Localization, ensemble inequivalence and negative temperatures in the Discrete Non-Linear Schrödinger Equation

Giacomo Gradenigo

Gran Sasso Science Institute

In collaboration with:

DNLSE: Roberto Livi & Stefano Iubini (Florence), Satya N. Majumdar (Paris).**Random Lasers (in progress)**: Jacopo Niedda, Luca Leuzzi, Giorgio Parisi (Rome)

SM&FT 2022, Bari, 19-21 December

Summary

1) Large Deviations and Localization

2) Discrete Non-Linear Schrödinger Equation (DNLSE)

- 3) DNLSE: State of the art and the problem of ensembles
- 4) Localization mechanism
- 5) Ensemble inequivalence, negative temperature, order parameter
- 6) Open Directions and Conclusions

The 'Linear Statistic' problem

Linear Statistic Problem: probability distribution of a sum of random variables

$$P_N(M) = \int \prod_{i=1}^N dm_i \ p(m_1, \dots, m_N) \ \delta\left(M - \sum_{i=1}^N m_i\right)$$

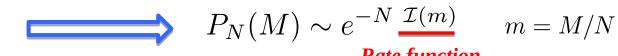
Simple case: independent identically distributed **random variables**

$$p(m_1, \dots, m_N) = \prod_{i=1}^N p(m_i)$$
 $\langle m \rangle < \infty$ Finite mean $\langle m^2 \rangle < \infty$ Finite variance

$$|M - N\langle m \rangle| \sim \sqrt{N} \qquad \Longrightarrow \qquad P_N(M) = \frac{1}{\sqrt{2\pi\sigma N}} e^{-\frac{(X - N\langle m \rangle)^2}{2\sigma^2 N}}$$

Central Limit Theorem

 $|M - N\langle m \rangle| \sim N$



Rate function

Large Deviations

'Linear Statistic' and Large Deviations

Linear Statistic Problem: probability distribution of a sum of random variables

$$P_N(M) = \int \prod_{i=1}^N dm_i \ p(m_1, \dots, m_N) \ \delta\left(M - \sum_{i=1}^N m_i\right)$$

Simple case: independent identically distributed random variables

$$p(m_1, \dots, m_N) = \prod_{i=1}^{N} p(m_i) \qquad \begin{array}{c} \langle m \rangle < \infty & \text{Finite mean} \\ \langle m^2 \rangle < \infty & \text{Finite variance} \end{array}$$
Fat tailed distribution
$$e^{-m} < p(m) < \frac{1}{m^2} \qquad \longrightarrow \text{Localization}$$

$$|M - N\langle m \rangle| \sim N \qquad \bigoplus \qquad P_N(M) \sim p(M)$$

Large Deviations

Whole sum is taken up by a single variable

'Linear Statistic' and Large Deviations

Mass transport model: stationary partition function

$$\mathcal{Z}_N(M) = \int_0^\infty \prod_{i=1}^N dm_i \prod_{i=1}^N p(m_i) \,\delta\left(M - \sum_{i=1}^N m_i\right)$$

Fat tailed distribution	$e^{-m} < p(m) < \frac{1}{m^2}$	►►►►►►►►►►►►►►►►►►
----------------------------	---------------------------------	--------------------

'Nature of the condensate in mass transport models', Majumdar, Evans, Zia, PRL 94, 180601 (2006)

Partition function

 $\mathcal{Z}_N(M) \sim p(M)$

Whole sum is taken up by a single variable

$$M \sim m_i$$

Participation Ratio

$$Y_2(M) = \left\langle \frac{\sum_{i=1}^n m_i^2}{\left(\sum_{i=1}^N m_i\right)^2} \right\rangle$$

 $M < N\langle m \rangle \implies Y_2(M) \sim 1/N$ $M > N\langle m \rangle \implies Y_2(M) = \mathcal{O}(1)$

Linear statistic: from non-equilibrium ...

Important references

'Nature of the Condensate in Mass Transport Models'
(S.N. Majumdar, M.R. Evans, R. K. P. Zia, PRL 94, 180601, 2005)
'Constraint-Driven Condensation in Large Fluctuations of Linear Statistics'
(J. Stzavits-Nossan, M.R. Evans, S.N. Majumdar, PRL 112, 020602, 2014)

Some previous Non-equilibrium results 'Participation Ratio for Constraint-Driven Condensations with Superextensive Mass' (G. Gradenigo, E. Bertin, Entropy, 2017, arXiv:1708.08872)
'A First-Order Dynamical Transition for a Driven Run-and-Tumble particle'
(G. Gradenigo, S. N Majumdar, JSTAT, 2019, arXiv:1812.07819)

... to equilibrium statistical mechanics

'Localization in Discrete Non-Linear Schrödinger Equation'

SYSTEM DESCRIBED: BOSE-EINSTEIN CONDENSATE in a periodic potential (optical traps)

- 'Discrete solitons and breathers with dilute Bose-Einstein condensates ', Trombettoni, Smerzi, PRL 86, 2353 (2001)

- 'Discrete Breathers in Bose-Einstein Condensates', Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011)

- 'Non-equilibrium discrete non-linear Schrodinger equation', Iubini, Lepri, Politi, Phys. Rev. E 86, 011108 (2012)

Linear statistic: from non-equilibrium ...

Important references

'Nature of the Condensate in Mass Transport Models'
(S.N. Majumdar, M.R. Evans, R. K. P. Zia, PRL 94, 180601, 2005)
'Constraint-Driven Condensation in Large Fluctuations of Linear Statistics'
(J. Stzavits-Nossan, M.R. Evans, S.N. Majumdar, PRL 112, 020602, 2014)

Some previous Non-equilibrium results 'Participation Ratio for Constraint-Driven Condensations with Superextensive Mass' (G. Gradenigo, E. Bertin, Entropy, **2017, arXiv:1708.08872**)
'A First-Order Dynamical Transition for a Driven Run-and-Tumble particle'
(G. Gradenigo, S. N Majumdar, JSTAT, **2019, arXiv:1812.07819**)

... to equilibrium statistical mechanics

'Localization in Discrete Non-Linear Schrödinger Equation'

'Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation', G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, *EPJ-E* **44**, 1-6 (**2021**)

'Localization transition in the discrete nonlinear Schrödinger equation: ensembles inequivalence and negative temperatures', G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, *J. Stat. Mech.* 023201 (2021)

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical description of Bose-Einstein condensate

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{x})\right]\Psi(\mathbf{x}) - \frac{\nu}{2}|\Psi(\mathbf{x})|^2\Psi(\mathbf{x}) = 0$$

Gross-Pitaevskii Equation: non-linear equation for the **condensate wavefunction** 'order parameter' of a quantum transition (semiclassical approximation)

> Canonical conjugate variables

$$\Psi(\mathbf{x}) = \langle \hat{\psi}(\mathbf{x})
angle$$

Classical field

Expectation on ground state of quantum field

HAMILTONIANEQUILIBRIUM
STATISTICAL MECHANICSHamiltonian system
on a lattice $\mathcal{H} = \sum_{i=1}^{N} \Psi_i^* \Psi_{i+1} + \Psi_{i+1}^* \Psi_i + \frac{\nu}{2} \sum_{i=1}^{N} |\Psi_i|^4$

 $\{\Psi_i^*, \Psi_j\} = i \ \delta_{ij}/\hbar \qquad i\dot{\Psi}_i = -\frac{\partial\mathcal{H}}{\partial\Psi_i^*}$

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\langle \hat{\psi} \rangle = \psi(x_i, t) = \psi_i(t)$

$$i \frac{\partial \psi_i}{\partial t} = -\frac{\partial \mathcal{H}}{\partial \psi_i^*} = -(\psi_{i+1} + \psi_{i-1}) - \nu |\psi_i|^2 \psi_i$$

ENERGY (conserved)	PARTICLES NUMBER (conserved)
$\mathcal{H} = \sum_{i=1}^{N} (\psi_i^* \psi_{i+1} + \psi_i \psi_{i+1}^*) + \frac{\nu}{2} \sum_{i=1}^{N} \psi_i ^4$	$A = \sum_{i=1}^{N} \psi_i ^2$

PHENOMENON $|\psi_i|^2$ $\mathcal{H} =$ Condensate wavefunction localized at high enegies (numerical evidences)

$$\mathcal{H} = E < E_c \qquad |\psi_i|^2 \qquad \mathcal{H} = E > E_c$$

WHICH KIND OF PHASE TRANSITION ?
 WHICH STATISTICAL ENSEMBLE?
 LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)
 IS DISORDER NECESSARY FOR LOCALIZATION?

