE OFTEN LOCALIZATION IS

RELATED TO INTEGRABILITY
'Integrals of motion in the many-body localized phase', Valentina Ros, M. Müller, A. Scardicchio,
Nuclear Physics B 891, 420-465 (2015)
They compute explicitly the N integrals of motion!

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}$

PARTICLES NUMBER (conserved)

$$
A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}
$$

$\left.$| PHENOMENON |
| :---: |
| Condensate wavefunction |
| localized at high enegies
 (numerical evidences) |$\psi_{i}\right|^{2} \uparrow \quad \mathcal{H}=E<E_{c}$

FIRST ORDER!

Discrete Non-Linear Schrödinger Equation (DNLSE)

Anderson Localization

One-body localization due to quenched disorder

$$
\mathcal{H}=J \sum_{\langle i j\rangle} \hat{c}_{i}^{\dagger} \hat{c}_{j}+\sum_{i=1}^{N} h_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}
$$

Many-body Localization (MBL)
Disorder + many-body interactions.

$$
\mathcal{H}=J \sum_{\langle i j\rangle} \hat{c}_{i}^{\dagger} \hat{c}_{j}+\sum_{i=1}^{N} h_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}+k \sum_{i=1}^{N} \hat{c}_{i}^{\dagger} \hat{c}_{i} \hat{c}_{i+1}^{\dagger} \hat{c}_{i+1}
$$

1) Localized phase is stable with respect to (weak) non-linearities.
2) Role of disorder in presence of many-body interactions?
3) Does localization survives without disorder?

This work
contribution

1) We do find localization in absence of disorder! (known numerically)
2) NON-LINEAR terms (many-body) are the source of localization! (outcome of the exact calculation)

What about Localization of Glassy Light in Random Lasers?

'Glassines and the lack of equpartition in random lasers',
G. Gradenigo, F. Antenucci, L. Leuzzi, Phys. Rev. Research 2, 023399 (2020)
'Universality class in the mode-locked random laser',
J. Niedda, G. Gradenigo, L. Leuzzi, G. Parisi, arXiv:2210.04362 (2022)
'Intensity pseudo-localized phase in the glassy random laser',
J. Niedda, L. Leuzzi, G. Gradenigo, arXiv:2212.05106 (2022).

Signatures of the pseudo-localized phase in spin glass model of random lasers

CONCLUSIONS - PERSPECTIVES

1) We provided the first fully consistent description of the localization transition in the Discrete NonLinear Schrödinger Equation (DNLSE)
2) Localization in the DNLSD can only described within the Microcanonical Ensemble
3) We put in evidence the existence, at large but finite N , of a delocalized (presumably non ergodic) state at negative temperature, the pseudo-condensate (relevant for experiments).
Further investigations: multifractal wave function: $\left.I(q)=\left.N\langle | \psi_{i}\right|^{2 q}\right\rangle$
4) We clarified that the transition has a mixed first/second order, similarly to the ergodicity breaking transition in glasses (not spin glasses!): Random First-Order transition.
Further investigations: pseudo-localization/localization in models of glasses (in progress).
5) We clarified a mechanism for localization/ergodicity-breaking in the strong-coupling regime:

- Not related to integrability (only two conserved quantities, perhaps emergent integrability?)
- Straighforwad extension to D > 1 (further investigations)

THANKS FOR YOUR ATTENTION

THE MAIN RESULT: MICROCANONICAL ENTROPY

1) Microcanonical and canonical ensembles are not equivalent
2) Localization looks like a mixed order transition in the microcanonical ensemble
3) Negative temperature ONLY in microcanonical ensemble (zero for $\mathbf{N}=\infty$).
4) Localized solution has subextensive entropy (area law?, entaglement?)

