

Trento Institute for Fundamental Physics and Applications INFN

A new formulation of GR resembling EM

Federico Maria Guercilena

H. Olivares, E. Most, I. Peshkov, L. Papenfort

SM&FT 2022 - 20th December 2022

Conclusions

We derived dGREM, a new formulation of the EFE with striking properties:

🖝 Olivares et al., PRD, June 2022

For NR applications:

- fully first-order
- flux-balanced form
- allowing for exact suppression of constraint violations

From a theoretical viewpoint:

- derived in terms of differential forms
- related to gauge theories
- striking resemblance with EM equations

Introduction

Federico Maria Guercilena - TIFPA, Trento

What about GR?

EM equations as an IVBP \rightarrow evolution equations + constraint equations $(\nabla \cdot \mathbf{B} = 0)$

we have the Hamiltonian and momentum constraints (+ formulation-specific ones)

- "divergence cleaning" (Z4 family of formulations)
- But no such thing as CT for GR! (An attempt in [Meier, 2003])

Well-established methods to handle constraint violations numerically:

- divergence cleaning
 (Dedner's method [Dedner et al., 2002])
- Yee algorithm (Yee, 1966), constrained-transport schemes
 (staggered grids) [Evans and Hawley, 1988]

Introduction

Introduction

Not enough to guess were to store fields

Write Eqs. in terms of differential forms and integrate on appropriate submanifolds: the desired cancellations emerge!

Example: the wave equation. Take a scalar field (0-form) with exterior derivative $J = d\phi$,

The wave equation:

$$-\star^{-1} \boldsymbol{d} \star \boldsymbol{J} = 0$$
.

J has to satisfy constraints of the form

$$dJ = dd\phi = 0$$
,

i.e. $\partial_i \partial_j \phi = \partial_j \partial_i \phi$.

Recovering evolution equations:

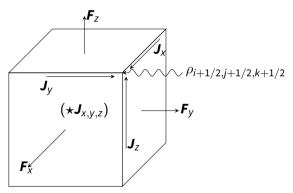
$$\partial_t \mathbf{J} = -\mathbf{d}
ho \,,$$

 $\partial_t \star \mathbf{J} = \mathbf{d} \left(\varepsilon_{ijk} j^i \, \mathbf{d} x^j \wedge \mathbf{d} x^k
ight) \,.$

Introduction

$$\partial_t \mathbf{J} = -\mathbf{d}
ho\,, \qquad \quad \partial_t\star \mathbf{J} = \mathbf{d}\left(arepsilon_{ijk} j^i\,\mathbf{d} x^j\wedge\mathbf{d} x^k
ight) := \mathbf{d} \mathbf{F}\,.$$

We are evolving a 1-form (3-form): it is a natural integrand on curves (volumes). Applying Stokes' theorem to the RHS, we evaluate a 0-form (2-form) on the boundary of the curve (volume). Adjacent elements contribute with the opposite sign: conservation is built into the scheme!



The dGREM formulation

Derivation

Start from the Sparling equation (equivalent to the EFE):

 $du_a = t_a + kT_a$

ightarrow project along/perpendicularly to n_{μ} get evolution eqs. $\partial_t \sqrt{\gamma} D_a^k = \dots$

Conservation of matter+gravity energy-momentum is

$$ddu_a = d(t_a + kT_a) = 0$$

$$\rightarrow$$
 get eqs. $\partial_t \sqrt{\gamma} \rho_a = \cdots$ and $\partial_t \sqrt{\gamma} P_a = \cdots$

Federico Maria Guercilena - TIFPA, Trento

Need eqs. for other quantities \rightarrow need to choose a connection. We choose the spin-connection. \rightarrow get eqs. $\partial_t A_i^{\hat{l}} = \cdots$

Because ddA = dF = 0 get further evolution eqs. $\partial_t \sqrt{\gamma} B^{\hat{a}i} = \cdots$

Finally: add an evolution eq. for $\sqrt{\gamma}$ (for convenience).

Final system

TIFPA Trento Institute for Fundamental Physics and Applications

First Cartan structure equations $\partial_t A^{\hat{i}}_{\ i} - \partial_i \beta^{\hat{i}} = -\alpha E^{\hat{i}}_{\ i} - \epsilon_{ilk} \beta^l B^{\hat{i}k}$

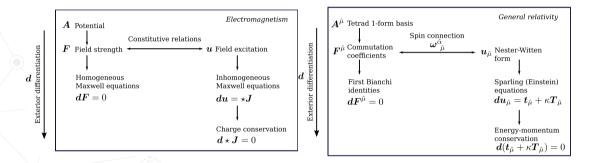
First Bianchi identities $\partial_t \sqrt{\gamma} B^{\hat{\alpha}k}$ $+ \partial_i \sqrt{\gamma} (\alpha \epsilon^{ijk} E_j^{\hat{\alpha}} - \beta^i B^{\hat{\alpha}k} + \beta^k B^{\hat{\alpha}i}) = 0$

Einstein evolution equations $\partial_t \sqrt{\gamma} D^k_{\hat{\alpha}} - \partial_i \sqrt{\gamma} (\alpha \epsilon^{kij} H_{\hat{\alpha}j} + \beta^i D^k_{\hat{\alpha}} - \beta^k D^i_{\hat{\alpha}}) = -\sqrt{\gamma} (j^k_a + \kappa J^k_a)$ Conservation of gravitational energy-momentum $\partial_t \sqrt{\gamma} \rho_{\hat{\alpha}} + \partial_i \sqrt{\gamma} j^i_{\ \hat{\alpha}} = -\kappa \sqrt{\gamma} Q_{\hat{\alpha}}$

