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Summary

1) Large Deviations and Localization

2) Discrete Non-Linear Schrödinger Equation (DNLSE)

3) DNLSE: State of the art and the problem of ensembles

4) Localization mechanism

5) Ensemble inequivalence, negative temperature, order parameter

6) Open Directions and Conclusions



The ‘Linear Statistic’ problem

Linear Statistic Problem: probability distribution of a sum of random variables

Simple case: independent identically distributed random variables

Finite mean

Finite variance

Large Deviations

Central Limit Theorem

Rate function



‘Linear Statistic’ and Large Deviations

Simple case: independent identically distributed random variables

Finite mean

Finite variance

Fat tailed 
distribution

Localization

Whole sum is taken up 
by a single variable

Large Deviations

Linear Statistic Problem: probability distribution of a sum of random variables



‘Linear Statistic’ and Large Deviations

Fat tailed 
distribution

Localization

Mass transport model: stationary partition function

Whole sum is taken up by 
a single variable

Partition function

 ‘Nature of the condensate in mass transport models’, Majumdar, Evans, Zia, PRL 94, 180601 (2006) 

Participation Ratio



‘Localization in Discrete Non-Linear Schrödinger Equation’

‘Nature of the Condensate in Mass Transport Models’ 

(S.N. Majumdar, M.R. Evans, R. K. P. Zia, PRL 94, 180601, 2005)

‘Constraint-Driven Condensation in Large Fluctuations of Linear Statistics’  

(J. Stzavits-Nossan, M.R. Evans, S.N. Majumdar,  PRL 112, 020602, 2014)

Linear statistic: from non-equilibrium …

‘Participation Ratio for Constraint-Driven Condensations with Superextensive 
Mass’ (G. Gradenigo, E. Bertin, Entropy, 2017, arXiv:1708.08872)

Important 
references

Some previous 
Non-equilibrium

results

… to equilibrium statistical mechanics

SYSTEM DESCRIBED: BOSE-EINSTEIN CONDENSATE in a periodic potential (optical traps) 

- ‘Discrete solitons and breathers with dilute Bose-Einstein condensates ’, Trombettoni, Smerzi, PRL 86, 2353 (2001)

- ‘Discrete Breathers in Bose-Einstein Condensates’, Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011) 

- ‘Non-equilibrium discrete non-linear Schrodinger equation’, Iubini, Lepri, Politi, Phys. Rev. E 86, 011108 (2012)

 

‘A First-Order Dynamical Transition for a Driven Run-and-Tumble particle’ 

(G. Gradenigo, S. N Majumdar, JSTAT, 2019, arXiv:1812.07819)



‘Localization in Discrete Non-Linear Schrödinger Equation’

‘Nature of the Condensate in Mass Transport Models’ 

(S.N. Majumdar, M.R. Evans, R. K. P. Zia, PRL 94, 180601, 2005)

‘Constraint-Driven Condensation in Large Fluctuations of Linear Statistics’  

(J. Stzavits-Nossan, M.R. Evans, S.N. Majumdar,  PRL 112, 020602, 2014)

Linear statistic: from non-equilibrium …

‘Participation Ratio for Constraint-Driven Condensations with Superextensive 
Mass’ (G. Gradenigo, E. Bertin, Entropy, 2017, arXiv:1708.08872)

Important 
references

Some previous 
Non-equilibrium

results

… to equilibrium statistical mechanics

‘A First-Order Dynamical Transition for a Driven Run-and-Tumble particle’ 

(G. Gradenigo, S. N Majumdar, JSTAT, 2019, arXiv:1812.07819)

‘Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger 
equation’, G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, EPJ-E 44, 1-6 (2021)

‘Localization transition in the discrete nonlinear Schrödinger equation: ensembles inequivalence 
and negative temperatures’, G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, J. Stat. Mech. 023201 
(2021)



Discrete Non-Linear Schrödinger Equation (DNLSE)
A semiclassical description of Bose-Einstein condensate

Hamiltonian system 
on a lattice

Canonical conjugate 
variables

Gross-Pitaevskii Equation: non-linear equation for 
the condensate wavefunction ‘order parameter’ of 
a quantum transition (semiclassical approximation)

HAMILTONIAN EQUILIBRIUM 
STATISTICAL MECHANICS

Classical field Expectation on 
ground state of 
quantum field



Discrete Non-Linear Schrödinger Equation (DNLSE)

ENERGY (conserved)

Condensate wave-function (order parameter)

PHENOMENON 
Condensate wavefunction 
localized at high enegies

(numerical evidences)

1) WHICH KIND OF PHASE TRANSITION ?

