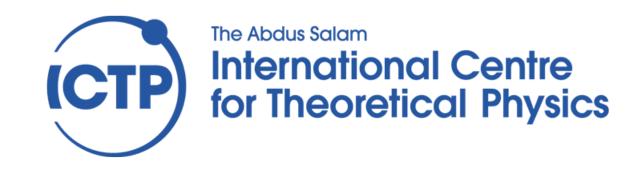
## Data-driven emergence of convolutional structure in neural networks

A. Ingrosso, S. Goldt

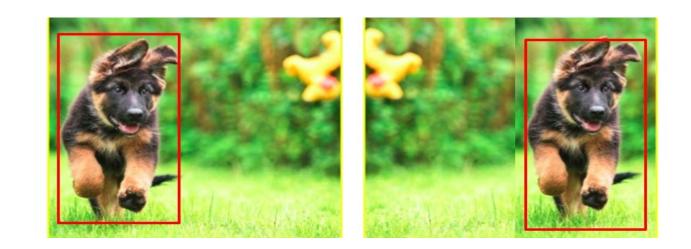
PNAS 119 (40), 2022



### Data symmetries and neural networks

Exploiting invariances in the data is key for efficient learning

Symmetries in the data



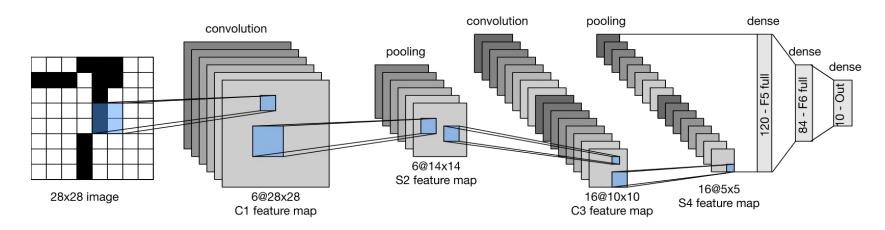
### Data symmetries and neural networks

Exploiting invariances in the data is key for efficient learning

Symmetries in the data



Appropriate network architecture

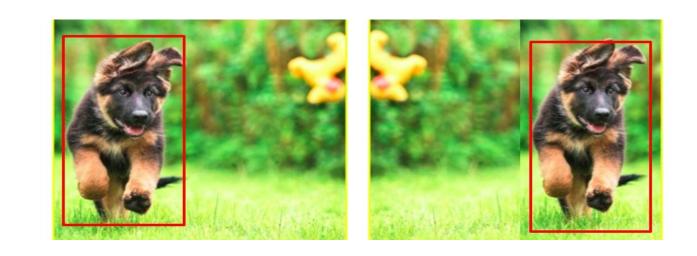




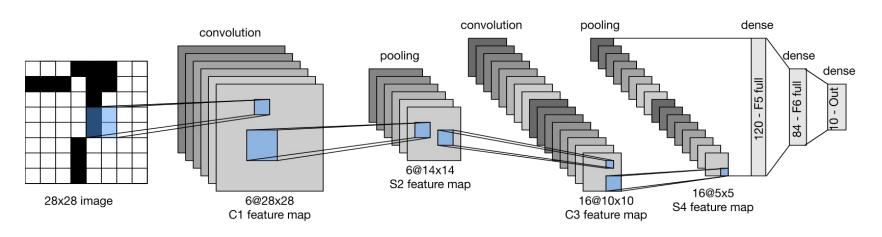
### Data symmetries and neural networks

Exploiting invariances in the data is key for efficient learning

Symmetries in the data



### Appropriate network architecture



### Sample/parameter-efficient learning



### **ConvNets and Fully Connected networks**

- Hallmarks of convolutions
  - Local connectivity with weight sharing
  - Tessellation of input space
- Fully-connected networks

### perform worse on image classifications tasks

## Can we learn a convolutional structure from scratch?

### A minimal model of natural images

**Translation-invariant Gaussians:** 

 $ig \langle z_i^\mu 
angle = 0 \ ig \langle z_i^\mu z_j^\mu 
angle = e^{-(|i-j|/\xi^\mu)^2}$ 

✓ label index

correlation length

### High-dimensional dataset with tunable higher-order spatial correlations

pass Gaussians through nonlinearity

 $oldsymbol{x}^{\mu} = rac{\psi(goldsymbol{z}^{\mu})}{Z(q)}$ 



### A minimal model of natural images

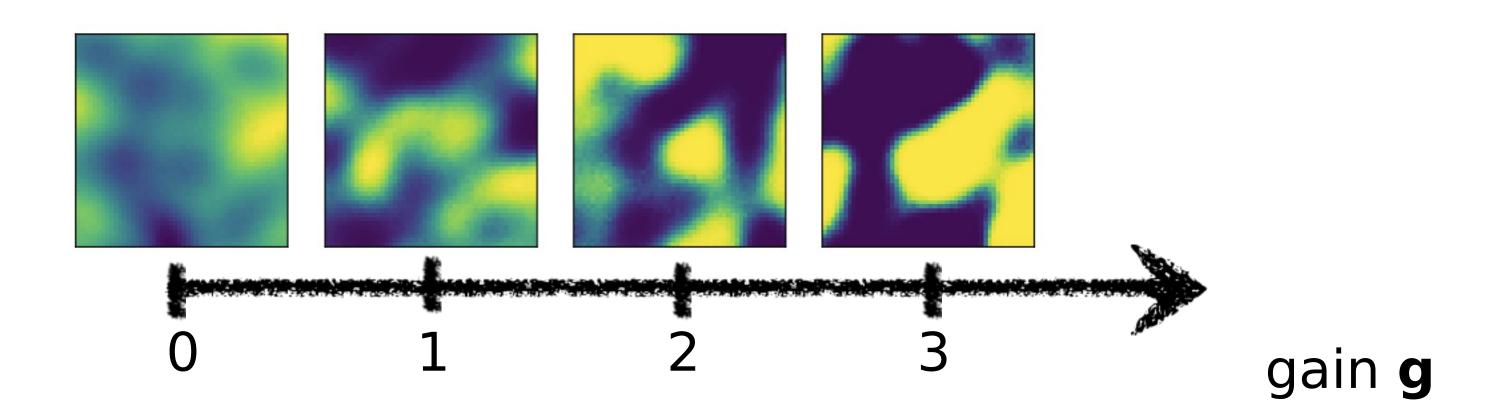
**Translation-invariant Gaussians:** 

 $\left\langle z_{i}^{\mu}z_{j}^{\mu}
ight
angle =e^{-(|i-j|/\xi^{\mu})^{2}}$ 

label index

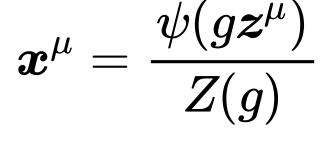
 $\left\langle z_{i}^{\mu}
ight
angle =0$ 

