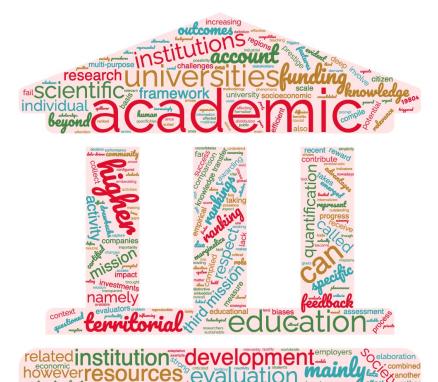
Structural biases in university rankings: a complex network approach to bridge the gap

Loredana Bellantuono, Alfonso Monaco,

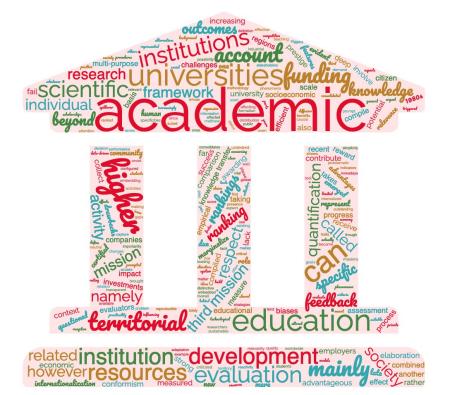

Nicola Amoroso, Vincenzo Aquaro, Marco Bardoscia, Annamaria Demarinis Loiotile, Angela Lombardi, Sabina Tangaro, Roberto Bellotti

Università degli Studi di Bari Aldo Moro INFN Sezione di Bari United Nations DESA - Division for Public Institutions and Digital Government Bank of England / University College London

Scientific Reports **12**, 4995 (2022) https://doi.org/10.1038/s41598-022-08859-w

SM&FT 2022 Frontiers in Computational Physics Bari (Italy), December 19-21, 2022

University rankings: handle with care


University rankings

- Increasingly adopted for academic comparison and success quantification
- Not neutral tools: institutions from the most diversified contexts, in terms of both territory and educational offer, are compared, often with no consideration for the different starting conditions

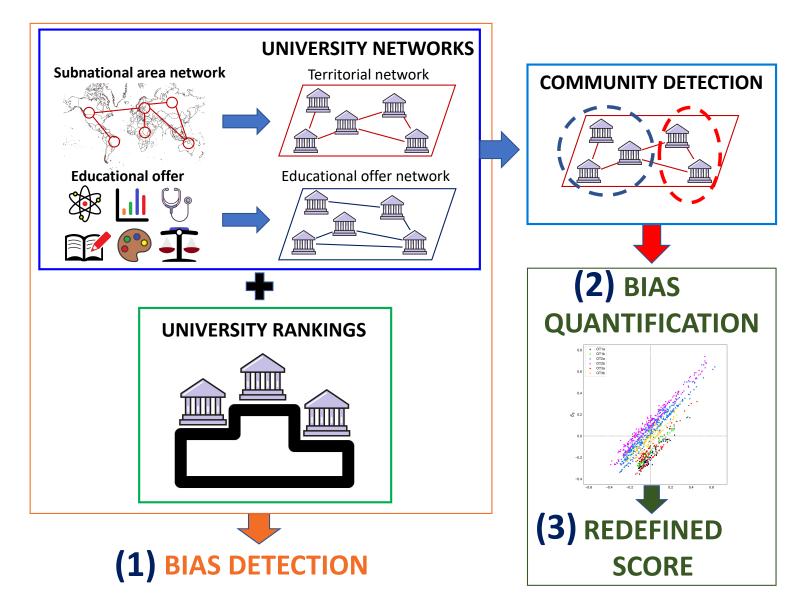
→ An unequal race?

