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Spins on a lattice, out-of-equilibrium

▶ Ising Hamiltonian

H = −
∑
ij

JijSiSj , Si = ±1;

Si in contact with a thermal bath

▶ Add a dynamics (ex. Glauber, 1963) to study the evolution

towards equilibrium (if present)

▶ for Jij without �xed signs → long relaxation time
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Aging
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Multibath

▶ Di�erent groups of variables attached to di�erent thermal

baths?

▶ Idea introduced in the context of Langevin dynamics

(Cugliandolo, Kurchan & Peliti, 1996, Cugliandolo & Kurchan,

1998, 1999)

▶ Naturally out of equilibrium, but rather simple models

▶ Lack of literature for lattice models (Piscitelli et al., 2008,

2009, Borchers et al., 2012, Contucci et al., 2020)

4 / 15



Multibath

▶ Di�erent groups of variables attached to di�erent thermal

baths?

▶ Idea introduced in the context of Langevin dynamics

(Cugliandolo, Kurchan & Peliti, 1996, Cugliandolo & Kurchan,

1998, 1999)

▶ Naturally out of equilibrium, but rather simple models

▶ Lack of literature for lattice models (Piscitelli et al., 2008,

2009, Borchers et al., 2012, Contucci et al., 2020)

4 / 15



Multibath

▶ Di�erent groups of variables attached to di�erent thermal

baths?

▶ Idea introduced in the context of Langevin dynamics

(Cugliandolo, Kurchan & Peliti, 1996, Cugliandolo & Kurchan,

1998, 1999)

▶ Naturally out of equilibrium, but rather simple models

▶ Lack of literature for lattice models (Piscitelli et al., 2008,

2009, Borchers et al., 2012, Contucci et al., 2020)

4 / 15



Multibath

▶ Di�erent groups of variables attached to di�erent thermal

baths?

▶ Idea introduced in the context of Langevin dynamics

(Cugliandolo, Kurchan & Peliti, 1996, Cugliandolo & Kurchan,

1998, 1999)

▶ Naturally out of equilibrium, but rather simple models

▶ Lack of literature for lattice models (Piscitelli et al., 2008,

2009, Borchers et al., 2012, Contucci et al., 2020)

4 / 15



Nested partition function

Contucci et al. 2019, 2021

▶ Hamiltonian H(x1, . . . ,xr), each group of variables in contact

with a di�erent thermal bath, temperatures Ta = β−1
a ,

relaxation times τr ≪ τr−1 ≪ . . . ≪ τ1, ζa = βa

βr

▶ Nested partition function:

Z =


∫

dx1

[∫
dx2 . . .

[∫
dxre

−βrH(x1,x2,x3,...,xr)

]ζr−1/ζr

. . .

]ζ1/ζ2

. . .


1/ζ1
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Multibath: relation with disordered systems theory

▶ Bibath: σ⃗ in contact at T1, S⃗ in contact at T2, τ2 ≪ τ1,
ζ1 =

β1

β2
, ζ2 =

β2

β2
= 1

F = − 1

β2
logZ = − 1

β2ζ1
log

[
Eσ

[
trSe

−β2H
]ζ1]

▶ if T1 = T2: ζ1 = 1, F = − 1
β2

log
[
Eσ

[
trSe

−β2H
]]

(annealed)

▶ if T1 → ∞: ζ1 → 0,

F = − limζ1→0
1

β2ζ1
log

[
Eσ

[
trSe

−β2H
]ζ1] (quenched)
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Out of equilibrium temperature?

▶ Di�cult to de�ne

▶ Autocorrelation function: C(t, t′) = ⟨Si(t)Si(t
′)⟩ (t > t′)

▶ Integrated response function (h linear perturbation of H):

χ(t, t′) =

∫ t

t′
R(t, t′′)dt′′ where R(t, t′) =

δ⟨Si⟩
δhi

∣∣∣∣
h=0

▶ Fluctuation-Dissipation Theorem: at equilibrium

Tχ(t, t′) = 1− C(t, t′)
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E�ective temperature

E�ective temperature (Cugliandolo, Kurchan & Parisi, 1994):

Te� = −
(
d(Tχ)

dC

)−1
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Problematic?

▶ 1D Ising chain, quenching at T = 0 (Lippiello & Zannetti,

2000): Tχ(t, t′) =
√
2

π arctan
(√

2 cot
(
π
2C(t, t′)

))

▶ This plot depends on the observables in the correlator (Sollich,

Mayer & Fielding, 2002)
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Paradigmatic models we considered

▶ 1-dimensional;

▶ Binary Variables (±1):

▶ Si coupled to a bath with reciprocal temperature B;
▶ σi coupled to a bath with reciprocal temperature β.

▶ Si colder (B > β).

▶ Dynamical evolution:

▶ Glauber dynamics (simple);
▶ σi evolve slower, with relative timescale τ > 1.
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Paradigmatic models we considered

Basic models (with PBC):

1. H = −
∑

i Siσi (paramagnet);

advantage: fully analitically solvable;

disadvantage: not interacting (trivial);

2. H = −
∑

i SiσiSi+1 (ferromagnet);

advantage: interacting and highly non trivial phenomenology;

disadvantage: not analytically solvable;

3. H = −
∑

i(Siσi + σiSi+1) (alternated).
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First result: stationarization

Paramagnet:

E(t) = −
m+ µ

τ

1 + 1
τ

(
1− e−t(1+ 1

τ )
)

, m = tanhB , µ = tanhβ
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Second result: e�ective temperatures

Paramagnet (analytical curves, τ = 100, B = 1):
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0.2
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B
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β=1
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Second result: e�ective temperatures

Ferromagnet (numerical simulation, τ = 20, B = ∞):
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Conclusions

1. In lattice models one can compute averages by coupling the

variables to a multibath and studying the dynamics.

2. We considered the simplest models in this contest and we
found that:

2.1 the multibath leads the system to a nonequilibrium stationary
state, destroying aging;

2.2 e�ective temperatures:

2.2.1 paramagnet: standard picture;

2.2.2 ferromagnet: complicated picture.
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