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\langle \hat{\psi} \rangle = \psi(x_i, t) = \psi_i(t)$

$$i \frac{\partial \psi_i}{\partial t} = -\frac{\partial \mathcal{H}}{\partial \psi_i^*} = -(\psi_{i+1} + \psi_{i-1}) - \nu |\psi_i|^2 \psi_i$$

ENERGY (conserved)	PARTICLES NUMBER (conserved)
$\mathcal{H} = \sum_{i=1}^{N} (\psi_i^* \psi_{i+1} + \psi_i \psi_{i+1}^*) + \frac{\nu}{2} \sum_{i=1}^{N} \psi_i ^4$	$A = \sum_{i=1}^{N} \psi_i ^2$

PHENOMENON Condensate wavefunction localized at high enegies

(numerical evidences)

$$|\psi_i|^2 \qquad \mathcal{H} = E < E_c \qquad |\psi_i|^2 \qquad \mathcal{H} = E > E_c$$

The 'Fundamental Ensemble' : MICROCANONICAL

Microcanonical Partition function

$$\Omega_N(A, E) = \int \prod_{i=1}^N d\psi_i \,\,\delta(A - \sum_{i=1}^N |\psi_i|^2) \,\,\delta\left(E - \mathcal{H}[\psi_i^*, \psi_i]\right)$$

Particle number conservation Energy conservation

DNLSE theory: equilibrium stat mech state of the art

'Statistical Mechanics of a Discrete Non-Linear System',

K.O. Rasmussen, T. Cretegny, P.G. Kevridis, N. Gronbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)

Grand Canonical
$$\mathcal{Z}_N(\mu,\beta) = \int_0^\infty dA \ dE \ e^{-\beta E - \mu A} \ \Omega_N(A,E)$$

Grand Canonical: exact solution with trasfer matrix techniques!

Transition line at **infinite** temperature: $\beta = 0$

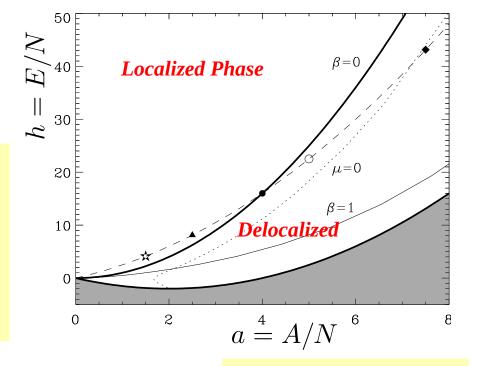
Microcanonical

 $h = 2 a^2$

PROBLEM

Many numerical evidences that the localized phase has negative temperature, T<0

'Discrete Breathers and Negative-Temperature States', S. Iubini, R. Franzosi, R. Livi, G.-L. Oppo, A. Politi, *New J. Phys.* **15**, 023032 **(2013)**



HOW CAN $\beta < 0$ BE CONSISTENT WITH $e^{-\rho H}$? \longrightarrow IT (

Discrete Non-Linear Schrödinger Equation (DNLS)

 $\langle \hat{\psi} \rangle = \psi(x_i, t) = \psi_i(t)$ *Condensate wave-function* (order parameter)

$$i \frac{\partial \psi_i}{\partial t} = -\frac{\partial \mathcal{H}}{\partial \psi_i^*} = -(\psi_{i+1} + \psi_{i-1}) - \nu |\psi_i|^2 \psi_i$$

ENERGY (conserved)	PARTICLES NUMBER (conserved)
$\mathcal{H} = \sum_{i=1}^{N} (\psi_i^* \psi_{i+1} + \psi_i \psi_{i+1}^*) + \frac{\nu}{2} \sum_{i=1}^{N} \psi_i ^4$	$A = \sum_{i=1}^{N} \psi_i ^2$

 $|\psi_i|^2$ **PHENOMENON Condensate wavefunction** localize at high enegies (numerical evidences)

$$\mathcal{H} = E < E_c \qquad |\psi_i|^2 \qquad \mathcal{H} = E > E_c$$

ONLY THE MICROCANONICAL IS CORRECT: GO FOR IT!

$$\Omega_N(A, E) = \int \prod_{i=1}^N d\psi_i \,\,\delta\left(A - \sum_{i=1}^N |\psi_i|^2\right) \,\,\delta\left(E - \sum_{i=1}^N |\psi_i|^4\right)$$
ns

Neglect hopping tern (a-posteriori argument)

Particle number conservation Energy conservation

WHEN ENSEMBLES ARE EQUIVALENT

$$\mathcal{Z}_{N}(\mu,\beta) = \int_{0}^{\infty} dA \ dE \ e^{-\mu A} \ e^{-\beta E} \ \Omega_{N}(A,E) = \int \prod_{i=1}^{N} d\psi_{i} \ e^{-\mu \sum_{i=1}^{N} |\psi_{i}|^{2}} \ e^{-\beta \sum_{i=1}^{N} |\psi_{i}|^{4}}$$

$$\mathcal{I}_{aplace \ Transform} \qquad = [\mathcal{Z}(\mu,\beta)]^{N}$$
When are they equivalent?
$$\Omega_{N}(A,E) = \int_{\mu_{0}-i\infty}^{\mu_{0}+i\infty} d\mu \int_{\beta_{0}-i\infty}^{\beta_{0}+i\infty} d\beta \ e^{\mu A+\beta E+N\log \mathcal{Z}(\mu,\beta)}$$

$$\mathcal{Z}(\mu,\beta) = 2\pi \int_{0}^{\infty} dr \ r \ e^{-(\mu r^{2}+\beta r^{4})} \qquad \psi = re^{i\phi}$$

$$d\psi = d\varphi \ dr \ r$$

EQUIVALENCE IS WHEN, FOR FIXED A AND E, YOU HAVE REAL SOLUTIONS β_0 AND μ_0 FOR SADDLE-POINT EQUATIONS

$$\Omega_N(A, E) = \exp \left\{ \mu_0 A + \beta_0 E + N \log \mathcal{Z}(\mu_0, \beta_0) \right\}$$
$$\beta_0, \mu_0 \in \mathbb{R}$$

$$\frac{A}{N} = -\frac{\partial}{\partial\mu} \log[\mathcal{Z}(\mu,\beta)] = \frac{\langle \mathcal{A} \rangle_{\beta_0,\mu_0}}{N}$$
$$\frac{E}{N} = -\frac{\partial}{\partial\beta} \log[\mathcal{Z}(\mu,\beta)] = \frac{\langle \mathcal{H} \rangle_{\beta_0,\mu_0}}{N}$$