University rankings: handle with care

Positive feedback between ranking outcomes and funding

- Academic conformism (reactivity to rankings)
- **Consolidation** of existing **gaps** (*Mattew effect*), often between universities in wealthier and poorer contexts

Our research goal


Measuring and removing structural biases that inhomogeneously

affect the ranking outcomes of universities from diversified territorial and educational contexts

Three-step process

- **1. Detecting biases** determined by either the territorial conditions or the educational offer
- 2. Quantifying the effect of biases on the performance of each university
- 3. Defining a fairer ranking in which the detected biases are mitigated

Workflow: a first glance

Case studies: global and national scale

Two academic ecosystems

INTERNATIONAL	ITALIAN			
Universities from OECD countries, rated in the 2021 Times Higher Education (THE) ranking	Italian universities, surveyed through the 2019/2020 Centro Studi Investimenti Sociali (CENSIS) rankings			
WORLD UNIVERSITY RANKINGS	→ An <i>overall</i> score + 6 sectorial dimensions:			
→ An overall score + 5 sectorial dimensions: teaching, research, citations, industry income, international outlook	services, scholarships, structures, communication & digital services, international outlook, employability			

A complex network approach to debiasing

Following our previous study for the analysis of international rankings involving United Nation Member States...

scientific reports

TERRITORIAL NETWORK

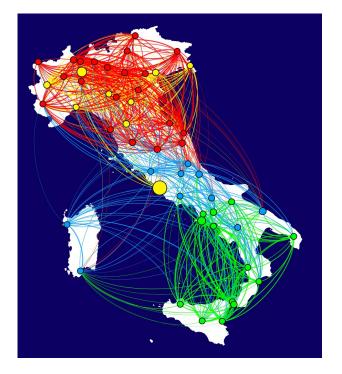
Check for updates

OPEN An equity-oriented rethink of global rankings with complex networks mapping development

> Loredana Bellantuono©¹, Alfonso Monaco©², Sabina Tangaro^{2,3}, Nicola Amoroso^{2,4⊠}, Vincenzo Aquaro⁵ & Roberto Bellotti©^{1,2}

Scientific Reports 10, 18046 (2020)

...we model both the international and the Italian academic systems as a pair of

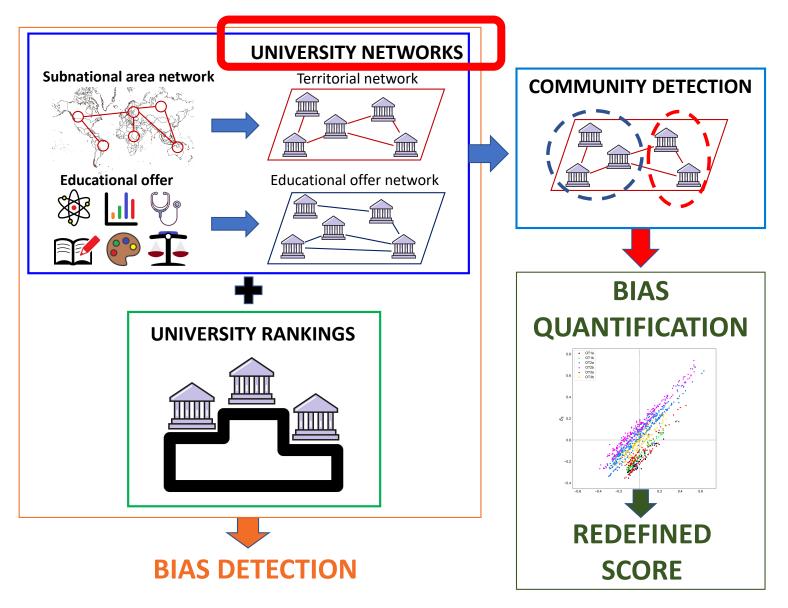

complex networks

EDUCATIONAL OFFER NETWORK

Territorial network

Edges between universities are weighted by the statistically significant ($p < 10^{-2}$) Pearson correlation between development indicators of the regions in which they are based (subnational resolution)

Educational offer network


		SUBJECTS				
		<i>s</i> ₁	<i>s</i> ₂	•••	•••	•••
UNIVERSITIES	u_1	0	1		•••	
	•••					
	u	1	0			
	ν	0	1			
	•••					

The edge between two given universities u and v is weighted according to the **overlap between** their **educational offers** Γ_u and Γ_v , quantified by the Dice index

$$D_{uv} = \frac{2|\Gamma_u \cap \Gamma_v|}{|\Gamma_u| + |\Gamma_v|}$$

|S| denotes the cardinality of the set S.