PARTICLES NUMBER (conserved)

2) WHICH STATISTICAL ENSEMBLE?

3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)

4) IS DISORDER NECESSARY FOR LOCALIZATION?



Microcanonical

Partition function

Particle number conservation Energy conservation

The ‘Fundamental Ensemble’ : MICROCANONICAL

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter)

ENERGY (conserved) PARTICLES NUMBER (conserved)

PHENOMENON 
Condensate wavefunction 
localized at high enegies

(numerical evidences)



DNLSE theory: equilibrium stat mech state of the art

Microcanonical
Grand Canonical

Grand Canonical: exact solution with trasfer matrix techniques!

Delocalized

Localized Phase
Transition line at infinite temperature: 

PROBLEM

Many numerical evidences that the localized 
phase has negative temperature, T<0

‘Discrete Breathers and Negative-Temperature States’, 
 S. Iubini, R. Franzosi, R. Livi, G.-L. Oppo, A. Politi, 
New J. Phys. 15, 023032 (2013)

h = 2 a2

HOW CAN β<0 BE CONSISTENT WITH               ? IT CANNOT!

‘Statistical Mechanics of a Discrete Non-Linear System’, 

K.O. Rasmussen, T. Cretegny, P.G. Kevridis, N. Gronbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)



Neglect hopping terms 

(a-posteriori argument) Particle number conservation Energy conservation

ONLY THE MICROCANONICAL IS CORRECT: GO FOR IT!

Discrete Non-Linear Schrödinger Equation (DNLS)

Condensate wave-function (order parameter)

ENERGY (conserved) PARTICLES NUMBER (conserved)

PHENOMENON 
Condensate wavefunction 

localize at high enegies

(numerical evidences)



WHEN ENSEMBLES ARE EQUIVALENT

When are they 
equivalent? 

Grand-Canonical Micro-Canonical

Laplace Transform

EQUIVALENCE IS WHEN, FOR FIXED A AND E, YOU HAVE 
REAL SOLUTIONS b0 AND m0 FOR SADDLE-POINT EQUATIONS



WHY ENSEMBLES ARE NOT EQUIVALENT

Grand-Canonical Micro-Canonical

Laplace Transform

Branch-cut on 
negative real axis

No real saddle point

Must take analytic prolungation

High-temperature 
expansion is around a 

non-analytic point!



WHY ENSEMBLES ARE NOT EQUIVALENT

Grand-Canonical

LOCALIZATION Our Microcanonical Calculation

(a-posteriori argument to neglect hopping terms)

Sketchy mechanism of localization

1) Cannot reach such energy by equal sharing among d.o.f.

Every degree of freedom contributes 
identically to the partition function

2) The amount          is identically distributed among the 
degrees of freedom (infinite temperature background)

3) Excess energy is put into the localized phase



THE LARGE DEVIATIONS APPROACH

Microcanonical 
Ensemble

Release constraint on 
‘particle number’

Change of 
variables 

1) 

2) 

Partition 
Function = Probability distribution of 

fat tailed variables sum

Localization



THE MAIN RESULT: MICROCANONICAL ENTROPY

Microcanonical Entropy

Background Entropy (energy indipendent)

The first, the one … and the ONLY

Localized Phase Entropy



THE MAIN RESULT: MICROCANONICAL ENTROPY

Microcanonical Entropy

Gaussian

Matching

Large Deviations

Three regimes

CONDENSATE 
ENTROPY 

Localized Phase 

ENTROPY

(SUBEXTENSIVE)