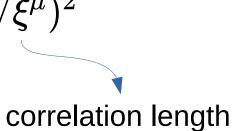
Sample images:



### High-dimensional dataset with tunable higher-order spatial correlations

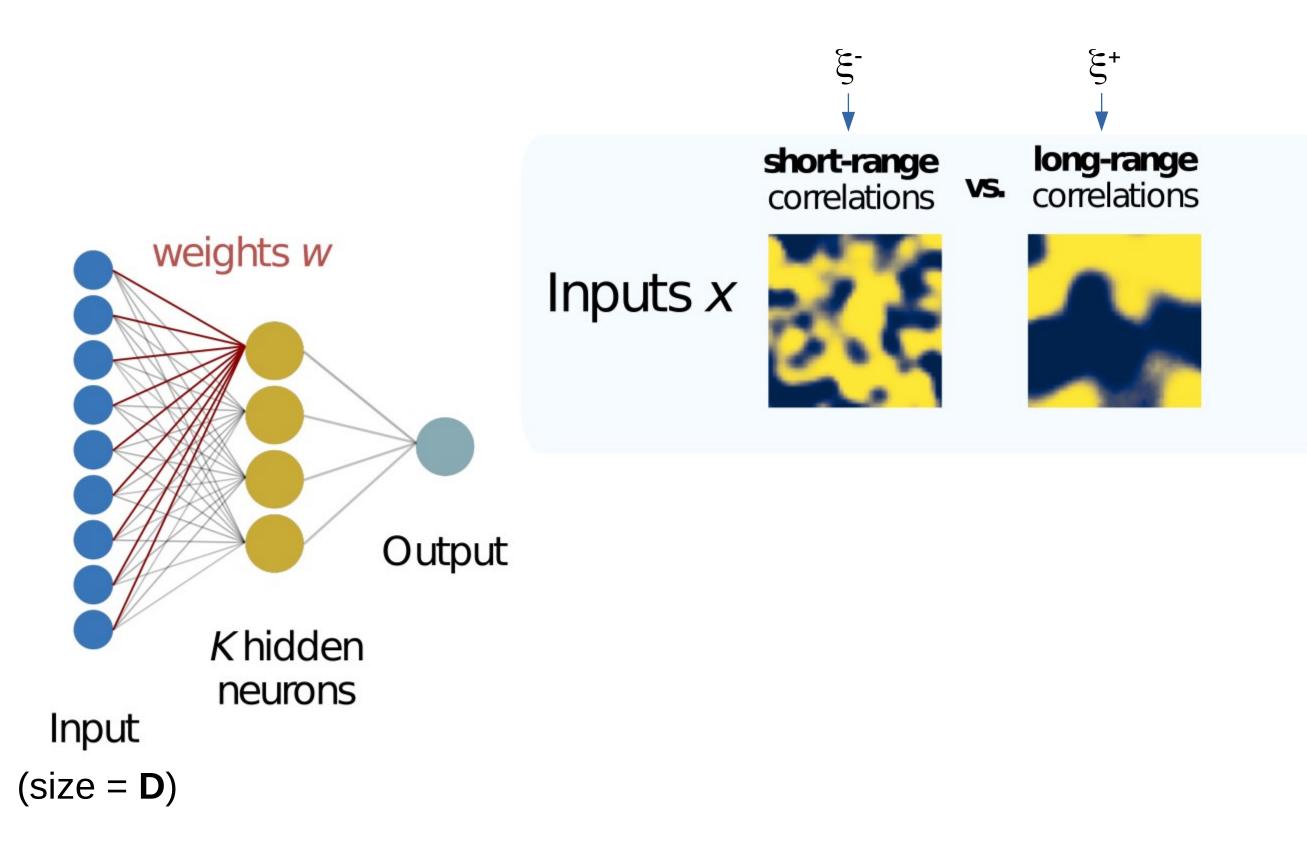








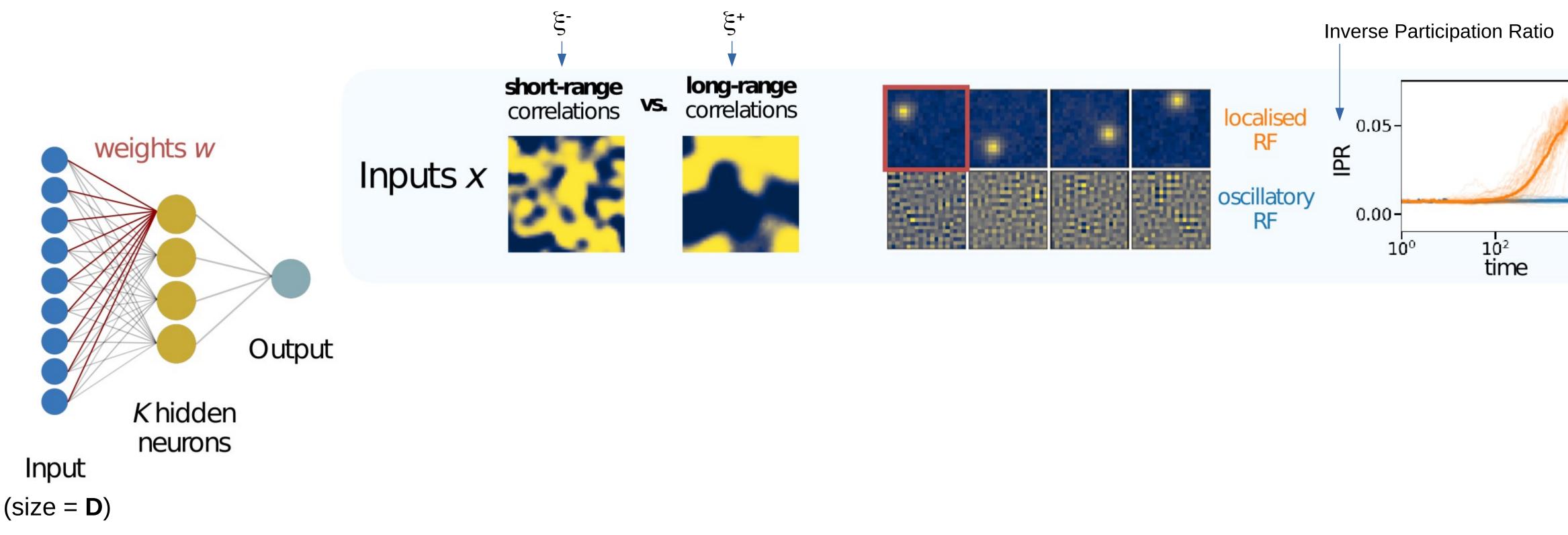
## Discriminating "images" with different correlation lengths