Workflow

University networks

INTERNATIONAL

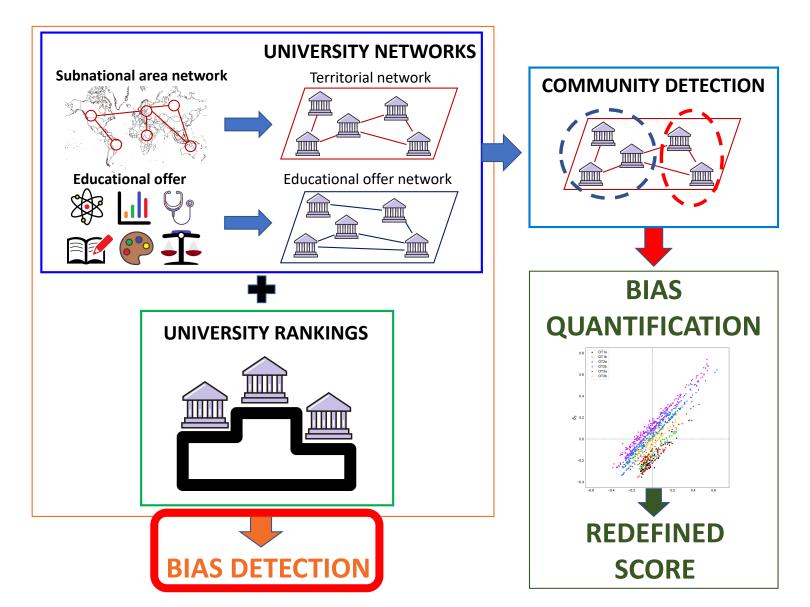
Territorial network

- 1088 universities (nodes) distributed
 in 343 TL2 regions, characterized
 through 97 socio economic
 - through 97 socio-economic
 - indicators
- o 351186 edges

Educational offer network

1088 universities (nodes), providing
 30 educational offer categories
 539305 edges

Territorial network


 92 universities (nodes) distributed in
 53 Italian provinces, characterized through 121 socio-economic indicators
 2396 edges

ITALIAN

Educational offer network

92 universities (nodes), providing
152 educational offer categories
2007 edges

Workflow

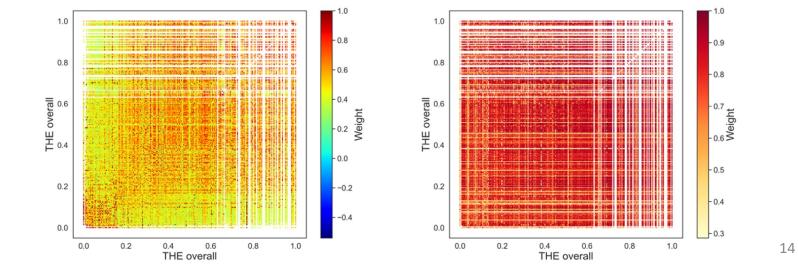
Bias detection through assortativity

The assortativity r_w quantifies the **tendency** of a (weighted) network **to connect** nodes with similar values of a continuous attribute x

$$r_{w} = \frac{\sum_{ij} \left(w_{ij} - \frac{S_{i}S_{j}}{W} \right) x_{i}x_{j}}{\sum_{ij} \left(s_{i}\delta_{ij} - \frac{S_{i}S_{j}}{W} \right) x_{i}x_{j}}$$

 $[w_{ij} \text{ weight of link } (i,j), s_i = \sum_j w_{ij} \text{ strength of node } i, W = \sum_{ij} w_{ij}]$

Bias detection through assortativity


The **assortativity** r_w is equivalent to the **weighted Pearson correlation** between two **vectors** of length 2m (with m the number of edges), whose **entries** coincide with the attributes x_i and x_j of two nodes connected by an edge of weight w_{ij} \rightarrow We can associate a **standard error** and a *p*-value to r_w

In our case, the attribute x corresponds to each (overall and sectorial) ranked index