WHY ENSEMBLES ARE NOT EQUIVALENT

$$\begin{aligned}
 \mathcal{Z}_{N}(\mu,\beta) &= \int_{0}^{\infty} \frac{dA \ dE \ e^{-\mu A} \ e^{-\beta E} \ \Omega_{N}(A,E)}{\mathsf{Micro-Canonical}} &= \int_{i=1}^{N} d\psi_{i} \ e^{-\mu \sum_{i=1}^{N} |\psi_{i}|^{2}} \ e^{-\beta \sum_{i=1}^{N} |\psi_{i}|^{4}} \\
 \mathcal{Z}(\mu,\beta) &= 2\pi \int_{0}^{\infty} dr \ r \ e^{-(\mu r^{2} + \beta r^{4})} &= \frac{e^{\mu^{2}/(4\beta)} \sqrt{\pi} \ \mu \ \mathrm{Erfc}\left(\frac{\mu}{2\sqrt{\beta}}\right)}{2\sqrt{\beta}} \\
 \Omega_{N}(A,E) &= \int_{\mu_{0}-i\infty}^{\mu_{0}+i\infty} d\mu \int_{\beta_{0}-i\infty}^{\beta_{0}+i\infty} d\beta \ e^{\mu A + \beta E + N \log \mathcal{Z}(\mu,\beta)} \\
 \overline{E} > E_{\mathrm{th}} \implies \mathbf{No \ real \ saddle \ point} \\
 \mathrm{Must \ take \ analytic \ prolungation} \\
 \lim_{\beta_{0}\to0} \langle \mathcal{H} \rangle_{\beta_{0},\mu_{0}} &= E_{\mathrm{th}} < \infty \\
 \frac{E}{N} &= -\frac{\partial}{\partial\beta} \log[\mathcal{Z}(\mu,\beta)] &= \frac{\langle \mathcal{H} \rangle_{\beta_{0},\mu_{0}}}{N}
 \end{aligned}$$

WHY ENSEMBLES ARE NOT EQUIVALENT

$$\mathcal{Z}_N(\mu,\beta) = \int_0^\infty dA \ dE \ e^{-\beta E - \mu A} \ \Omega_N(A,E) = \left[\int d\psi \ e^{-\mu|\psi|^2 - \beta|\psi|^4}\right]^N$$

Grand-Canonical

Every degree of freedom contributes identically to the partition function

$$E > E_{
m th} \implies LOCALIZATION$$
 Our Microcanonical Calculation
 $\lim_{\substack{\beta_0 \to 0 \\ \mu_0 = 1/a}} \langle \mathcal{H} \rangle_{\beta_0,\mu_0} = E_{
m th} < \infty$ $E_{
m th} = 2A^2$
(a-posteriori argument to neglect hopping terms)

Sketchy mechanism of localization $E > E_{\rm th}$

1) Cannot reach such energy by equal sharing among d.o.f.

2) The amount $E_{\rm th}$ is identically distributed among the degrees of freedom (infinite temperature background)

3) Excess energy is put into the localized phase

$$|\psi_i|^2$$
 $\Delta E = E - E_{\rm th}$

THE LARGE DEVIATIONS APPROACH

$$\begin{array}{ll} \textbf{Microcanonical} \\ \textbf{Ensemble} \end{array} \quad \Omega_N(A, E) = \int \prod_{i=1}^N d\psi_i \ \delta\left(A - \sum_{i=1}^N |\psi_i|^2\right) \ \delta\left(E - \sum_{i=1}^N |\psi_i|^4\right) \end{array}$$

Release constraint on 'particle number'

$$\Omega_N(\mu, E) = \int \prod_{i=1}^n d\psi_i \ e^{-\mu \sum_{i=1}^N |\psi_i|^2} \delta\left(E - \sum_{i=1}^N |\psi_i|^4\right)$$

Change of
$$\Omega_N(\mu, E) \approx \int \prod_{i=1}^n \left[d\varepsilon_i \; \frac{e^{-\mu\sqrt{\varepsilon_i}}}{\sqrt{\varepsilon_i}} \right] \delta\left(E - \sum_{i=1}^N \varepsilon_i \right)$$
 variables

1) $\psi = re^{i\phi}$ Partition Probability distribution of 2) $r_i^4 = \varepsilon_i$ Function Function Fat tailed variables sum

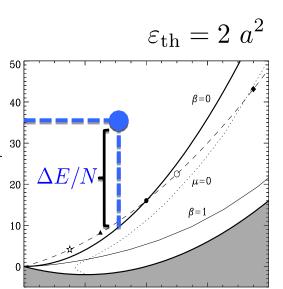
$$e^{-\varepsilon_i} < \frac{e^{-\mu\sqrt{\varepsilon_i}}}{\sqrt{\varepsilon_i}} < \frac{1}{\varepsilon_i^2}$$
 \longrightarrow Localization $E > N\langle \varepsilon \rangle_\mu = E_{\rm th}$

$$\Omega_N(\mu, E) \sim \frac{e^{-\mu\sqrt{E-E_{\rm th}}}}{\sqrt{E-E_{\rm th}}}$$

Microcanonical Entropy

$$S_N(A, E) = k \log[\Omega_N(A, E)]$$

The first, the one ... and the ONLY



= E/N

ω

0

$$a \stackrel{_{2}}{=} A/N^{_{6}}$$

8

 $\Delta E = E - E_{\rm th}$

Localized Phase Entropy

$$S_N(A, E) = \Sigma_0(A) + \Sigma_1(E, A)$$

Background Entropy (energy indipendent)

$$\Sigma_0(A) = N[1 + \log(\pi a)]$$

Microcanonical Entropy

$$S_N(A, E) = N[1 + \log(\pi a)] + \Sigma_1(\Delta E, A)$$

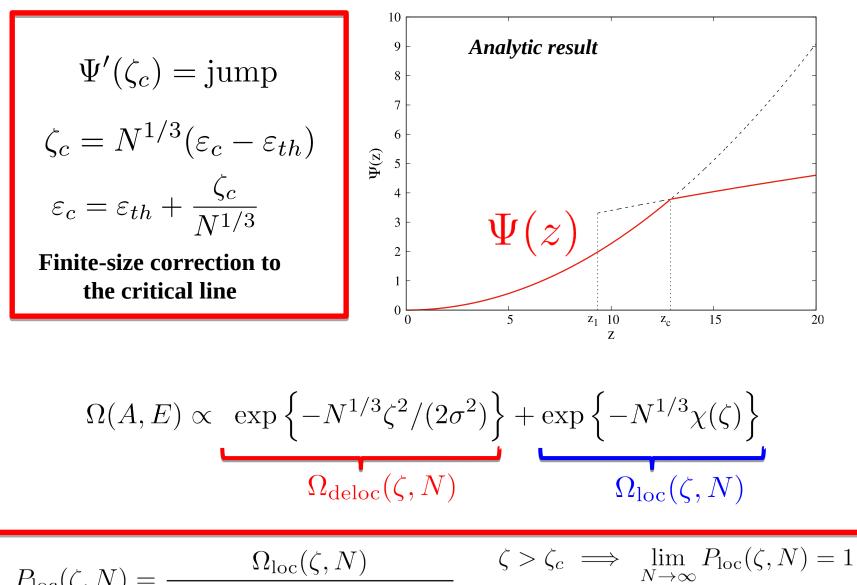
Homogeneous background ENTROPY (EXTENSIVE) Localized Phase ENTROPY (SUBEXTENSIVE)

$$\begin{aligned} & \text{Three regimes} \quad \varepsilon = E/N \\ & \Sigma_1(E, A) = \begin{cases} -\frac{N}{2\sigma^2} (\varepsilon - \varepsilon_{\text{th}})^2 & \text{Gaussian} & \varepsilon - \varepsilon_{\text{th}} \sim 1/\sqrt{N} \\ -N^{1/3} \Psi(\zeta) & \text{Matching} & \varepsilon - \varepsilon_{\text{th}} \sim 1/N^{1/3} \\ -N^{1/2} \sqrt{\varepsilon - \varepsilon_{\text{th}}} & \text{Large Deviations} & \varepsilon - \varepsilon_{\text{th}} \sim 1 \\ \varepsilon_{\text{th}} = 2 \ a^2 & \zeta = N^{1/3} (\varepsilon - \varepsilon_{\text{th}}) \end{aligned}$$