Homogeneous background 

ENTROPY

(EXTENSIVE)



Gaussian

Matching

Large Deviations

Finite-size correction to 
the critical line

THE MAIN RESULT: MICROCANONICAL ENTROPY

CONDENSATE 
ENTROPY 

localized
β < 0

delocalized
 β < 0 

delocalized
β > 0

Equilibriummicrocanonical phasediagramof theDiscreteNon-Linear Schrödinger
Equation (DNLSE) in the (mass-energy) (a,e)-plane. Bluesolid and red dashed
lines correspond to theground stateand the infinite temperature isothermal
(β =0), respectively. Localized (green) and delocalized negative-temperature

(orange) regions aredrawn for a chain of N =100 latticesites. Black dots identify
the lineof critical energy densities for the localization transition.

Exact calculation 
of this function



Analytic result

FIRST-ORDER MECHANISM

Finite-size correction to 
the critical line



localized
β < 0

delocalized
 β < 0 

delocalized
β > 0

Equilibriummicrocanonical phasediagramof theDiscreteNon-Linear Schrödinger
Equation (DNLSE) in the (mass-energy) (a,e)-plane. Bluesolid and red dashed
lines correspond to theground stateand the infinite temperature isothermal
(β =0), respectively. Localized (green) and delocalized negative-temperature

(orange) regions aredrawn for a chain of N =100 latticesites. Black dots identify
the lineof critical energy densities for the localization transition.

Order parameter : participation ratio

The order parameter jumps at 
the dotted blue line!

ORDER PARAMETER: PARTICIPATION RATIO

Finite-size correction to 
the critical line



Gaussian

Matching

Large Deviations

Uninteresting ?

Not really…

NEGATIVE TEMPERATURE

NEGATIVE TEMPERATURE – SUBEXTENSIVE ENTROPY

CONDENSATE 
ENTROPY 

localized
β < 0

delocalized
 β < 0 

delocalized
β > 0

Equilibriummicrocanonical phasediagramof theDiscreteNon-Linear Schrödinger
Equation (DNLSE) in the (mass-energy) (a,e)-plane. Bluesolid and red dashed
lines correspond to theground state and the infinite temperature isothermal
(β =0), respectively. Localized (green) and delocalized negative-temperature

(orange) regions aredrawn for a chain of N =100 latticesites. Black dots identify
the lineof critical energy densities for the localization transition.



Order Parameter = Participation Ratio

Consistent with non-analyticity of Entropy

ORDER PARAMETER: PARTICIPATION RATIO

Ensembles inequivalence

Localization‘Pseudo-condensate’
micro



Order Parameter = Participation Ratio

Consistent with non-analyticity of Entropy

ORDER PARAMETER: PARTICIPATION RATIO

Ergodicity breaking ?

Localization‘Pseudo-condensate’
micro



Consistent with non-analyticity of Entropy

ORDER PARAMETER: PARTICIPATION RATIO

Ergodicity breaking ?

In the thermodynamic limit the two 
values coincide and the order 
parameter is continuous at the 

transition Localization‘Pseudo-condensate’



ORDER PARAMETER: PARTICIPATION RATIO

Ergodicity breaking ?

Localization

1st Order2nd Order

Merging at N=∞ into a mixed-order transition?

‘Pseudo-condensate’



FINALLY SOME FIGURES : Monte Carlo sampling of rare events

Entropy of the condensate 

As a function of size

Marginal distribution of energy on a 
single site (microcanonical)

‘Condensate bump’

N = 102 ÷ 104

Localized &

pseudo-localized

Delocalized

phase
Monotonous 
exponential 

decay

Formation of a 
secondary peak, the 
“condensate bump”



Discrete Non-Linear Schrödinger Equation (DNLSE)

PHENOMENON 
Condensate wavefunction 
localized at high enegies

(numerical evidences)

1) WHICH KIND OF PHASE TRANSITION ? 2) WHICH STATISTICAL ENSEMBLE?

3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)

4) IS DISORDER NECESSARY FOR LOCALIZATION?

FIRST ORDER! MICROCANONICAL

NO!