Scatter plots of link weights as a function of the *THE overall* indexes of connected nodes

Left \rightarrow territorial network

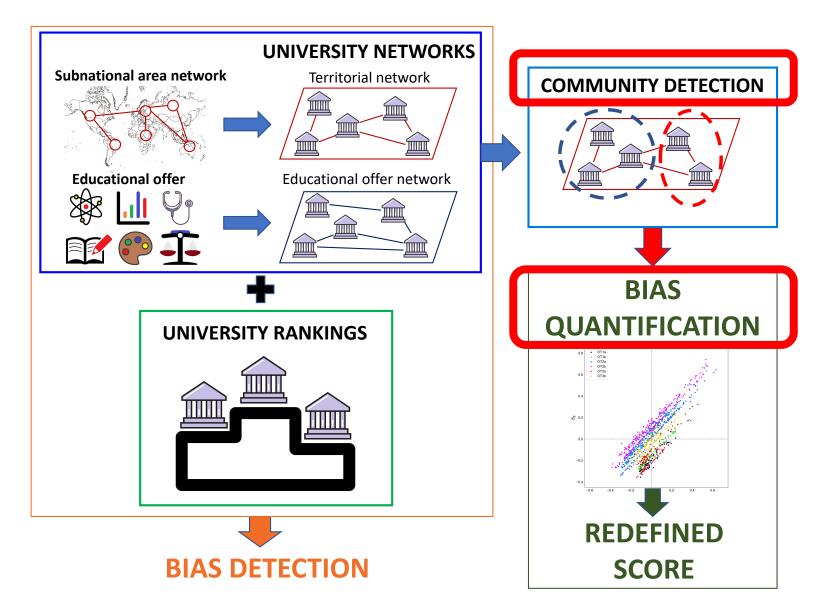
Right \rightarrow educational offer network

Assortativity of university networks

International case

Italian case

 $(p < 10^{-9})$


	Territorial network	Educational offer network		
THE overall score	$\begin{array}{c} \textbf{0.109} \pm \textbf{0.001} \\ (p < 10^{-9}) \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	CENSIS overall sco	re
THE teaching	0.043 ± 0.001 $(p < 10^{-9})$	0.002 ± 0.001 (p = 0.044)	CENSIS services	
THE research	0.059 ± 0.001 $(p < 10^{-9})$	0.002 ± 0.001 (p = 0.015)	CENSIS scholarships	
THE citations	0.143 ± 0.001 $(p < 10^{-9})$	0.004 ± 0.001 (p = 10 ⁻⁴)	CENSIS structures	
THE industrial income	$\begin{array}{c} \textbf{0.015} \pm \textbf{0.001} \\ (p < 10^{-9}) \end{array}$	0.003 ± 0.001 (p = 0.003)	CENSIS communication and digital services	on
THE international outlook	0 . 147 \pm 0 . 001 $(p < 10^{-9})$	0.002 ± 0.001 (p = 0.038)	CENSIS international outlook	
			CENSIS employability	

Territorial networks are assortative $(p < 10^{-2})$ with respect to most of the indexes

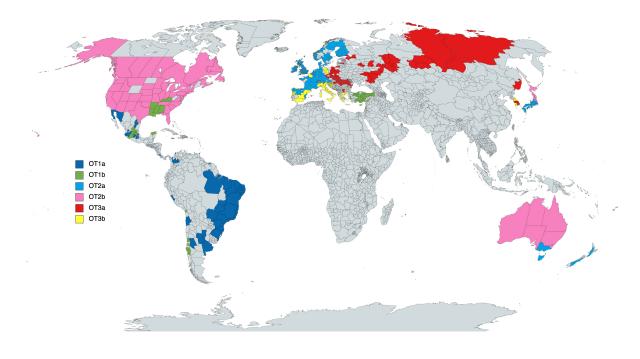
Such a strkinkg effect is not observed in educational offer networks

(p = 0.865)

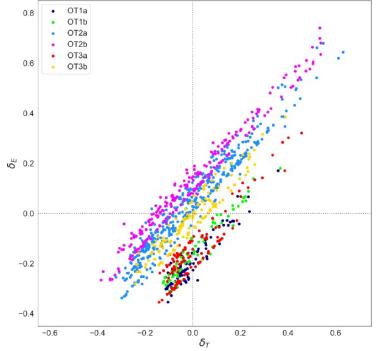
Workflow

Network communities and debiasing parameters

Community detection in the territorial (*T*) and educational offer (*E*) networks provides a **reference frame for a fair evaluation** of academic performance in rankings.