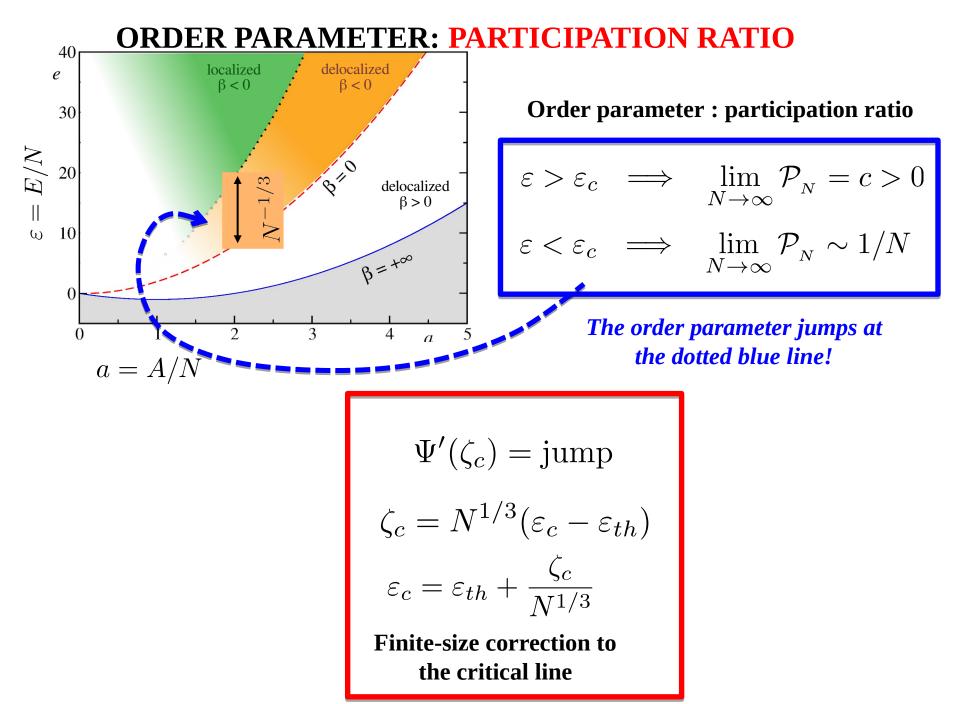
$$\begin{split} \Psi'(\zeta_c) &= \operatorname{jump} \\ \zeta_c &= N^{1/3}(\varepsilon_c - \varepsilon_{th}) \\ \varepsilon_c &= \varepsilon_{th} + \frac{\zeta_c}{N^{1/3}} \\ \text{Finite-size correction to the critical line} \\ \end{split}$$

$$\begin{aligned} & = -\frac{N}{2\sigma^2}(\varepsilon - \varepsilon_{th})^2 \\ & = -N^{1/3}\Psi(\zeta) \\ & = -N^{1/3}\Psi(\zeta) \\ & = -N^{1/3}\Psi(\zeta) \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th})^2 \\ & = -\varepsilon_{th} \sim 1/N^{1/3} \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th}) \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th}) \\ & = -\varepsilon_{th} \sim 1/N^{1/3} \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th}) \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th}) \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th}) \\ & = -\varepsilon_{th} \sim 1 \\ & = -\varepsilon_{th} \sim 1 \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th}) \\ & = -\varepsilon_{th} \sim 1 \\ & = -\varepsilon_{th} \sim 1 \\ & = -\varepsilon_{th} \sim 1 \\ & = -N^{1/3}(\varepsilon - \varepsilon_{th}) \\ & = -\varepsilon_{th} \sim 1 \\ & = -\varepsilon_{t$$

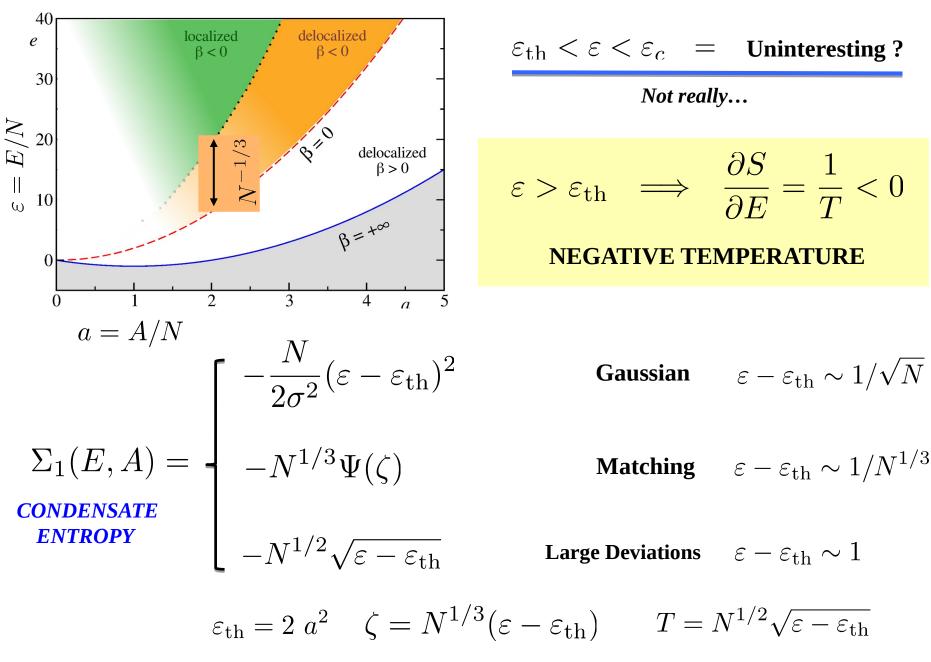
FIRST-ORDER MECHANISM



$$\int_{\text{loc}}(\zeta, N) = \frac{N \to \infty}{\Omega_{\text{loc}}(\zeta, N) + \Omega_{\text{deloc}}(\zeta, N)} \qquad \zeta < \zeta_c \implies \lim_{N \to \infty} P_{\text{loc}}(\zeta, N) = 0$$



NEGATIVE TEMPERATURE – SUBEXTENSIVE ENTROPY



$$\Psi'(\zeta_c) = \operatorname{jump}$$

Order Parameter = Participation Ratio

 $\begin{aligned} \varepsilon &> \varepsilon_c \implies \lim_{N \to \infty} \mathcal{P}_N = c > 0 \\ \varepsilon &< \varepsilon_c \implies \lim_{N \to \infty} \mathcal{P}_N \sim 1/N \end{aligned}$ $\mathcal{P}_{N} = \left\langle \frac{\sum_{i=1}^{N} \varepsilon_{i}^{2}}{\left(\sum_{i=1}^{N} \varepsilon_{i}\right)^{2}} \right\rangle_{micro}$ **'Pseudo-condensate'** Localization $\varepsilon_{th} < \varepsilon < \varepsilon_c \qquad \varepsilon > \varepsilon_c$ $\varepsilon < \varepsilon_{th}$ $\lim_{N\to\infty}\mathcal{P}_N$ 1/N1/NС > 0 $T^{-1} = \partial S / \partial E$ < 0< 0

Ensembles inequivalence

Consistent with non-analyticity of Entropy

$$\Psi'(\zeta_c) = \operatorname{jump}$$

Order Parameter = Participation Ratio

rder Parameter = Participation Ratio
$$\varepsilon > \varepsilon_c \implies \lim_{N \to \infty} \mathcal{P}_N = c > 0$$
 $\mathcal{P}_N = \left\langle \frac{\sum_{i=1}^N \varepsilon_i^2}{\left(\sum_{i=1}^N \varepsilon_i\right)^2} \right\rangle_{micro}$ $\varepsilon < \varepsilon_c \implies \lim_{N \to \infty} \mathcal{P}_N \sim 1/N$ $\mathcal{P}_N = \left\langle \varepsilon_{th} = \varepsilon_{th} \right\rangle^2$ $\mathcal{P}_{th} < \varepsilon < \varepsilon_c \implies \varepsilon_c$ $\lim_{N \to \infty} \mathcal{P}_N = 1/N$ $1/N$ $1/N$ $\tau^{-1} = \partial S/\partial E$ > 0 < 0 Ergodicity breaking ?