Network architecture

Training inputs

## Discriminating "images" with different correlation lengths



Network architecture

Training inputs

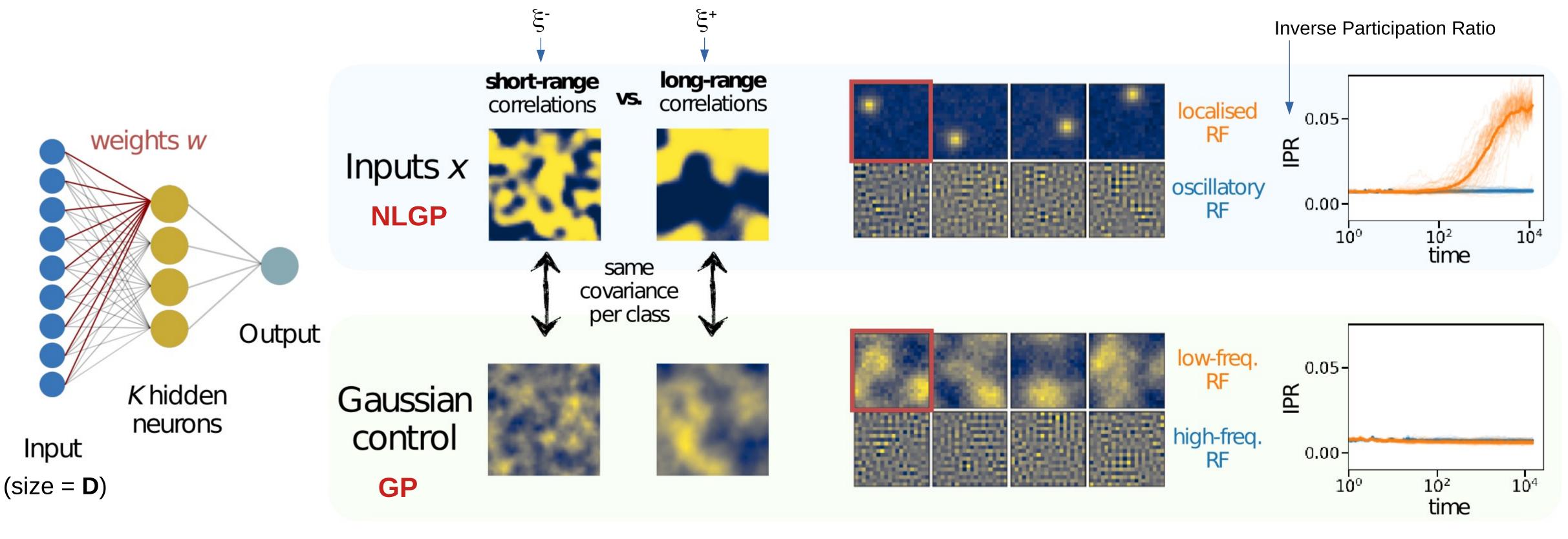
Receptive fields *vv<sub>ii</sub>* after learning