For a given ranked index *I*, we associate to each university *u* two **debiasing parameters**

$$\delta_T(u) = I(u) - \frac{\sum_{v \in C_T} w_{uv}^T I(v)}{\sum_{v \in C_T} w_{uv}^T}, \qquad \delta_E(u) = I(u) - \frac{\sum_{v \in C_E} w_{uv}^E I(v)}{\sum_{v \in C_E} w_{uv}^E}$$

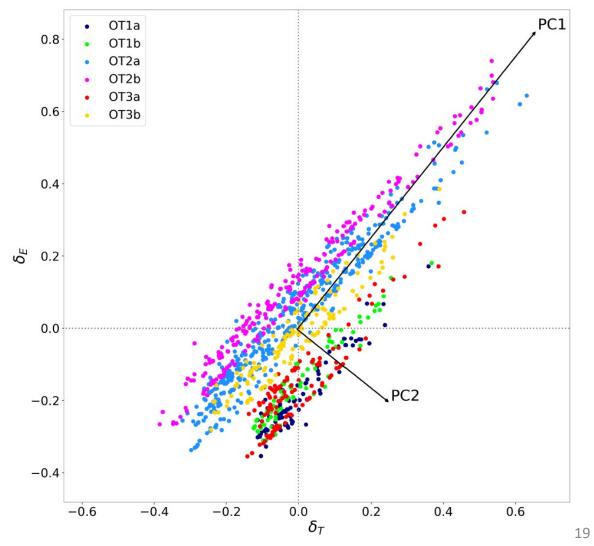

which refer the performance of an institution to the rest of its own community (C_T for the territorial network, C_E for the educational offer network)

Territorial bias quantification

OECD territorial communities

Debiasing parameter distribution (THE overall ranking)

The **stratification** observed in the scatter plot indicates a **systematic advantage** of universities based in wealthier territories


No similar effect is observed for educational offer community membership

A fairer rating from principal components

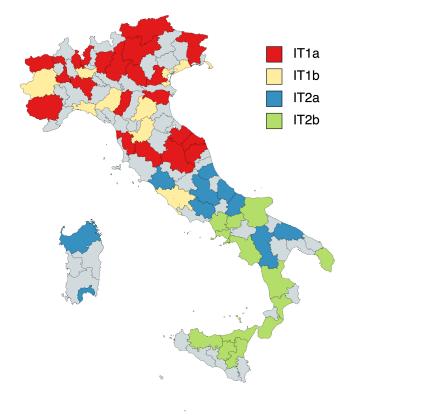
The **principal components** of the debiasing parameter distributions provide a key to **define a fairer ranking**

- **PC1** represents a **redefined ranking**, in which territorial influence is mitigated
- PC2 quantifies the territorial dragging effect → incorporates bias

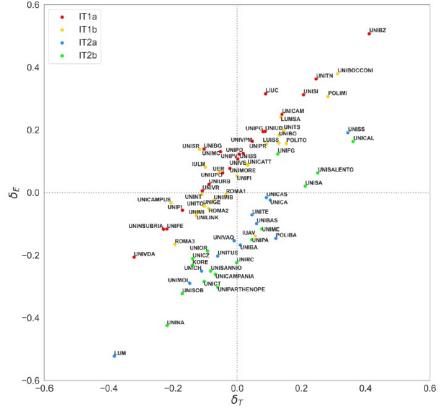
THE overall case: the territorial network is much **less assortative with respect to PC1** (0.054) than to the original ranking (0.109)

Emerging merit and success confirmations

From THE overall to its **debiased redefinition PC1**


- Small changes on top of the list: the merit of outstanding universities is not due to a territorial bias
- The largest placement improvements are achieved by universities operating in less advantaged contexts (eastern Europe and center-south America)