NO!

QUITE OFTEN 
LOCALIZATION IS

RELATED TO 
INTEGRABILITY 

‘Integrals of motion in the many-body localized phase’,  
Valentina Ros, M. Müller, A. Scardicchio, 

Nuclear Physics B 891, 420-465 (2015)

They compute explicitly the N integrals of motion!

ENERGY (conserved) PARTICLES NUMBER (conserved)



Anderson Localization

One-body localization due 
to quenched disorder

Many-body Localization (MBL)

Disorder + many-body interactions. 

This work 
contribution

1) Localized phase is stable with respect to (weak) non-linearities.

2) NON-LINEAR terms (many-body) are the source of localization!

(outcome of the exact calculation)

Discrete Non-Linear Schrödinger Equation (DNLSE)

STATE of THE ART

2) Role of disorder in presence of many-body interactions?

3) Does localization survives without disorder?

1) We do find localization in absence of disorder! (known numerically)



What about Localization of 
Glassy Light in Random Lasers?

‘Glassines and the lack of equpartition in random lasers’, 
G. Gradenigo, F. Antenucci, L. Leuzzi, Phys. Rev. Research 2, 023399 (2020)

‘Universality class in the mode-locked random laser’, 
J. Niedda, G. Gradenigo, L. Leuzzi, G. Parisi, arXiv:2210.04362  (2022)

‘Intensity pseudo-localized phase in the glassy random laser’, 
J. Niedda, L. Leuzzi, G. Gradenigo, arXiv:2212.05106 (2022).

Signatures of the pseudo-localized phase 
in spin glass model of random lasers



CONCLUSIONS - PERSPECTIVES

4) We clarified that the transition has a mixed first/second order, similarly to the ergodicity 
breaking transition in glasses (not spin glasses!): Random First-Order transition.  

Further investigations: pseudo-localization/localization in models of glasses (in progress).

 2) Localization in the DNLSD can only described within the Microcanonical Ensemble

3) We put in evidence the existence, at large but finite N, of a delocalized (presumably non ergodic) state 
at negative temperature, the pseudo-condensate (relevant for experiments). 

Further investigations: multifractal wave function: 

 1) We provided the first fully consistent description of the localization transition in the Discrete Non-
Linear Schrödinger Equation (DNLSE)

5) We clarified a mechanism for localization/ergodicity-breaking in the strong-coupling regime: 

- Not related to integrability (only two conserved quantities, perhaps emergent integrability?)
- Straighforwad extension to D > 1 (further investigations)     



THANKS FOR YOUR 
 ATTENTION



localized
β < 0

delocalized
 β < 0 

delocalized
β > 0

Equilibriummicrocanonical phasediagramof theDiscreteNon-Linear Schrödinger
Equation (DNLSE) in the (mass-energy) (a,e)-plane. Bluesolid and red dashed
lines correspond to theground stateand the infinite temperature isothermal
(β =0), respectively. Localized (green) and delocalized negative-temperature

(orange) regions aredrawn for a chain of N =100 latticesites. Black dots identify
the lineof critical energy densities for the localization transition.

Subextensive 
Entropy

THE MAIN RESULT: MICROCANONICAL ENTROPY

1) Microcanonical and canonical ensembles are not equivalent

3) Negative temperature ONLY in microcanonical ensemble (zero for N=∞).

4) Localized solution has subextensive entropy (area law?, entaglement?)

2) Localization looks like a a mixed order transition in the microcanonical 
ensemble



Phenomenon: from Fluorescence to Random Lasing
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Random Lasing:  coherent anisotropic emission (NON-ERGODIC)

Fluorescence: incoherent isotropic emission (ERGODIC)

Optical power (inverse temperature) 
is pumped into an optically active 

random medium
EMISSION SPECTRUM



Glass Transition

R20 Topical Review
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Figure9. Spectra of emission from the rhodamine 640 dye solution containing ZnO nanoparticles.
The ZnO particle density is ∼6 × 1011 cm−3. The incident pump pulse energy is (from bottom to
top) 0.74, 1.35, 1.7, 2.25 and 3.4 µJ.

a this mode. A further increase of optical gain leads to lasing in more low-loss modes. Laser
emission from these modes gives discrete peaks in the emission spectrum (figure 9).