Kurtosis during learning





## Discriminating "images" with different correlation lengths



Network architecture

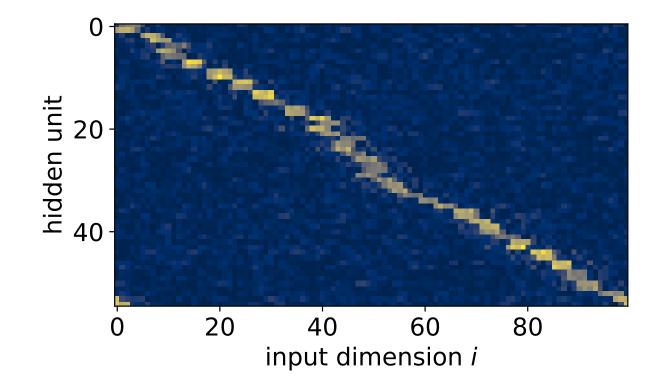
Training inputs

Receptive fields *vv<sub>ii</sub>* after learning

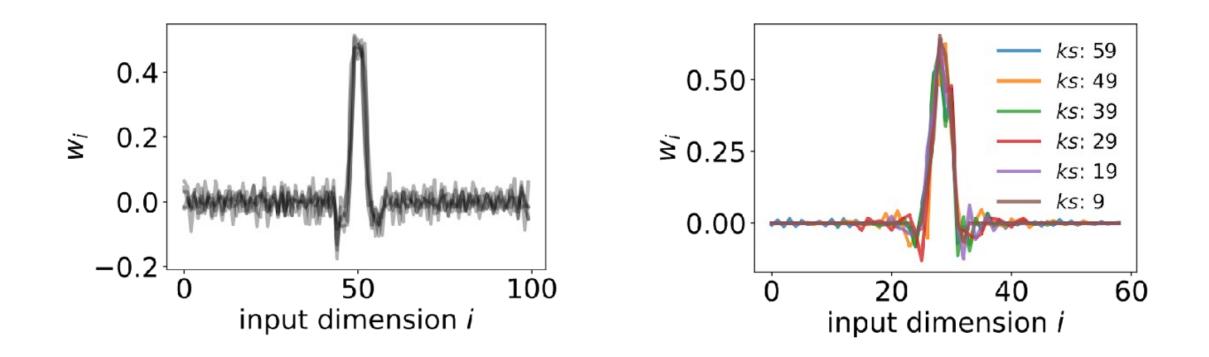
Kurtosis during learning



## Receptive fields tile input space and resemble convolutional filters



### Localised receptive fields tesselate input space



Learnt weight vectors resemble filters of convolutional networks



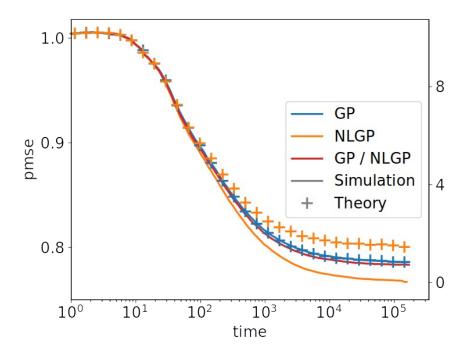
## WHAT'S GOING ON

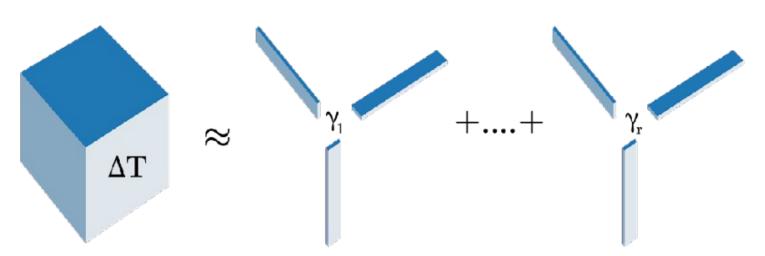


### Long story short

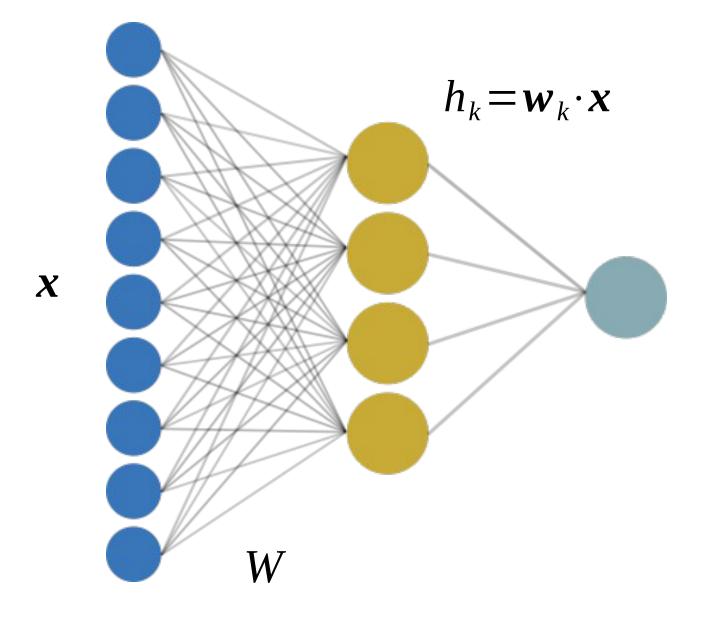
Standard Gaussian theories fail in predicting learning dynamics and formation of localized RF

Alignment on "principal components" of higher**order** image statistics  $\rightarrow$  RF localization

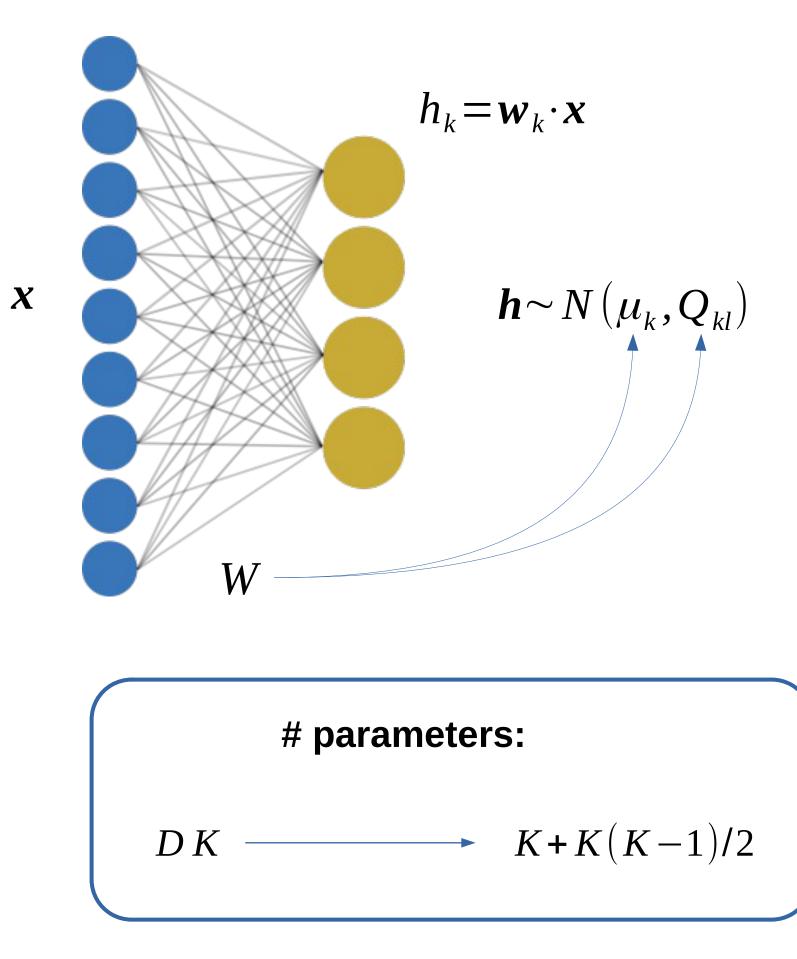


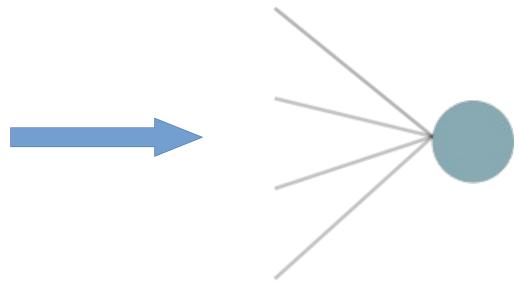


### Gaussian equivalence



### Gaussian equivalence





- Generalization error (prediction MSE, pmse)
- dynamics of gradient descent in terms of order parameters **Q**