Consistent with non-analyticity of Entropy

$$\varepsilon_c = \varepsilon_{th} + \frac{\zeta_c}{N^{1/3}}$$

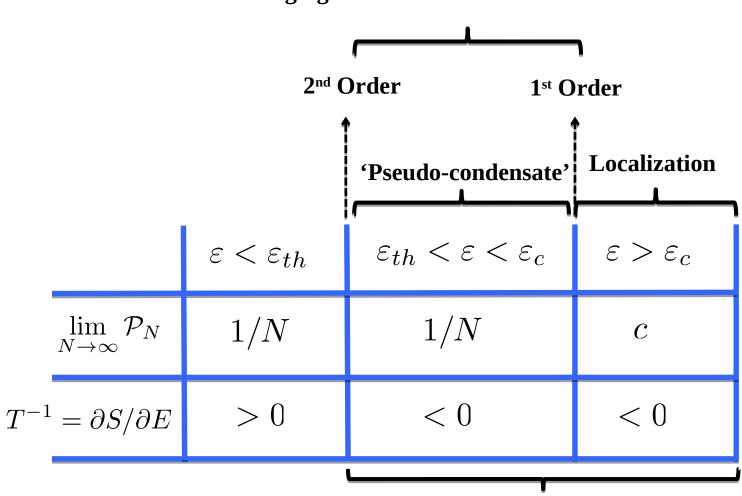
In the thermodynamic limit the two values coincide and the order parameter is continuous at the transition **Consistent with non-analyticity of Entropy**

$$\varepsilon > \varepsilon_c \implies \lim_{N \to \infty} \mathcal{P}_N = (\varepsilon - \varepsilon_{th})^2 / \varepsilon^2$$

 $\varepsilon < \varepsilon_c \implies \lim_{N \to \infty} \mathcal{P}_N \sim 1/N$

transitionPseudo-condensate'Localization
$$\varepsilon < \varepsilon_{th}$$
 $\varepsilon < \varepsilon_c$ $\varepsilon_{th} < \varepsilon < \varepsilon_c$ $\varepsilon > \varepsilon_c$ $\lim_{N \to \infty} \mathcal{P}_N$ $1/N$ $1/N$ c $T^{-1} = \partial S/\partial E$ > 0 < 0 < 0

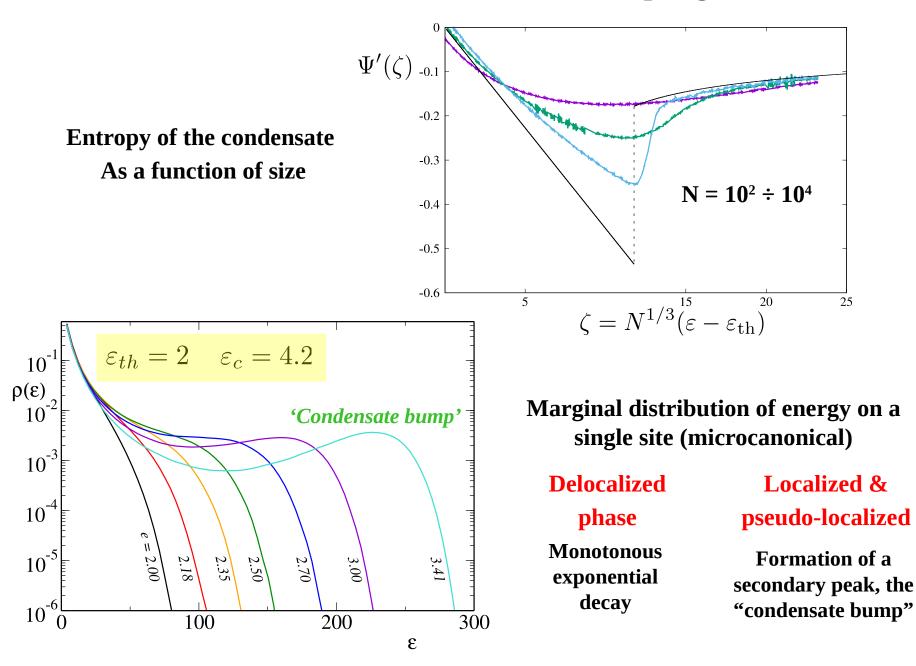
Ergodicity breaking ?



Merging at $N=\infty$ into a mixed-order transition?

Ergodicity breaking ?

FINALLY SOME FIGURES : Monte Carlo sampling of rare events



Discrete Non-Linear Schrödinger Equation (DNLSE)

QUITE OFTEN LOCALIZATION IS RELATED TO INTEGRABILITY **'Integrals of motion in the many-body localized phase',** Valentina Ros, M. Müller, A. Scardicchio, *Nuclear Physics B* **891**, 420-465 **(2015)**

They compute explicitly the N integrals of motion!

ENERGY (conserved) $\mathcal{H} = \sum_{i=1}^{N} (\psi_i^* \psi_{i+1} + \psi_i \psi_{i+1}^*) + \frac{\nu}{2} \sum_{i=1}^{N} |\psi_i|^4 \qquad A = \sum_{i=1}^{N} |\psi_i|^2$

PHENOMENON Condensate wavefunction localized at high enegies (numerical evidences)

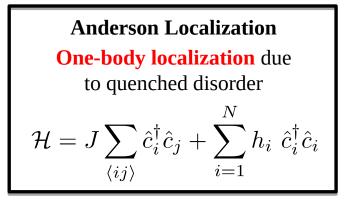
$$|\psi_i|^2 \qquad \mathcal{H} = E < E_c \qquad |\psi_i|^2 \qquad \mathcal{H} = E > E_c$$

FIRST ORDER!MICROCANONICAL1) WHICH KIND OF PHASE TRANSITION ?2) WHICH STATISTICAL ENSEMBLE?

3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion) NO!

4) IS **DISORDER** NECESSARY FOR LOCALIZATION? **NO!**

Discrete Non-Linear Schrödinger Equation (DNLSE)



Many-body Localization (MBL)
Disorder + many-body interactions.
$$\mathcal{H} = J \sum_{\langle ij \rangle} \hat{c}_i^{\dagger} \hat{c}_j + \sum_{i=1}^N h_i \ \hat{c}_i^{\dagger} \hat{c}_i + k \sum_{i=1}^N \hat{c}_i^{\dagger} \hat{c}_i \ \hat{c}_{i+1}^{\dagger} \hat{c}_{i+1}$$

STATE of THE ART 1) Localized phase is stable with respect to (weak) non-linearities.
 2) Role of disorder in presence of many-body interactions?
 3) Does localization survives without disorder?

This work	1) We do find localization in absence of disorder! (known numerically)
contribution	2) NON-LINEAR terms (many-body) are the source of localization! (outcome of the exact calculation)

What about Localization of Glassy Light in Random Lasers?

'Glassines and the lack of equpartition in random lasers', G. Gradenigo, F. Antenucci, L. Leuzzi, Phys. Rev. Research 2, 023399 (2020)

'Universality class in the mode-locked random laser', J. Niedda, G. Gradenigo, L. Leuzzi, G. Parisi, *arXiv:2210.04362* (2022)

'Intensity pseudo-localized phase in the glassy random laser', J. Niedda, L. Leuzzi, G. Gradenigo, *arXiv:2212.05106* (2022).

Signatures of the pseudo-localized phase in spin glass model of random lasers

CONCLUSIONS - PERSPECTIVES

1) We provided the first fully consistent description of the **localization transition** in the Discrete Non-Linear Schrödinger Equation **(DNLSE)**

2) Localization in the DNLSD can only described within the Microcanonical Ensemble

3) We put in evidence the existence, at large but finite N, of a delocalized (presumably non ergodic) state at negative temperature, the **pseudo-condensate** (relevant for experiments). Further investigations: multifractal wave function: $I(q) = N \langle |\psi_i|^{2q} \rangle$

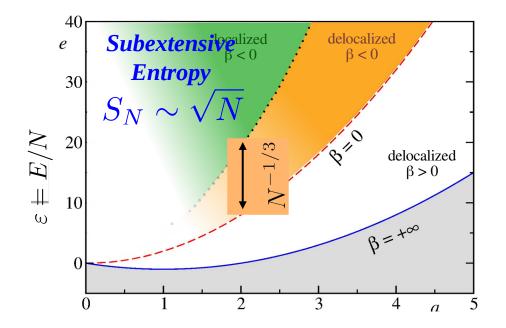
4) We clarified that the transition has a mixed first/second order, similarly to the ergodicity breaking transition in glasses (not spin glasses!): Random First-Order transition.
 Further investigations: pseudo-localization/localization in models of glasses (in progress).