Phenomenon: from Fluorescence to Random Lasing

Optical power (inverse temperature) is pumped into an optically active random medium

$$
\mathcal{P} \sim T^{-1 / 2}
$$

\longrightarrow EMISSION SPECTRUM $\left.\left.\langle | A_{k}\right|^{2}\right\rangle$
$\mathcal{P}>\mathcal{P}_{\text {th }}$ Random Lasing: cohenent anisotropic emission (NON-ERGODIC)
$\mathcal{P}<\mathcal{P}_{\text {th }}$ Fluorescence: incoherent isotropic emission (ERGODIC)

Glass Transition

Experiments (not mine!)

Simulations: average over disorder

One istance of disorder

OVERLAP (Glass order parameter)

HEAT CAPACITY

'Universality class in the mode-locked random laser',
J. Niedda, G. Gradenigo, L. Leuzzi, G. Parisi, arXiv:2210.04362 (2022)

Glass phase in Random Lasers is pseudo-localized (no localization no equipartition)

PARTICIPATION RATIO

$$
Y_{2}=\left\langle\frac{\sum_{k} m_{k}^{2}}{\left(\sum_{k} m_{k}\right)^{2}}\right\rangle \quad m_{k}=\left|A_{k}\right|^{2}
$$

Deloc $\quad Y_{2} \sim 1 / N$
$Y_{2}=1 / N^{1-\nu}$
Loc $\quad Y_{2}=\mathcal{O}(1)$
Pseudo-Localized
'Pseudo-localized phase in the mode-locked p-spin',
J. Niedda, L. Leuzzi, G. Gradenigo, in preparation (2022).

Glass phase in Random Lasers is pseudo-localized (no localization no equipartition)

'Pseudo-localized phase in the mode-locked p-spin',
J. Niedda, L. Leuzzi, G. Gradenigo, in preparation (2022).

AMPLITUDE LOCAL MARGINALS

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$$
\hat{H}=\int d^{3} x \hat{\psi}^{\dagger}(\mathbf{x})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\mathrm{ext}}\right] \hat{\psi}(\mathbf{x})+\frac{4 \pi \hbar^{2} a_{s}}{2 m} \int d^{3} x \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \hat{\psi}(\mathbf{x})
$$

'Discrete Breathers in Bose-Einstein Condensates’, Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011)
Second-quantization Hamiltonian of interacting bosons condensate

$$
V(\mathbf{x}-\mathbf{y})=\delta(\mathbf{x}-\mathbf{y}) \quad \text { Repulsive contact interactions }
$$

$$
\begin{aligned}
& \text { Bogoliubov approximation } \quad \hat{\psi}(\mathbf{x})=\Psi(\mathbf{x})+\hat{\varphi}(\mathbf{x}) \\
& \Psi(\mathbf{x})=\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Condensate wave-function } \quad \text { (c-number) } \\
& \hat{\varphi}(\mathbf{x})=\hat{\psi}(\mathbf{x})-\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Deviation opeartor }
\end{aligned}
$$

Expand the Hamiltonian up to second order in powers of $\hat{\varphi}(\mathbf{x}), \hat{\varphi}^{\dagger}(\mathbf{x})$ (small quantum fluctuations around the mean-field solution)

$$
\hat{H}=K_{0}+\hat{K}_{1}+\hat{K}_{2}+\ldots \quad \hat{K}_{1}=\mathcal{O}(\hat{\varphi}) \quad \hat{K}_{2}=\mathcal{O}\left(\hat{\varphi}^{2}\right)
$$

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$\hat{K}_{1}=0 \Longleftrightarrow\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ext }}(\mathbf{x})\right] \Psi(\mathbf{x})-\frac{\nu}{2}|\Psi(\mathbf{x})|^{2} \Psi(\mathbf{x})=0$
Gross-Pitaevskii Equation: non-linear equation for the 'order parameter' of a quantum transition (semiclassical approximation)

Bogoliubov approximation $\quad \hat{\psi}(\mathbf{x})=\Psi(\mathbf{x})+\hat{\varphi}(\mathbf{x})$

$$
\begin{aligned}
& \Psi(\mathbf{x})=\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Condensate wave-function (c-number) } \\
& \hat{\varphi}(\mathbf{x})=\hat{\psi}(\mathbf{x})-\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Deviation opeartor }
\end{aligned}
$$