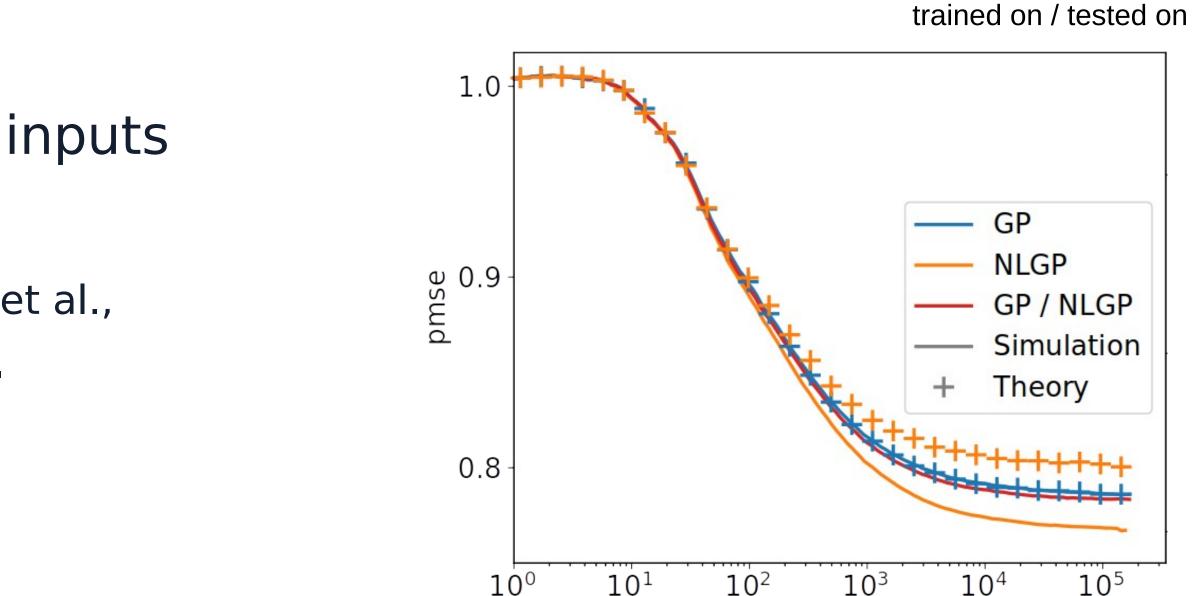
### The limits of Gaussian equivalence (GET)

model

Can we predict the loss?

- Can evaluate test error on Gaussian inputs analytically (Refinetti et al, ICML '21)
- For NLGP inputs, need the GET (Goldt et al., MSML '21) but the GET breaks down.

### The formation of localised RF is not captured by an equivalent Gaussian





Legend:

time

## SO WHAT?

# **OF COURSE**

## SINGLE NEURON,



### Connecting receptive fields to data geometry

A simplified model highlights the importance of non-Gaussian statistics

 $y=\sigma(w\cdot x)$   $\sigma(h)=lpha h-rac{eta}{3}h^3$ 

 $C^{\mu}_{ij}=\left\langle x^{\mu}_{i}x^{\mu}_{j}
ight
angle$ 

same for GP and NLGP by construction

 $T^{\mu}_{ijk\ell} = \left\langle x^{\mu}_i x^{\mu}_j x^{\mu}_k x^{\mu}_\ell 
ight
angle$ 

split in Gaussian and non-Gaussian contribution

 $= C^{\mu}_{ij}C^{\mu}_{k\ell} + C^{\mu}_{ik}C^{\mu}_{j\ell} + C^{\mu}_{i\ell}C^{\mu}_{jk} + \Delta T^{\mu}_{ijk\ell}$ 

Gradient Flow (GF) dynamics:

$$oldsymbol{w} = rac{1}{M} \sum_{\mu=1}^M ig( c_2^\mu C^\mu oldsymbol{w} + c_4 T^\mu oldsymbol{w}^{\otimes 3} ig)$$



### Connecting receptive fields to data geometry

A simplified model highlights the importance of non-Gaussian statistics

 $y=\sigma(w\cdot x)$   $\sigma(h)=lpha h-rac{eta}{3}h^3$ 

 $C^{\mu}_{ij}=\left\langle x^{\mu}_{i}x^{\mu}_{j}
ight
angle$ 

same for GP and NLGP by construction

 $T^{\mu}_{ijk\ell} = \left\langle x^{\mu}_i x^{\mu}_j x^{\mu}_k x^{\mu}_\ell 
ight
angle$ 

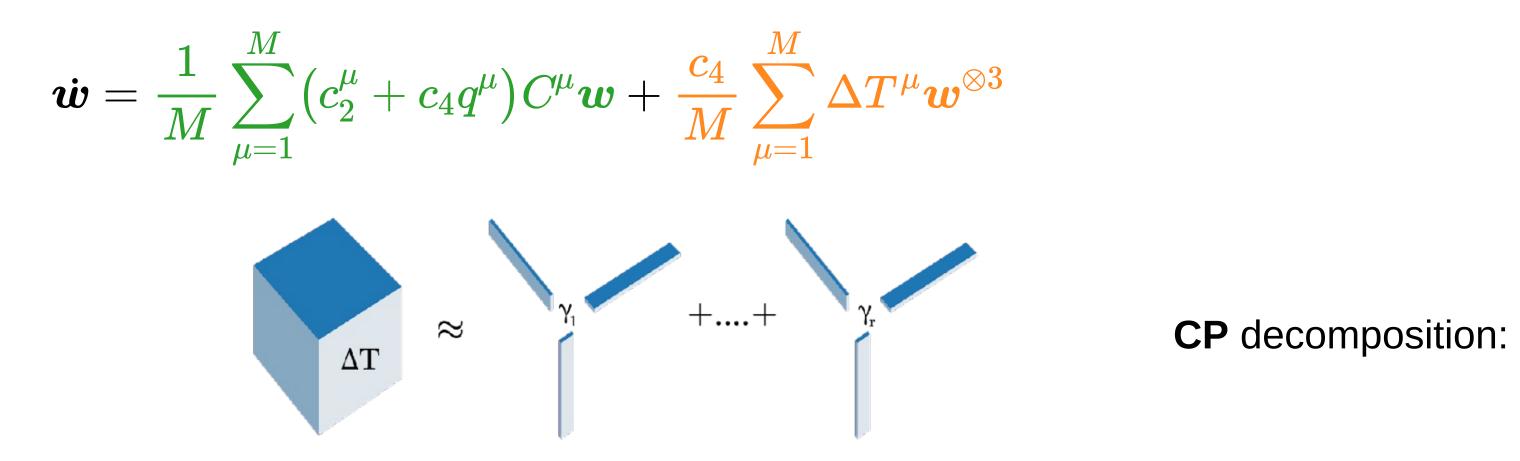
split in Gaussian and non-Gaussian contribution