5) We clarified a mechanism for localization/ergodicity-breaking in the strong-coupling regime:

- Not related to integrability (only two conserved quantities, perhaps **emergent** integrability?)

- Straighforwad extension to D > 1 (further investigations)

THANKS FOR YOUR ATTENTION



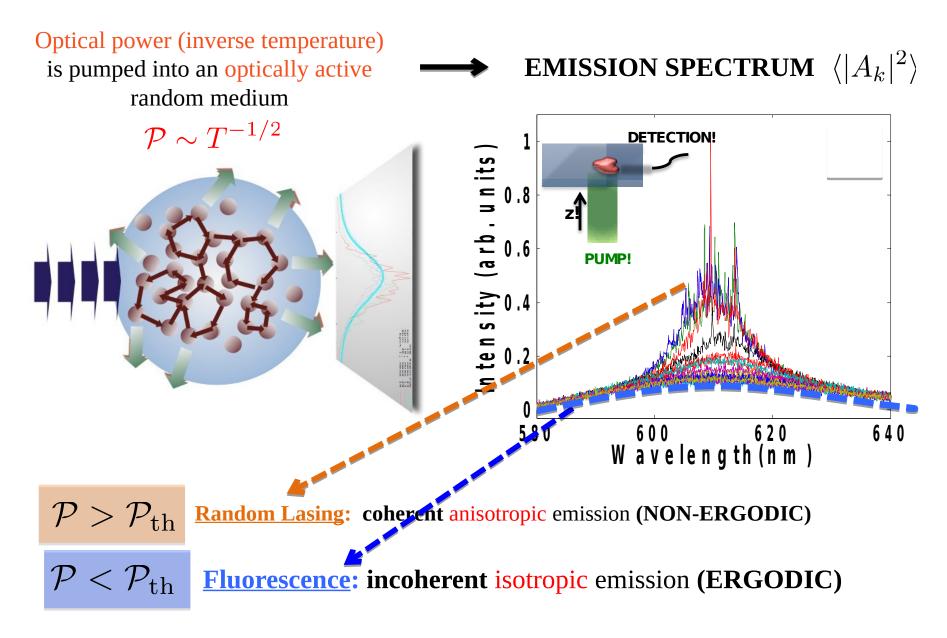
1) Microcanonical and canonical ensembles are not equivalent

2) Localization looks like a a mixed order transition in the microcanonical ensemble

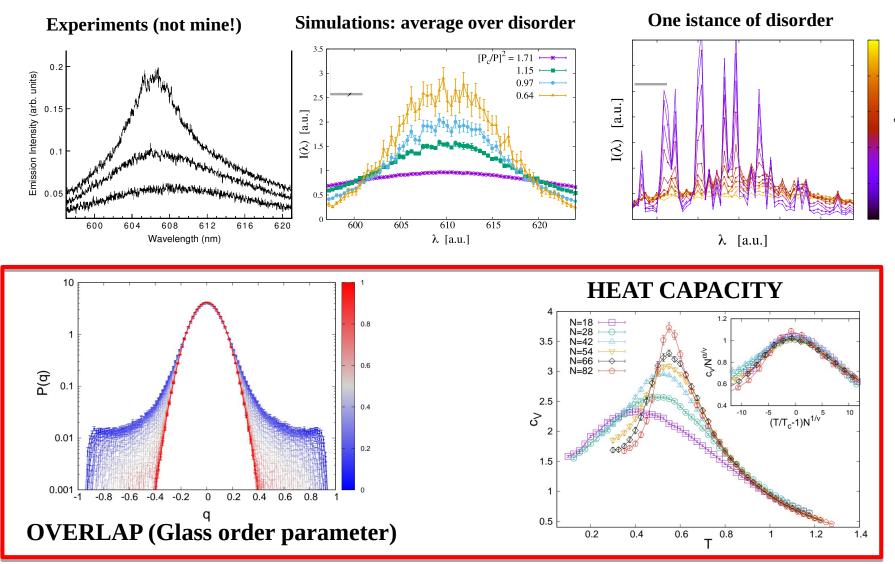
3) Negative temperature ONLY in microcanonical ensemble (zero for $N=\infty$).

4) Localized solution has subextensive entropy (area law?, entaglement?)

Phenomenon: from Fluorescence to Random Lasing

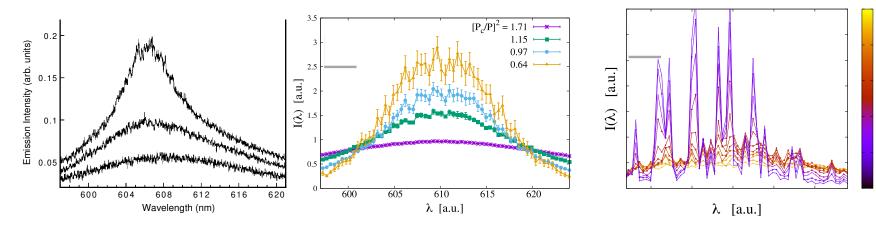


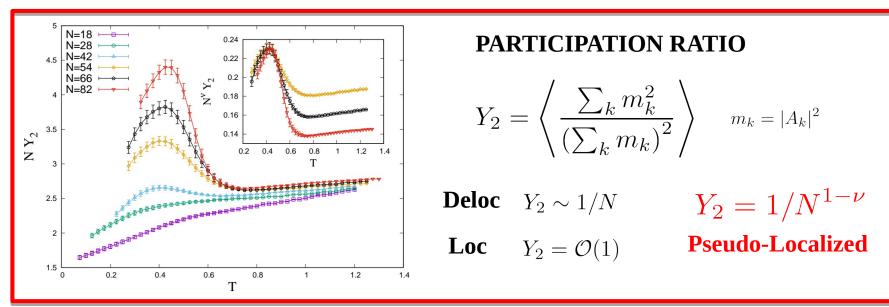
Glass Transition



'Universality class in the mode-locked random laser', J. Niedda, G. Gradenigo, L. Leuzzi, G. Parisi, *arXiv:2210.04362* (2022)

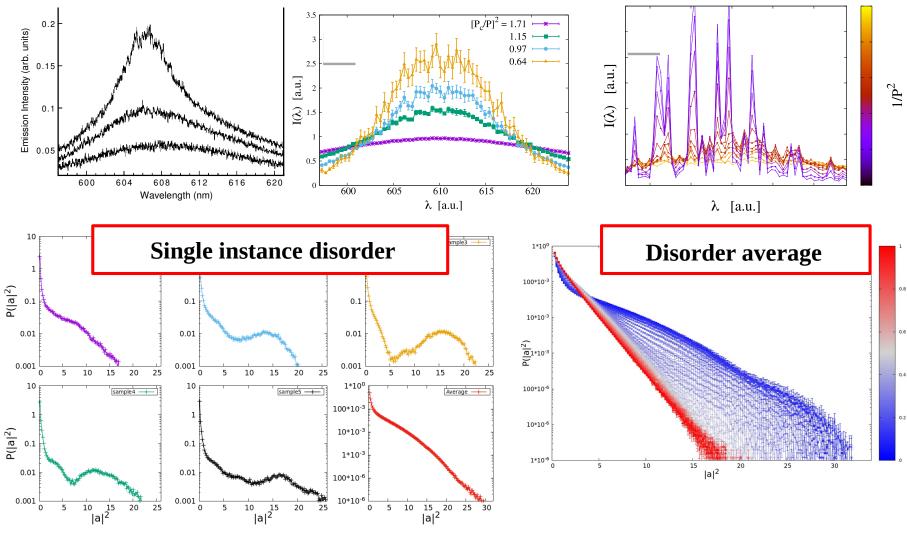
Glass phase in Random Lasers is pseudo-localized (no localization no equipartition)





'Pseudo-localized phase in the mode-locked p-spin', J. Niedda, L. Leuzzi, G. Gradenigo, *in preparation* (2022).