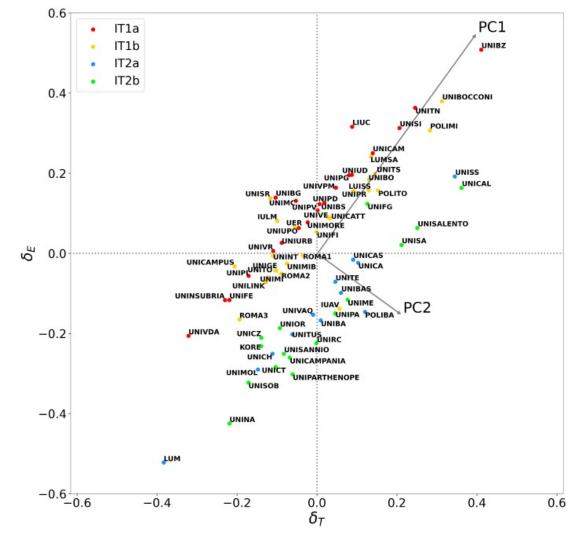
University	Subregion	Country	PC1
California Institute of Technology	California	United States	0.916(+3)
University of Oxford	South East England	United Kingdom	0.902(-1)
Massachusetts Institute of Technology	Massachusetts	United States	0.884(+2)
Imperial College London	Greater London	United Kingdom	0.877 (+7)
Stanford University	California	United States	0.873(-3)
University of Cambridge	East of England	United Kingdom	0.871(0)
ETH Zurich	Zurich	Switzerland	0.847 (+7)
Princeton University	New Jersey	United States	0.837 (+1)
Harvard University	Massachusetts	United States	0.837(-6)
University of California, Berkeley	California	United States	0.793(-3)


Full PC1 ranking (1088 universities) available at Scientific Reports 12, 4995 (2022)

The Italian case: a gapped distribution

Italian territorial communities

Debiasing parameter distribution (CENSIS overall ranking)



In the Italian case study, the debiasing parameter scatter plots referred to many ranked indexes exhibit a **gap**, reflecting the North-South polarization of the country ²¹

Debiasing Italian rankings

In the **CENSIS overall** case, **assortativity** of the territorial network with respect to PC1 (0.113) is **strongly mitigated** with respect to the value obtained with the original ranking (0.450)

The **gap between the North and South** clusters, measured along the PC2 direction, is **numerically relevant**: 2.8 times the average standard deviation of PC2 within each cluster

Debiasing Italian rankings

A pair of universities from disadvantaged territorial communities reach the top 10 positions in the **redefined** *CENSIS overall* **ranking**

University	Province of main seat	PC1
Free University of Bolzano	Bolzano	0.652(0)
"Luigi Bocconi" University of Milano	Milano	0.491 (+1)
University of Trento	Trento	0.438(-1)
Milano Politecnico	Milano	0.414(0)
University of Siena	Siena	0.374(0)
University of Sassari	Sassari	0.358(+5)
University of Calabria	Cosenza	0.345 (+7)
"Carlo Cattaneo University – LIUC	Varese	0.308(+4)
University of Camerino	Macerata	0.285(-3)
"Maria SS. Assunta" Free University – LUMSA	Roma	0.275 (+5)

The largest placement improvement with respect to the original ranking involve in a predominant way universities from the south of the country

Conclusions and outlook

We have achieved two relevant results: 1) **measuring the impact of territory** on the scores of universities in rankings, 2) **decoupling this bias** from the definition of performance, thus developing a fairer rating system.

We refer the performance of a university to a **multifaceted and highdimensional representation** of its context, determined by a large number of socio-economic indicators

Universities achieving the largest position **improvements** in PC1 with respect to the original overall rankings belong to comparatively **disadvantaged territorial communities**

A complementary research question: how much the advantageous features of a territory are influenced by the **presence of outstanding universities**

Thank you for your attention!

Contacts:

Twitter logo: By Twitter - GitHub, Apache License 2.0, https://commons.wikimedia.org/w/index.php?curid=112280645