 $= C^{\mu}_{ij}C^{\mu}_{k\ell} + C^{\mu}_{ik}C^{\mu}_{j\ell} + C^{\mu}_{i\ell}C^{\mu}_{jk} + \Delta T^{\mu}_{ijk\ell}$ 

Gradient Flow (GF) dynamics:

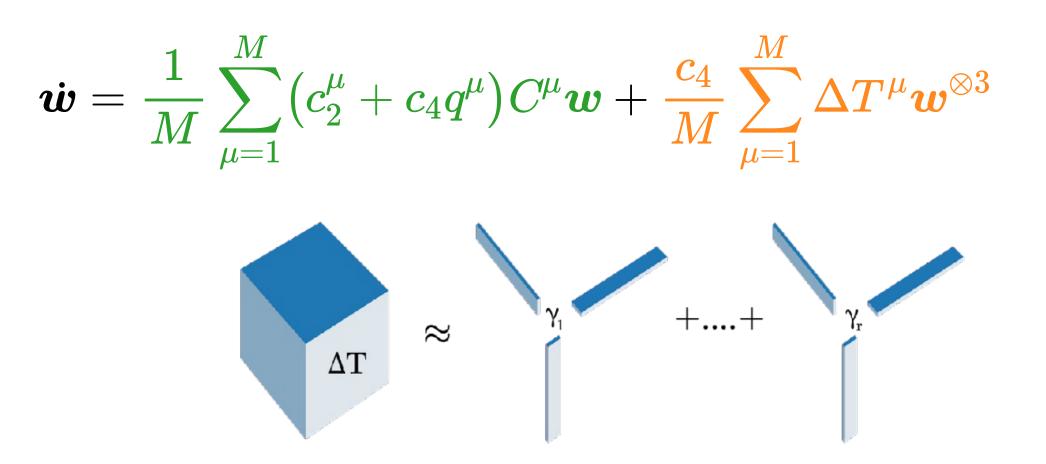


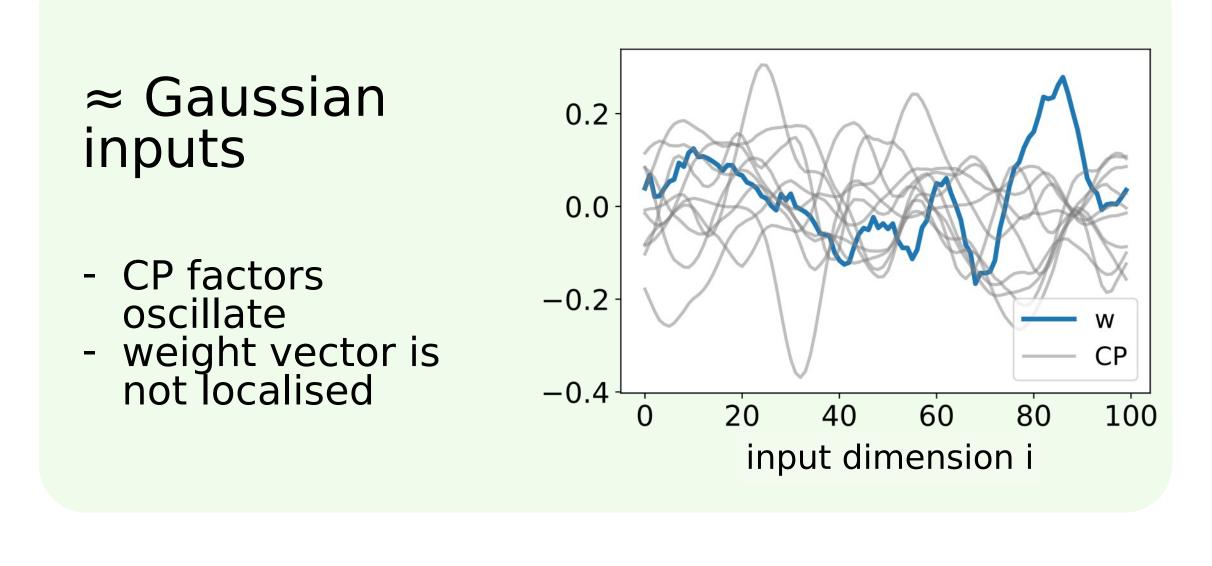
### Decomposing the 4th-order cumulant

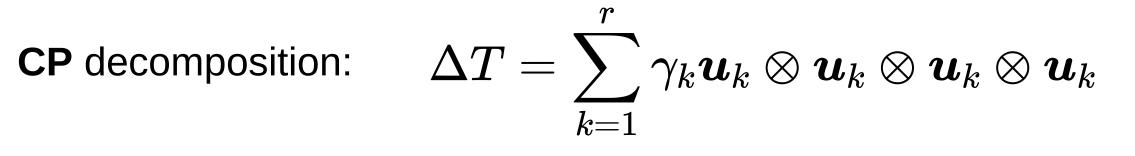


$$\Delta T = \sum_{k=1}^r \gamma_k oldsymbol{u}_k \otimes oldsymbol{u}_k \otimes oldsymbol{u}_k \otimes oldsymbol{u}_k$$