Glass phase in Random Lasers is pseudo-localized (no localization no equipartition)



'Pseudo-localized phase in the mode-locked p-spin', J. Niedda, L. Leuzzi, G. Gradenigo, *in preparation* (2022).

AMPLITUDE LOCAL MARGINALS

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$$\hat{H} = \int d^3x \; \hat{\psi}^{\dagger}(\mathbf{x}) \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}} \right] \hat{\psi}(\mathbf{x}) + \frac{4\pi\hbar^2 a_s}{2m} \int d^3x \; \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \hat{\psi}(\mathbf{x})$$

'Discrete Breathers in Bose-Einstein Condensates', Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011)

Second-quantization Hamiltonian of interacting bosons condensate

 $V(\mathbf{x} - \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y})$ Repulsive contact interactions

Bogoliubov approximation
$$\hat{\psi}(\mathbf{x}) = \Psi(\mathbf{x}) + \hat{\varphi}(\mathbf{x})$$

 $\Psi(\mathbf{x}) = \langle \hat{\psi}(\mathbf{x}) \rangle$ Condensate wave-function (c-number)
 $\hat{\varphi}(\mathbf{x}) = \hat{\psi}(\mathbf{x}) - \langle \hat{\psi}(\mathbf{x}) \rangle$ Deviation opeartor

Expand the Hamiltonian up to second order in powers of $\hat{\varphi}(\mathbf{x}), \ \hat{\varphi}^{\dagger}(\mathbf{x})$ (small quantum fluctuations around the mean-field solution)

$$\hat{H} = K_0 + \hat{K}_1 + \hat{K}_2 + \dots \qquad \hat{K}_1 = \mathcal{O}(\hat{\varphi}) \qquad \hat{K}_2 = \mathcal{O}(\hat{\varphi}^2)$$

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$$\hat{K}_1 = 0 \quad \longleftarrow \quad \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}}(\mathbf{x}) \right] \Psi(\mathbf{x}) - \frac{\nu}{2} |\Psi(\mathbf{x})|^2 \Psi(\mathbf{x}) = 0$$

Gross-Pitaevskii Equation: non-linear equation for the 'order parameter' of a quantum transition (semiclassical approximation)

Bogoliubov approximation $\hat{\psi}(\mathbf{x}) = \Psi(\mathbf{x}) + \hat{\varphi}(\mathbf{x})$ $\Psi(\mathbf{x}) = \langle \hat{\psi}(\mathbf{x}) \rangle$ Condensate wave-function (c-number) $\hat{\varphi}(\mathbf{x}) = \hat{\psi}(\mathbf{x}) - \langle \hat{\psi}(\mathbf{x}) \rangle$ Deviation opeartor

Expand the Hamiltonian up to second order in powers of $\hat{\varphi}(\mathbf{x}), \ \hat{\varphi}^{\dagger}(\mathbf{x})$ (small quantum fluctuations around the mean-field solution)

$$\hat{H} = K_0 + \hat{K}_1 + \hat{K}_2 + \dots \qquad \hat{K}_1 = \mathcal{O}(\hat{\varphi}) \qquad \hat{K}_2 = \mathcal{O}(\hat{\varphi}^2)$$

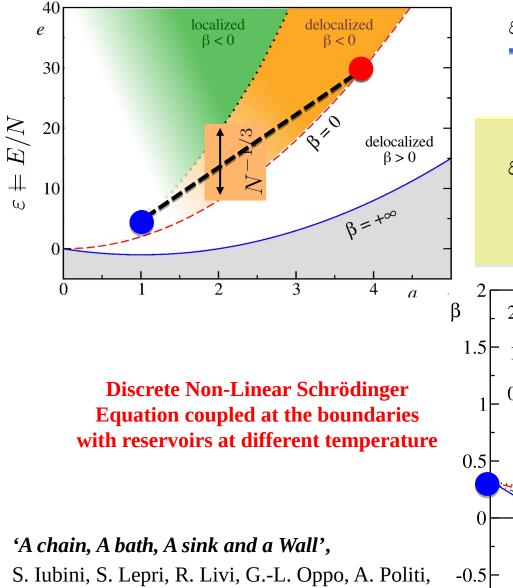
Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$$\hat{K}_1 = 0 \quad \longleftarrow \quad \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}}(\mathbf{x}) \right] \Psi(\mathbf{x}) - \frac{\nu}{2} |\Psi(\mathbf{x})|^2 \Psi(\mathbf{x}) = 0$$

Gross-Pitaevskii Equation: non-linear equation for the 'order parameter' of a quantum transition (semiclassical approximation)

$$\begin{split} V_{\text{ext}}(\mathbf{x}) &= \frac{\hbar^2 \omega^2}{4E_r} \sin^2(k_{\text{L}}x) + \frac{m\Omega^2}{2} \left(y^2 + z^2\right) & \text{Effectively on a} \\ \text{Periodic modulation - x} & \text{Harmonic traps (y,z)-plane} \end{split}$$

PROBING THE NEGATIVE TEMPEATURE



Entropy (2017)

n/N

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\langle \hat{\psi} \rangle = \psi(x_i, t) = \psi_i(t)$

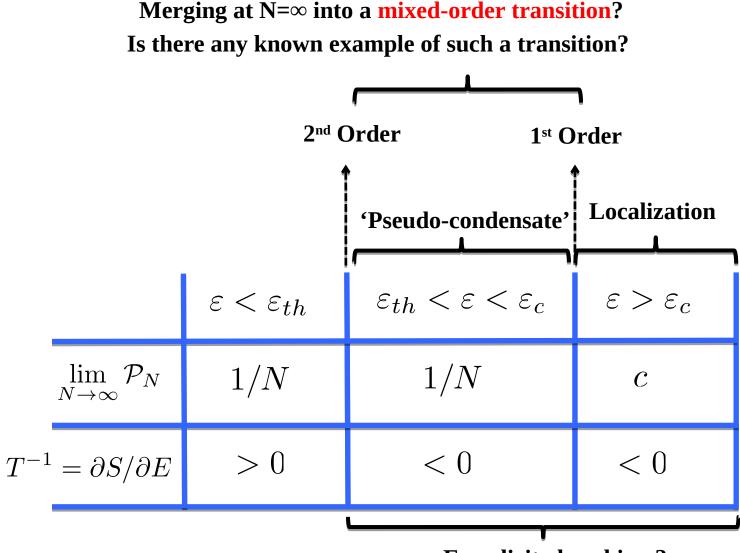
$$i \frac{\partial \psi_i}{\partial t} = -\frac{\partial \mathcal{H}}{\partial \psi_i^*} = -(\psi_{i+1} + \psi_{i-1}) - \nu |\psi_i|^2 \psi_i$$

ENERGY (conserved)	PARTICLES NUMBER (conserved)
$\mathcal{H} = \sum_{i=1}^{N} (\psi_i^* \psi_{i+1} + \psi_i \psi_{i+1}^*) + \frac{\nu}{2} \sum_{i=1}^{N} \psi_i ^4$	$A = \sum_{i=1}^{N} \psi_i ^2$

PHENOMENON
Condensate wavefunction
localized at high enegies
(numerical evidences) $|\psi_i|^2$ $\mathcal{H} = E < E_c$
i $|\psi_i|^2$ $\mathcal{H} = E > E_c$

WHICH KIND OF PHASE TRANSITION ?
 WHICH STATISTICAL ENSEMBLE?
 LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)
 IS DISORDER NECESSARY FOR LOCALIZATION?

ORDER PARAMETER: PARTICIPATION RATIO



Ergodicity breaking ?