When the scattering strength increases further, the decay rates of the eigenmodes and the
coupling among them continue decreasing. There are a small number of eigenmodes with
extremely long lifetime and nearly decoupled from other modes. The threshold gain for lasing

Experiments (not mine!) Simulations: average over disorder One istance of disorder

 ‘Universality class in the mode-locked random laser’, 

J. Niedda, G. Gradenigo, L. Leuzzi, G. Parisi, arXiv:2210.04362  (2022)

OVERLAP (Glass order parameter) 

HEAT CAPACITY



Glass phase in Random Lasers is pseudo-localized 
(no localization no equipartition)

R20 Topical Review
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Figure9. Spectra of emission from the rhodamine 640 dye solution containing ZnO nanoparticles.
The ZnO particle density is ∼6 × 1011 cm−3. The incident pump pulse energy is (from bottom to
top) 0.74, 1.35, 1.7, 2.25 and 3.4 µJ.

a this mode. A further increase of optical gain leads to lasing in more low-loss modes. Laser
emission from these modes gives discrete peaks in the emission spectrum (figure 9).

When the scattering strength increases further, the decay rates of the eigenmodes and the
coupling among them continue decreasing. There are a small number of eigenmodes with
extremely long lifetime and nearly decoupled from other modes. The threshold gain for lasing

 ‘Pseudo-localized phase in the mode-locked p-spin’, 

J. Niedda, L. Leuzzi, G. Gradenigo, in preparation (2022).

PARTICIPATION RATIO

Deloc

Loc Pseudo-Localized



Glass phase in Random Lasers is pseudo-localized 
(no localization no equipartition)

R20 Topical Review
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Figure9. Spectra of emission from the rhodamine 640 dye solution containing ZnO nanoparticles.
The ZnO particle density is ∼6 × 1011 cm−3. The incident pump pulse energy is (from bottom to
top) 0.74, 1.35, 1.7, 2.25 and 3.4 µJ.

a this mode. A further increase of optical gain leads to lasing in more low-loss modes. Laser
emission from these modes gives discrete peaks in the emission spectrum (figure 9).

When the scattering strength increases further, the decay rates of the eigenmodes and the
coupling among them continue decreasing. There are a small number of eigenmodes with
extremely long lifetime and nearly decoupled from other modes. The threshold gain for lasing

 ‘Pseudo-localized phase in the mode-locked p-spin’, 

J. Niedda, L. Leuzzi, G. Gradenigo, in preparation (2022).

AMPLITUDE LOCAL 
MARGINALS

Single instance disorder Disorder average



Discrete Non-Linear Schrödinger Equation (DNLSE)
A semiclassical Approximation

Second-quantization Hamiltonian of interacting bosons condensate

Repulsive contact interactions

Bogoliubov approximation

Condensate wave-function   (c-number) 

Expand the Hamiltonian up to second order in powers of
(small quantum fluctuations around the mean-field solution)

Deviation opeartor

‘Discrete Breathers in Bose-Einstein Condensates’, Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011) 



Discrete Non-Linear Schrödinger Equation (DNLSE)
A semiclassical Approximation

Expand the Hamiltonian up to second order in powers of
(small quantum fluctuations around the mean-field solution)

Bogoliubov approximation

Condensate wave-function   (c-number) 

Deviation opeartor

Gross-Pitaevskii Equation: non-linear equation for the ‘order 
parameter’ of a quantum transition (semiclassical approximation)



Discrete Non-Linear Schrödinger Equation (DNLSE)
A semiclassical Approximation

Harmonic traps  (y,z)-planePeriodic modulation - x 

Effectively on a 
1-dimensional lattice

Hamiltonian system 
on a lattice

Canonical conjugate 
variables

Gross-Pitaevskii Equation: non-linear equation for the ‘order 
parameter’ of a quantum transition (semiclassical approximation)



localized
β < 0

delocalized
 β < 0 

delocalized
β > 0

Equilibriummicrocanonical phasediagramof theDiscreteNon-Linear Schrödinger
Equation (DNLSE) in the (mass-energy) (a,e)-plane. Bluesolid and red dashed
lines correspond to theground stateand the infinite temperature isothermal
(β =0), respectively. Localized (green) and delocalized negative-temperature

(orange) regions aredrawn for a chain of N =100 latticesites. Black dots identify
the lineof critical energy densities for the localization transition.