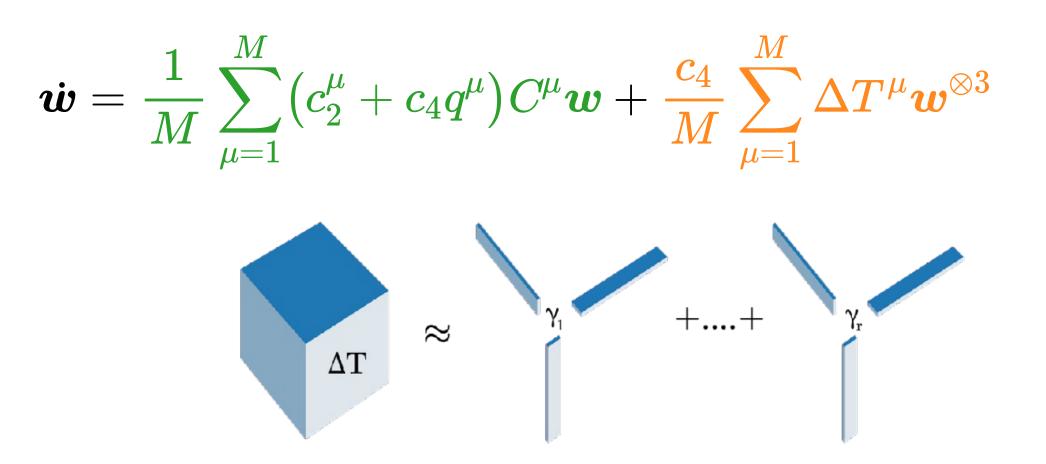
### Decomposing the 4th-order cumulant

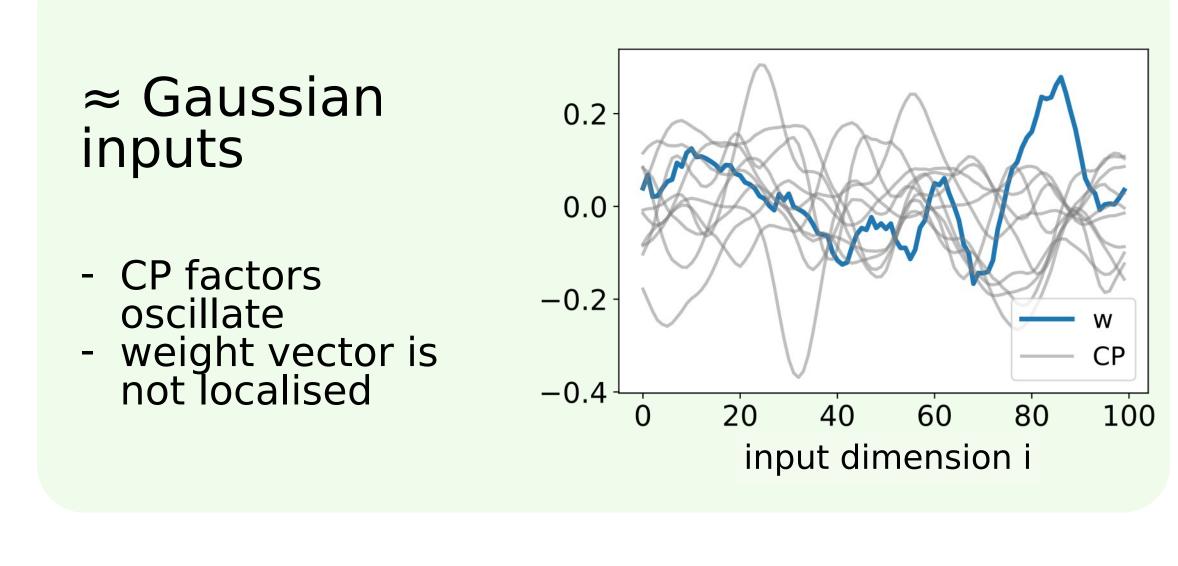






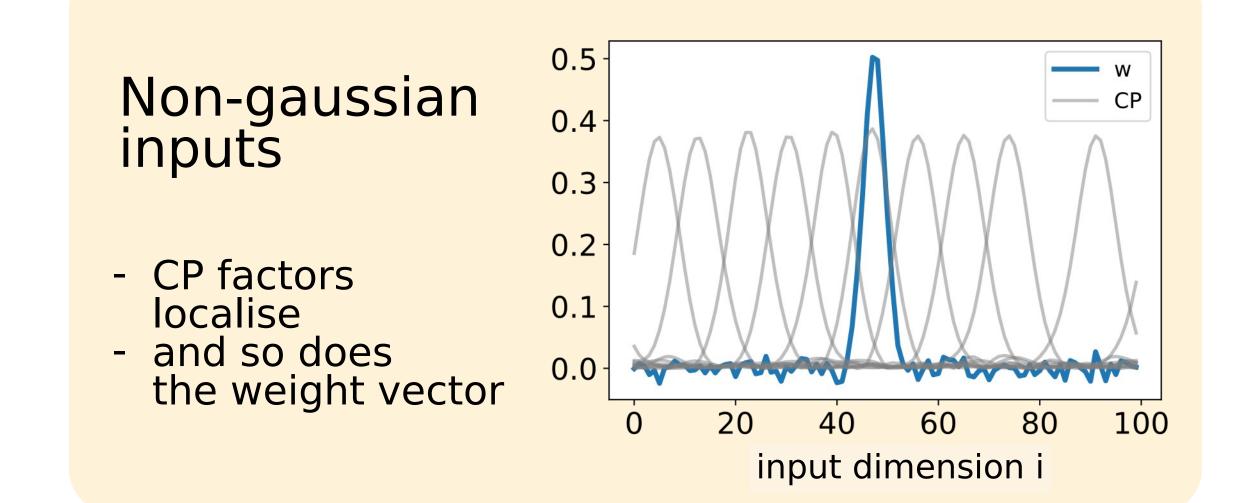
### Decomposing the 4th-order cumulant





**CP** decomposition:

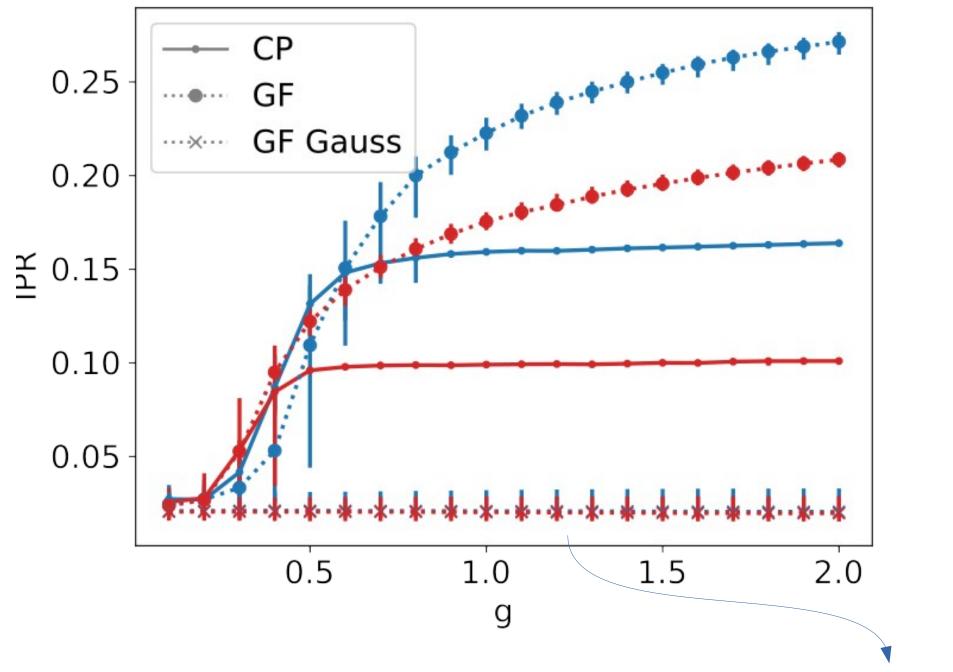
$$\Delta T = \sum_{k=1}^r \gamma_k oldsymbol{u}_k \otimes oldsymbol{u}_k \otimes oldsymbol{u}_k \otimes oldsymbol{u}_k$$