Expand the Hamiltonian up to second order in powers of $\hat{\varphi}(\mathbf{x}), \hat{\varphi}^{\dagger}(\mathbf{x})$ (small quantum fluctuations around the mean-field solution)

$$
\hat{H}=K_{0}+\hat{K}_{1}+\hat{K}_{2}+\ldots \quad \hat{K}_{1}=\mathcal{O}(\hat{\varphi}) \quad \hat{K}_{2}=\mathcal{O}\left(\hat{\varphi}^{2}\right)
$$

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$\hat{K}_{1}=0 \Longleftrightarrow\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ext }}(\mathbf{x})\right] \Psi(\mathbf{x})-\frac{\nu}{2}|\Psi(\mathbf{x})|^{2} \Psi(\mathbf{x})=0$
Gross-Pitaevskii Equation: non-linear equation for the 'order parameter' of a quantum transition (semiclassical approximation)

$$
V_{\mathrm{ext}}(\mathbf{x})=\underbrace{\frac{\hbar^{2} \omega^{2}}{4 E_{r}} \sin ^{2}\left(k_{\mathrm{L}} x\right)}_{\text {Periodic modulation - x }}+\underbrace{\frac{m \Omega^{2}}{2}\left(y^{2}+z^{2}\right)}_{\text {Harmonic traps }(\mathrm{y}, \mathrm{z}) \text {-plane }} \begin{gathered}
\text { Effectively on a } \\
\text { 1-dimensional lattice }
\end{gathered}
$$

Hamiltonian system on a lattice

$$
\mathcal{H}=\sum_{i=1}^{N} \Psi_{i}^{*} \Psi_{i+1}+\Psi_{i+1}^{*} \Psi_{i}+\frac{\nu}{2} \sum_{i=1}^{N}\left|\Psi_{i}\right|^{4}
$$

Canonical conjugate variables

$$
\left\{\Psi_{i}^{*}, \Psi_{j}\right\}=i \delta_{i j} / \hbar \quad i \dot{\Psi}_{i}=-\frac{\partial \mathcal{H}}{\partial \Psi_{i}^{*}}
$$

PROBING THE NEGATIVE TEMPEATURE

$\varepsilon_{\mathrm{th}}<\varepsilon<\varepsilon_{c}=$ Uninteresting ?
Not really...
$\varepsilon>\varepsilon_{\mathrm{th}} \Longrightarrow \frac{\partial S}{\partial E}=\frac{1}{T}<0$
NEGATIVE TEMPERATURE

Discrete Non-Linear Schrödinger
Equation coupled at the boundaries with reservoirs at different temperature
'A chain, A bath, A sink and a Wall',
S. Iubini, S. Lepri, R. Livi, G.-L. Oppo, A. Politi, Entropy (2017)

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$
$i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}$

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}$

PARTICLES NUMBER (conserved)

$$
A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}
$$

1) WHICH KIND OF PHASE TRANSITION ?
2) WHICH STATISTICAL ENSEMBLE?
3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)
4) IS DISORDER NECESSARY FOR LOCALIZATION?

ORDER PARAMETER: PARTICIPATION RATIO

Merging at $\mathrm{N}=\infty$ into a mixed-order transition?
Is there any known example of such a transition?