Uninteresting ?

Not really…

NEGATIVE TEMPERATURE

‘A chain, A bath, A sink and a Wall’, 

S. Iubini, S. Lepri, R. Livi, G.-L. Oppo, A. Politi, 
Entropy  (2017)

Discrete Non-Linear Schrödinger 
Equation coupled at the boundaries 

with reservoirs at different temperature

PROBING THE NEGATIVE TEMPEATURE 



Discrete Non-Linear Schrödinger Equation (DNLSE)

ENERGY (conserved)

Condensate wave-function (order parameter)

PHENOMENON 
Condensate wavefunction 
localized at high enegies

(numerical evidences)

1) WHICH KIND OF PHASE TRANSITION ?

PARTICLES NUMBER (conserved)

2) WHICH STATISTICAL ENSEMBLE?

3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)

4) IS DISORDER NECESSARY FOR LOCALIZATION?



ORDER PARAMETER: PARTICIPATION RATIO

Ergodicity breaking ?

Localization

1st Order2nd Order

Merging at N=∞ into a mixed-order transition?

Is there any known example of such a transition? 

‘Pseudo-condensate’



A VERY WELL KNOWN MIXED ORDER TRANSITION:
RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION

#-interactions =

P-spin model

iid Gaussian variates

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

IMPORTANT SIMILARITIES WITH DNLS

 ✓ Locally unbounded continuous variables

 ✓ Non-linear interactions

 ✓ Global spherical constraint

… NOT SHARED BY MODELS LIKE SHERRINGTON-KIRKPATRICK 

 ✓ Discrete spins

 ✓ Linear interactions



A VERY WELL KNOWN MIXED ORDER TRANSITION:
RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION

#-interactions =

P-spin model

iid Gaussian variates

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

Order Parameter: OVERLAP  =
Similarity among two configurations chosen 

at random in the equilibrium ensemble

different

similar

Can be measured in 
simulations

FIRST-ORDER FEATURES



ERGODIC

all regions of 
phase space are 

equally available

NON-ERGODIC

Phase-space partitioning 
in disjoint ergodic 

components with self 
overlap q1 (mutual q0)

‘First-order like’ 
behaviour

Ergodic  T > TK Glass T < TKT = TK

Typically confs are different Typically confs are similar

High Temperature Low Temperature

Ergodicity Breaking: Parisi’s order parameter



‘First-order like’ 
behaviour

Ergodic  T > TK Glass T < TKT = TK

Typically confs are different Typically confs are similar

Ergodicity Breaking: Parisi’s order parameter

…BUT STILL IS NOT A FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE TK

- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE 
TRANSITION 



‘First-order like’ 
behaviour

Ergodic  T > TK Glass T < TKT = TK

Typically confs are different Typically confs are similar

Ergodicity Breaking: Parisi’s order parameter

RANDOM FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE TK

- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE 
TRANSITION 



What about localization in Glasses?

#-interactions =

You have all possible 
(independent) interacting 

quadruplets !

P-spin model on 
Complete Graph

Partition function is 
dominated by 

homogeneous solutions
(replica theory)

 replica indices
Replicas : independent 

equilibrium configurations 
samples with identical 

disorder



RANDOM LASER : a possible benchmark for 
glass+localization transition

1) Modes of electromagnetic field in a disordered cavity

2) What we study:  Stationary probability distribution.  Numerical sampling

Non-linearity

3) Selection rule for interacting modes 

typical of random lasers

Frequency Matching Condition

Disorder: Jijkl are Gaussian random variables

DILUTION : not all the quadruples are interacting
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