A VERY WELL KNOWN MIXED ORDER TRANSITION: RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION

7. 7

P-spin model
$$\mathcal{H} = -\sum_{ijkl} J_{ijkl} \sigma_i \sigma_j \sigma_k \sigma_l$$
 $\sum_{i=1}^N \sigma_i^2 = N$ #-interactions = N^4 $J_{ijkl} =$ iid Gaussian variates $\langle J^2 \rangle \sim N^{-3}$

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

IMPORTANT SIMILARITIES WITH DNLS

- Locally unbounded continuous variables
- ✓ Non-linear interactions
- Global spherical constraint

... NOT SHARED BY MODELS LIKE SHERRINGTON-KIRKPATRICK

- ✓ Discrete spins
- Linear interactions

A VERY WELL KNOWN MIXED ORDER TRANSITION: RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION

$$\begin{array}{ll} \textbf{P-spin model} & \mathcal{H}=-\sum_{ijkl}J_{ijkl}\sigma_i\sigma_j\sigma_k\sigma_l & \sum_{i=1}^N\sigma_i^2=N\\ & \\ \text{\#-interactions}=N^4 & J_{ijkl}= \text{ iid Gaussian variates } & \langle J^2\rangle\sim \end{array}$$

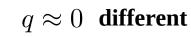
GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

FIRST-ORDER FEATURES

Order Parameter: OVERLAP =

Similarity among two configurations chosen at random in the equilibrium ensemble

$$q^{\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^{\alpha} \sigma_i^{\beta}$$



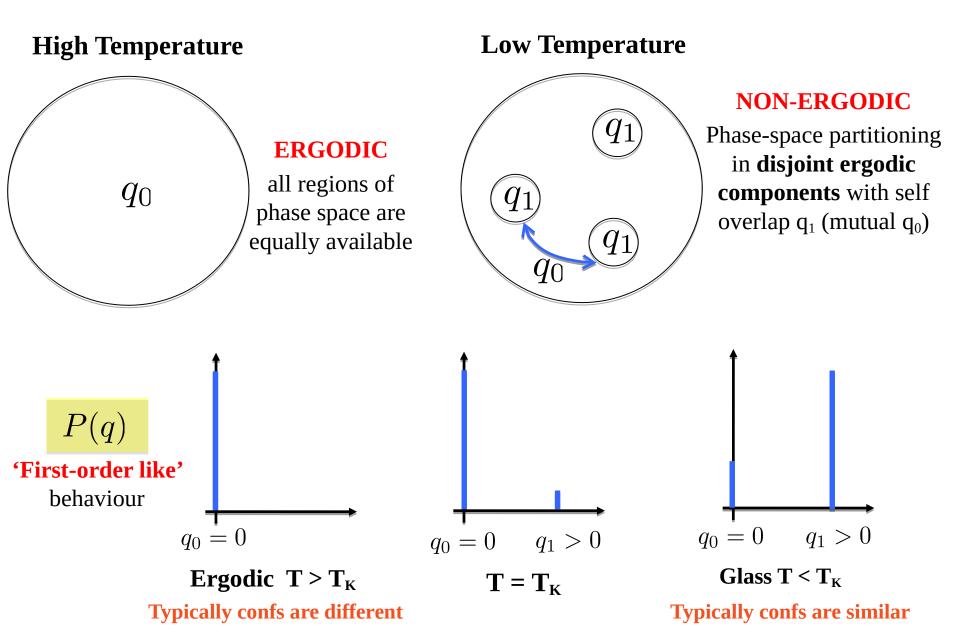
q pprox 1 similar

Can be measured in simulations

 N^{-3}

$$P(q) = (1 - m) \ \delta(q - q_1) + m \ \delta(q - q_0)$$

Ergodicity Breaking: Parisi's order parameter

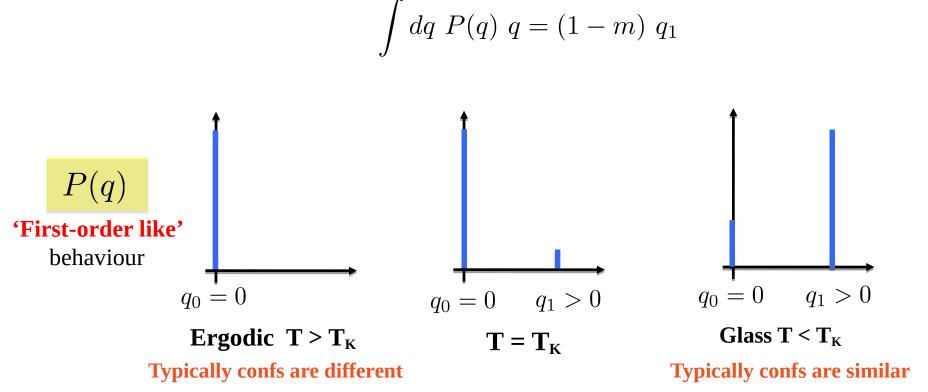


Ergodicity Breaking: Parisi's order parameter

...BUT STILL IS NOT A FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE $\mathbf{T}_{\mathbf{K}}$

- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE TRANSITION

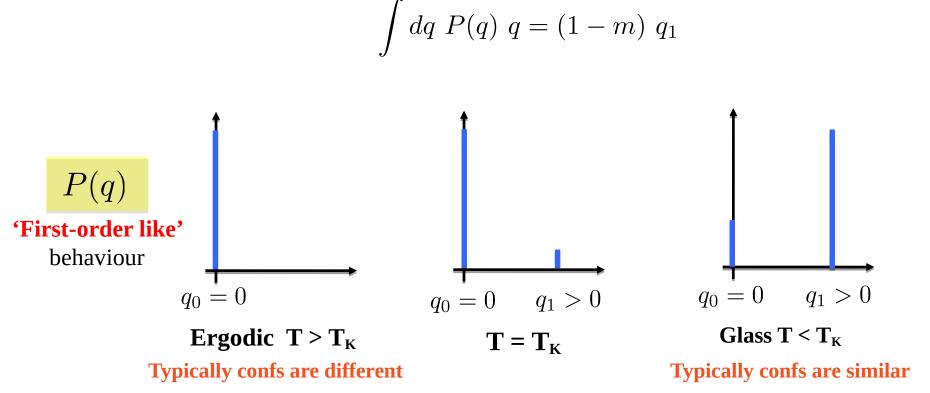


Ergodicity Breaking: Parisi's order parameter

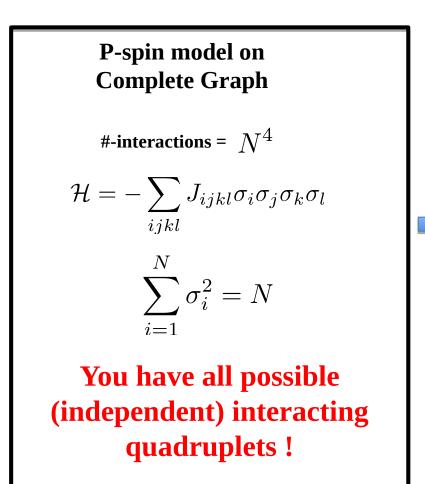
RANDOM FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE \mathbf{T}_{K}

- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE TRANSITION



What about localization in Glasses?



Partition function is dominated by homogeneous solutions (replica theory)

$$q^{\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^{\alpha} \sigma_i^{\beta}$$

lpha, eta replica indices Replicas : independent equilibrium configurations samples with identical disorder

RANDOM LASER : a possible benchmark for glass+localization transition

ΛT

1) Modes of electromagnetic field in a disordered cavity $A_k(t) = |A_k(t)| e^{i \varphi_k(t)}$

2) What we study: Stationary probability distribution. Numerical sampling

$$P[A_1, \dots, A_N] = e^{-\beta \mathcal{H}[A_1, \dots, A_N]} \delta\left(\epsilon N - \sum_{i=1}^N |A_k|^2\right)$$

$$\mathcal{H}[\mathbf{A}] = -\sum_{\langle ijkl \rangle_{\text{FMC}}} J_{ijkl} |A_i| |A_j| |A_k| |A_l| \cos(\varphi_i - \varphi_j + \varphi_k - \varphi_l)$$
Disorder: J_{ijkl} are Gaussian random variables

3) Selection rule for interacting modesFrequency Matching Conditiontypical of random lasers|i - j + k - l| = 0

DILUTION : not all the quadruples are interacting