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ConvNets and Fully Connected networks

• Fully-connected networks 
perform worse on image classifications tasks

• Hallmarks of convolutions

• Local connectivity with weight sharing

• Tessellation of input space



Can we learn a convolutional 
structure from scratch?



A minimal model of natural images

High-dimensional dataset with tunable higher-order spatial correlations

Translation-invariant Gaussians:

label index

correlation length

pass Gaussians
through nonlinearity



A minimal model of natural images

gain g0 1 2 3

High-dimensional dataset with tunable higher-order spatial correlations

Translation-invariant Gaussians:

label index

correlation length

pass Gaussians
through nonlinearity

Sample images:
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Receptive fields tile input space and resemble 
convolutional filters

Localised receptive fields 
tesselate input space

Learnt weight vectors resemble 
filters of convolutional networks



WHAT’S GOING ON 



Long story short

Standard Gaussian theories fail in predicting
learning dynamics and formation of localized RF

Alignment on “principal components” of higher-
order image statistics → RF localization
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Gaussian equivalence

h∼N (μk ,Qkl)

W

● Generalization error (prediction MSE, 
pmse)

● dynamics of gradient descent in 
terms of order parameters Q
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The formation of localised RF is not captured by an equivalent Gaussian 
model

The limits of Gaussian equivalence (GET)

Legend:
trained on / tested on

Can we predict the loss?

• Can evaluate test error on Gaussian inputs 
analytically (Refinetti et al, ICML ’21)

• For NLGP inputs, need the GET (Goldt et al., 

MSML ’21) but the GET breaks down.



SO WHAT?



SINGLE NEURON,
OF COURSE



A simplified model highlights the importance of non-Gaussian statistics

Connecting receptive fields to data geometry

split in Gaussian and non-Gaussian contribution

same for GP and NLGP by construction

Gradient Flow (GF) dynamics:
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Decomposing the 4th-order cumulant

CP decomposition:
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Decomposing the 4th-order cumulant

input dimension i

- CP factors 
oscillate 

- weight vector is
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≈ Gaussian 
inputs

input dimension i

Non-gaussian 
inputs

- CP factors 
localise 

- and so does
the weight vector

CP decomposition:



Relating cumulants and weight vectors
CP factors localisation → weight vector localisation
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Localisation of receptive 
fields increases with gain:

Width of CP factors
~ width of the receptive field:

Gaussian terms only

 



Concluding perspectives
Going beyond Gaussian models for data

• Fully connected networks can learn a convolutional 
structure given the right statistical cues in their 
training data.
 

• Need better understanding of interaction btw
higher-order tensors and learning dynamics.

• Unsupervised learning: Harsh et al. ’20, Ocker & Buice ’21

• Transitions in higher-order random tensors.
 

• Impact of a general symmetry group on higher-
order statistics → SGD learning dynamics.



THE END
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