### Relating cumulants and weight vectors

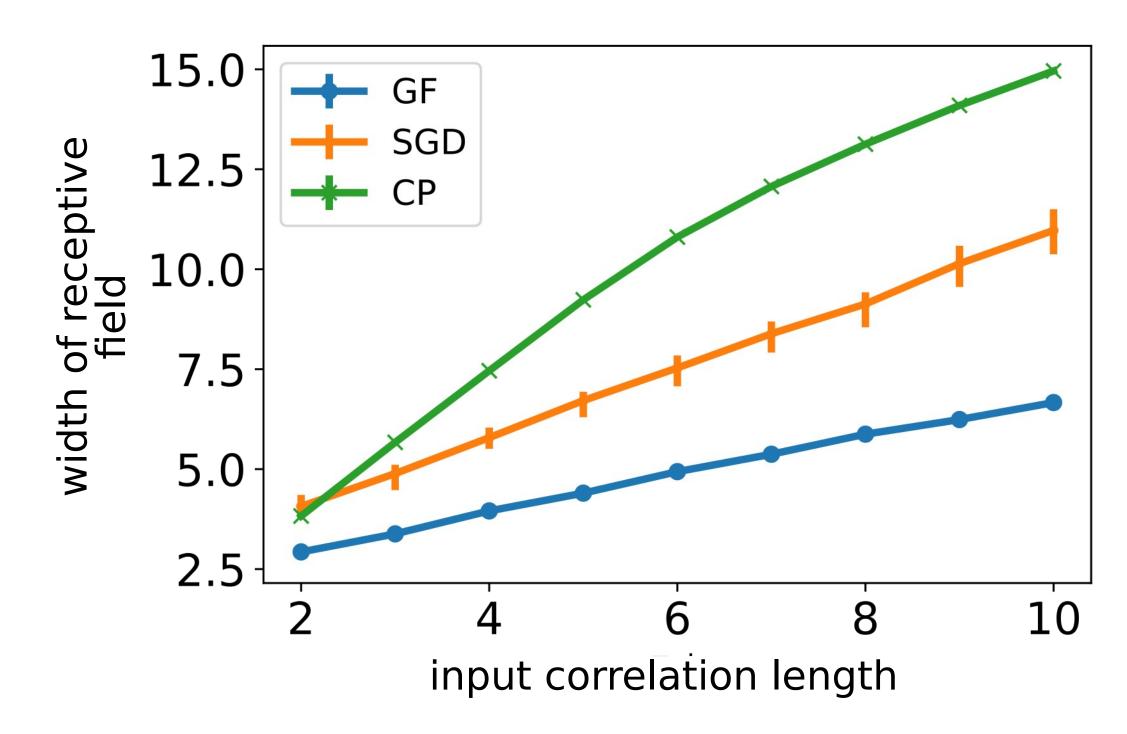
CP factors localisation → weight vector localisation

Localisation of receptive fields increases with gain:



Gaussian terms only

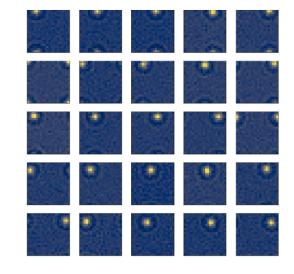
Width of CP factors ~ width of the receptive field:

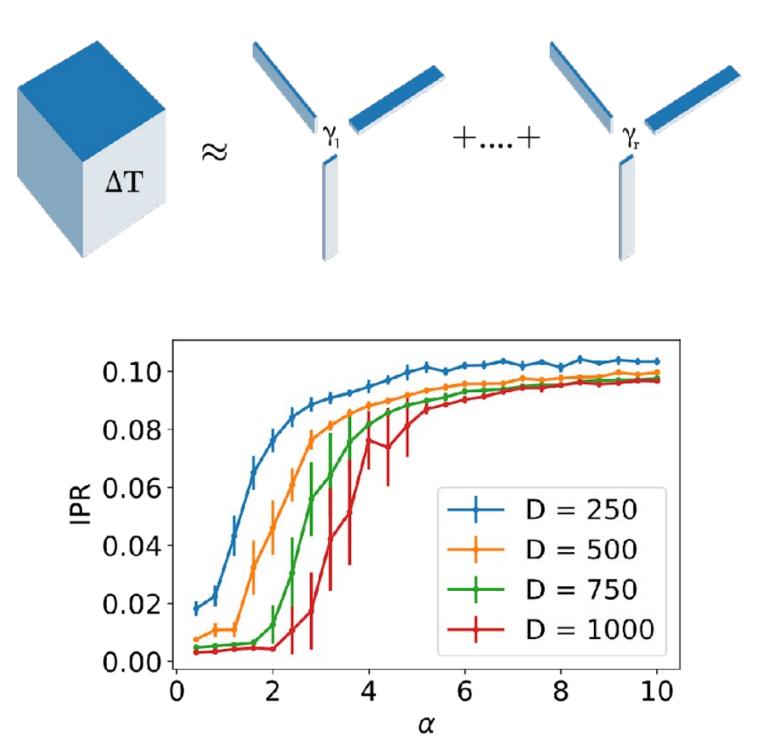


### Concluding perspectives

Going beyond Gaussian models for data

- Fully connected networks can learn a convolutional structure given the right statistical cues in their training data.
- Need better understanding of interaction btw higher-order tensors and learning dynamics.
  - Unsupervised learning: Harsh et al. '20, Ocker & Buice '21
- Transitions in higher-order random tensors.
- Impact of a general symmetry group on higherorder statistics  $\rightarrow$  SGD learning dynamics.





THE END