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Motivation

The study of entanglement entropy is a fast-growing area of
research, with applications in many different areas of physics, such
as:

o Quantum information
o Condensed matter and CFT
o AdS/CFT and quantum gravity
o Gauge theories

However analytical and numerical results are still limited to simple,
highly symmetric systems.

Non-equilibrium techniques can provide an efficient tool to
calculate entanglement-related quantities [Alba 2016; D’Emidio
2019; Zhao et al. 2021].
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Replica trick and entropic c-function

The most efficient and general way to calculate the entanglement
entropy is the replica trick [Calabrese, Cardy 2004].

Image taken from [Cardy et al. 2007].
In this geometry we can calculate Tr ρn

A = Zn
Zn and extract the

Rényi entropies and the entropic c-functions

Sn(A) = − 1
n − 1 log

Zn
Zn Cn(l) =

lD−1

|∂A|
∂Sn(A)

∂l n ∈ Z+

Analytical results are available for two dimensional CFTs.
Numerically the task is to calculate differences of free energy on
the lattice.
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Jarzynski’s equality

Jarzynski’s theorem
[Jarzynski 1996] is an exact
result that connects averages
of out-of-equilibrium
trajectories of a statistical
system to equilibrium free
energies.
The theorem is valid both for
real and Monte Carlo time
evolution.
Consider the one parameter
evolution Hλ=0 → Hλ=1.
Jarzynki’s theorem states
that〈
exp

(
−
∫

βδW
)〉

= exp{−∆(βF )}

λ = 0

λ = 1
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Out-of-equilibrium protocol

Figure adapted from [Alba 2016].
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Scaling region

The theoretical prediction for a CFT on a cylinder of spatial length
Nx is C2(x) = c

8
πx

tan(πx) , x = l
Nx

.
It can be compared to our data in the scaling region Nx , l � 1

Nx
χ2

ν , ν = 30 χ2

ν , ν = 28
32 131.96 19.33
64 35.56 4.16
96 12.53 2.08
128 2.52 1.03
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First scaling correction

The general theory of unusual corrections to scaling of the
entanglement entropy was developed in [Calabrese, Cardy 2010].
In the case of the 2D Ising model one expects

C2(x ,Nx) = CCFT
2 (x) + k

Nx

x
sin(πx) tan(πx)

Nx
χ2

ν , ν = 30 k
32 2.10 0.260(4)
64 1.47 0.225(7)
96 1.70 0.209(12)
128 0.91 0.17(2)

Data for Nx = 128 have been collected in a relatively small
amount of time: 8 simulations of ∼ 2 hours each on Marconi100
machine (CINECA)
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Variation of C2 with β
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Scaling region

The fit function we used for the three dimensional case is
proportional to the exact c-function describing the quantum
Lifshitz universality class [Inglis et al. 2013; Chen et al. 2014]

f (x ; c̃) = c̃
2 x2 dJ2

dx (x) Jn(x) =
n

1 − n log

{
η(i)2

θ3(2i)θ3(
i
2 )

θ3(2ix)θ3(2i(1 − x))
η(2ix)η(2i(1 − x))

}

Nx
χ2

ν , ν = 13 c̃
16 2.90 0.0543(16)
32 1.19 0.043(2)
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Conclusions

Our data for the 2D Ising model are in perfect agreement with the
CFT prediction.

Results are promising also for the 3D Ising model.

Thanks to the efficiency of our algorithm we have access to
lattices that are already in the scaling limit Nx , l � 1.

Future work:
Exploit the duality properties of the 3D Ising model to study the
entanglement content of the Z2 gauge theory.

SU(N) gauge theories [Buividovich, Polikarpov 2008; Rabenstein
et al. 2018; Rindlisbacher et al. 2022].
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The code

We used an already existing code [Komura, Okabe 2014] that we
modified to implement the replica space and the Jarzynski’s
theorem.
The code is written in CUDA C to achieve high parallelization.
We simulated lattices with Nτ � Nx so that T = 0; the entropic
c-function itself provides a way to check if this condition is
satisfied since at T = 0 ∂Sn

∂l (l) = −∂Sn
∂l (Nx − l)
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Consistency of Jarzynski’s algorithm

Theoretically if we invert initial and final Hamiltonian the result
does not change.
Numerically, since the initial state is an equilibrium state while
during the evolution the system is driven more and more far from
the equilibrium, comparing direct and reverse realizations of the
Jarzynski’s algorithm is a non-trivial check.
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