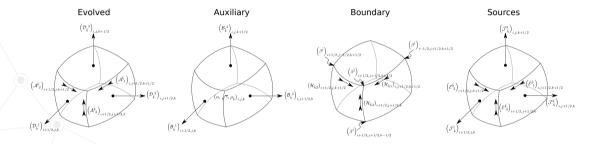
Conservation of 'matter' energy-momentum $\partial_t \sqrt{\gamma} P_{\hat{\alpha}} + \partial_i \sqrt{\gamma} J^j_{\hat{\alpha}} = \sqrt{\gamma} Q_{\hat{\alpha}}$

Auxiliary evolution equation for $\sqrt{\gamma}$ $\partial_t \sqrt{\gamma} - \partial_i \sqrt{\gamma} \beta^i = \frac{5}{2} \alpha \sqrt{\gamma} D_{\hat{k}}^{\hat{k}}$

Correspondence with EM



A possible CT scheme



$$\partial_t \mathcal{A}^{\hat{l}} - \mathbf{d} \beta^{\hat{l}} = -\mathcal{E}^{\hat{l}}, \qquad \partial_t \mathcal{D}_{\hat{lpha}} - \mathbf{d} \mathcal{H}_{\hat{lpha}} = -\mathcal{J}_{\hat{lpha}}.$$

Conclusions

Conclusions

We derived dGREM, a new formulation of the EFE with striking properties:

🖝 Olivares et al., PRD, June 2022

For NR applications:

- fully first-order
- flux-balanced form
- allowing for exact suppression of constraint violations

From a theoretical viewpoint:

- derived in terms of differential forms
- related to gauge theories
- striking resemblance with EM equations

Further developments

What's missing?

- Proof of hyperbolicity (We got it! Upcoming paper by Ilya Peshkov)
- Proof of linear degeneracy (i.e. no shock waves)
- Conversion to and from ADM variables (α , β^i , γ_{ij} and K_{ij})
 - Implementation in a code and numerical tests

The TEONGRAV specific initiative at INFN

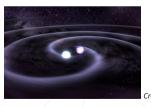
The TEONGRAV initiative

TEONGRAV Theory of Gravitational Wave Sources

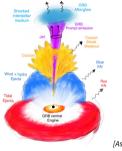
- Firenze (Luca Del Zanna)
- Milano-Bicocca (Bruno Giacomazzo)
- Napoli (Mariafelicia De Laurentis)
- Padova (Michela Mapelli)
- Roma1 (Leonardo Gualtieri)
- TIFPA (Albino Perego)
- Trieste (Enrico Barausse)

The TEONGRAV initiative

- GW sources modelling via semi-analytical and numerical methods;
- Extract information (with theory and observations) on the EOS of NS;
- Study of the dynamics of BH formation;



Credit: NASA



[Ascenzi et al., 2021]

- Study of electromagnetic counterparts of GW signals;
- Study of modified gravity theories.

The TEONGRAV initiative

Numerical/computational techniques in HPC are a big part of our work, in particular large scale DNS of BBH/BNS/BHNS (agreement between INFN and CINECA, have access to CINECA HPC resources)

We work on improved realism...

- general relativistic gravitation
- magnetohydrodynamicse.g. [Cipolletta et al., 2021]
- Microphysics and EOSe.g. [Loffredo et al., 2022]
- neutrino transporte.g. [Radice et al., 2022]

... and increasing performance/efficiency:

- ► "better" algorithmse.g. This work
- more efficient parallelism
- leveraging cutting edge technology (e.g. GPUs!)

Federico Maria Guercilena - TIFPA, Trento

ètc.

Thank you for your attention!

References I

- Ascenzi, S., Oganesyan, G., Branchesi, M., and Ciolfi, R. (2021). Electromagnetic counterparts of compact binary mergers. *Journal of Plasma Physics*, 87(1):845870102.
- Cipolletta, F., Kalinani, J. V., Giangrandi, E., Giacomazzo, B., Ciolfi, R., Sala, L., and Giudici, B. (2021).

Spritz: general relativistic magnetohydrodynamics with neutrinos. *Classical and Quantum Gravity*, 38(8):085021.

References II

- Dedner, A., Kemm, F., Kröner, D., Munz, C. D., Schnitzer, T., and Wesenberg, M. (2002).
 Hyperbolic Divergence Cleaning for the MHD Equations.
 J. Comput. Phys., 175:645–673.
- Evans, C. and Hawley, J. (1988).
 Simulation of magnetohydrodynamic flows A constrained transport method.
 Astrophys. J., 332:659–677.
- Loffredo, E., Perego, A., Logoteta, D., and Branchesi, M. (2022). Muons in the aftermath of Neutron Star Mergers and their impact on Trapped Neutrinos.

Number: arXiv:2209.04458 arXiv:2209.04458 [astro-ph].

References III

📄 Meier, D. L. (2003).

Constrained Transport Algorithms for Numerical Relativity. I. Development of a Finite Difference Scheme.

Astrophys. J., 595:980–991.

 Radice, D., Bernuzzi, S., Perego, A., and Haas, R. (2022).
 A New Moment-Based General-Relativistic Neutrino-Radiation Transport Code: Methods and First Applications to Neutron Star Mergers. *Monthly Notices of the Royal Astronomical Society*, 512(1):1499–1521. arXiv:2111.14858 [astro-ph, physics:gr-qc].

References IV

Yee, K. (1966).

Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media.

IEEE Trans. Antennas Propag., 14(3):302–307.