A VERY WELL KNOWN MIXED ORDER TRANSITION: RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION

P-spin model $\quad \mathcal{H}=-\sum_{i j k l} J_{i j k l} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l} \quad \sum_{i=1}^{N} \sigma_{i}^{2}=N$ \#-interactions $=N^{4} \quad J_{i j k l}=$ iid Gaussian variates $\quad\left\langle J^{2}\right\rangle \sim N^{-3}$

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

IMPORTANT SIMILARITIES WITH DNLS

\checkmark Locally unbounded continuous variables
\checkmark Non-linear interactions
\checkmark Global spherical constraint
... NOT SHARED BY MODELS LIKE SHERRINGTON-KIRKPATRICK
\checkmark Discrete spins
\checkmark Linear interactions

A VERY WELL KNOWN MIXED ORDER TRANSITION: RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION

$$
\begin{aligned}
\text { P-spin model } \quad \mathcal{H} & =-\sum_{i j k l} J_{i j k l} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l} \quad \sum_{i=1}^{N} \sigma_{i}^{2}=N \\
\text { \#-interactions }= & N^{4} \quad J_{i j k l}=\text { iid Gaussian variates } \quad\left\langle J^{2}\right\rangle \sim N^{-3}
\end{aligned}
$$

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

FIRST-ORDER FEATURES

Order Parameter: OVERLAP =
Similarity among two configurations chosen at random in the equilibrium ensemble

$$
\begin{aligned}
& q^{\alpha \beta}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{\alpha} \sigma_{i}^{\beta} \quad \begin{array}{l}
q \approx 0 \text { different } \\
q \approx 1 \text { similar }
\end{array} \\
& P(q)=(1-m) \delta\left(q-q_{1}\right)+m \delta\left(q-q_{0}\right)
\end{aligned}
$$

Ergodicity Breaking: Parisi's order parameter

High Temperature

Low Temperature

$\mathbf{T}=\mathbf{T}_{\mathrm{K}}$
$P(q)$
'First-order like' behaviour

Ergodic $\mathbf{T}>\mathbf{T}_{\mathbf{K}}$

Glass $\mathbf{T}<\mathbf{T}_{\mathrm{K}}$

Ergodicity Breaking: Parisi's order parameter

...BUT STILL IS NOT A FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE T ${ }_{K}$
- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE TRANSITION

$$
\int d q P(q) q=(1-m) q_{1}
$$

Ergodicity Breaking: Parisi's order parameter

RANDOM FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE T_{K}
- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE TRANSITION

$$
\int d q P(q) q=(1-m) q_{1}
$$

What about localization in Glasses?

$$
\begin{gathered}
\text { P-spin model on } \\
\text { Complete Graph } \\
\text { \#-interactions = } N^{4} \\
\mathcal{H}=-\sum_{i j k l} J_{i j k l} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l} \\
\sum_{i=1}^{N} \sigma_{i}^{2}=N \\
\text { You have all possible } \\
\text { (independent) interacting } \\
\text { quadruplets! }
\end{gathered}
$$

Partition function is dominated by homogeneous solutions (replica theory)

$$
q^{\alpha \beta}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{\alpha} \sigma_{i}^{\beta}
$$

α, β replica indices Replicas : independent equilibrium configurations
samples with identical disorder

RANDOM LASER : a possible benchmark for glass+localization transition

1) Modes of electromagnetic field in a disordered cavity

$$
A_{k}(t)=\left|A_{k}(t)\right| e^{i \varphi_{k}(t)}
$$

2) What we study: Stationary probability distribution. Numerical sampling

$$
\begin{gathered}
P\left[A_{1}, \ldots, A_{N}\right]=e^{-\beta \mathcal{H}\left[A_{1}, \ldots, A_{N}\right]} \delta\left(\epsilon N-\sum_{i=1}^{N}\left|A_{k}\right|^{2}\right) \\
\mathcal{H}[\mathbf{A}]=-\sum_{\langle i j k l\rangle_{\mathrm{FMC}}} J_{i j k l}\left|A_{i}\right|\left|A_{j}\right|\left|A_{k}\right|\left|A_{l}\right| \cos \left(\varphi_{i}-\varphi_{j}+\varphi_{k}-\varphi_{l}\right) \\
\text { Disorder: } J_{i j k l} \text { are Gaussian random variables }
\end{gathered}
$$

3) Selection rule for interacting modes typical of random lasers

Frequency Matching Condition

$$
|i-j+k-l|=0
$$

DILUTION : not all the quadruples are interacting

