Thermalization with a multibath: an investigation in simple models

Giovanni Battista Carollo
Università degli Studi di Bari

December 20th, 2022

SM\&FT2022

Preprint: 2212.00527 (with F. Corberi and G. Gonnella)

Spins on a lattice, out-of-equilibrium

- Ising Hamiltonian

$$
\mathcal{H}=-\sum_{i j} J_{i j} S_{i} S_{j}, \quad S_{i}= \pm 1
$$

S_{i} in contact with a thermal bath

Spins on a lattice, out-of-equilibrium

- Ising Hamiltonian

$$
\mathcal{H}=-\sum_{i j} J_{i j} S_{i} S_{j}, \quad S_{i}= \pm 1
$$

S_{i} in contact with a thermal bath

- Add a dynamics (ex. Glauber, 1963) to study the evolution towards equilibrium (if present)

Spins on a lattice, out-of-equilibrium

- Ising Hamiltonian

$$
\mathcal{H}=-\sum_{i j} J_{i j} S_{i} S_{j}, \quad S_{i}= \pm 1
$$

S_{i} in contact with a thermal bath

- Add a dynamics (ex. Glauber, 1963) to study the evolution towards equilibrium (if present)
- for $J_{i j}$ without fixed signs \rightarrow long relaxation time

Aging

1D Ising chain, quenching at $T=0$

Multibath

- Different groups of variables attached to different thermal baths?

Multibath

- Different groups of variables attached to different thermal baths?
- Idea introduced in the context of Langevin dynamics (Cugliandolo, Kurchan \& Peliti, 1996, Cugliandolo \& Kurchan, 1998, 1999)

Multibath

- Different groups of variables attached to different thermal baths?
- Idea introduced in the context of Langevin dynamics (Cugliandolo, Kurchan \& Peliti, 1996, Cugliandolo \& Kurchan, 1998, 1999)
- Naturally out of equilibrium, but rather simple models

Multibath

- Different groups of variables attached to different thermal baths?
- Idea introduced in the context of Langevin dynamics (Cugliandolo, Kurchan \& Peliti, 1996, Cugliandolo \& Kurchan, 1998, 1999)
- Naturally out of equilibrium, but rather simple models
- Lack of literature for lattice models (Piscitelli et al., 2008, 2009, Borchers et al., 2012, Contucci et al., 2020)

Nested partition function

Contucci et al. 2019, 2021

- Hamiltonian $\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)$, each group of variables in contact with a different thermal bath, temperatures $T_{a}=\beta_{a}^{-1}$, relaxation times $\tau_{r} \ll \tau_{r-1} \ll \ldots \ll \tau_{1}, \zeta_{a}=\frac{\beta_{a}}{\beta_{r}}$

Nested partition function

Contucci et al. 2019, 2021

- Hamiltonian $\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)$, each group of variables in contact with a different thermal bath, temperatures $T_{a}=\beta_{a}^{-1}$, relaxation times $\tau_{r} \ll \tau_{r-1} \ll \ldots \ll \tau_{1}, \zeta_{a}=\frac{\beta_{a}}{\beta_{r}}$
- Nested partition function:

$$
Z=\left\{\int d \mathbf{x}_{1}\left[\int d \mathbf{x}_{2} \ldots\left[\int d \mathbf{x}_{r} e^{-\beta_{r} H\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{r}\right)}\right]^{\zeta_{r-1} / \zeta_{r}} \ldots\right]^{\zeta_{1} / \zeta_{2}} \ldots\right\}^{1 / \zeta_{1}}
$$

Multibath: relation with disordered systems theory

- Bibath: $\vec{\sigma}$ in contact at T_{1}, \vec{S} in contact at $T_{2}, \tau_{2} \ll \tau_{1}$, $\zeta_{1}=\frac{\beta_{1}}{\beta_{2}}, \zeta_{2}=\frac{\beta_{2}}{\beta_{2}}=1$

$$
F=-\frac{1}{\beta_{2}} \log Z=-\frac{1}{\beta_{2} \zeta_{1}} \log \left[\mathbb{E}_{\sigma}\left[\operatorname{tr}_{S} e^{-\beta_{2} H}\right]^{\zeta_{1}}\right]
$$

Multibath: relation with disordered systems theory

- Bibath: $\vec{\sigma}$ in contact at T_{1}, \vec{S} in contact at $T_{2}, \tau_{2} \ll \tau_{1}$, $\zeta_{1}=\frac{\beta_{1}}{\beta_{2}}, \zeta_{2}=\frac{\beta_{2}}{\beta_{2}}=1$

$$
F=-\frac{1}{\beta_{2}} \log Z=-\frac{1}{\beta_{2} \zeta_{1}} \log \left[\mathbb{E}_{\sigma}\left[\operatorname{tr}_{S} e^{-\beta_{2} H}\right]^{\zeta_{1}}\right]
$$

- if $T_{1}=T_{2}: \zeta_{1}=1, F=-\frac{1}{\beta_{2}} \log \left[\mathbb{E}_{\sigma}\left[\operatorname{tr}_{S} e^{-\beta_{2} H}\right]\right]$ (annealed)

Multibath: relation with disordered systems theory

- Bibath: $\vec{\sigma}$ in contact at T_{1}, \vec{S} in contact at $T_{2}, \tau_{2} \ll \tau_{1}$, $\zeta_{1}=\frac{\beta_{1}}{\beta_{2}}, \zeta_{2}=\frac{\beta_{2}}{\beta_{2}}=1$

$$
F=-\frac{1}{\beta_{2}} \log Z=-\frac{1}{\beta_{2} \zeta_{1}} \log \left[\mathbb{E}_{\sigma}\left[\operatorname{tr}_{S} e^{-\beta_{2} H}\right]^{\zeta_{1}}\right]
$$

- if $T_{1}=T_{2}: \zeta_{1}=1, F=-\frac{1}{\beta_{2}} \log \left[\mathbb{E}_{\sigma}\left[\operatorname{tr}_{S} e^{-\beta_{2} H}\right]\right]$ (annealed)
- if $T_{1} \rightarrow \infty: \zeta_{1} \rightarrow 0$,

$$
F=-\lim _{\zeta_{1} \rightarrow 0} \frac{1}{\beta_{2} \zeta_{1}} \log \left[\mathbb{E}_{\sigma}\left[\operatorname{tr}_{S} e^{-\beta_{2} H}\right]^{\zeta_{1}}\right] \text { (quenched) }
$$

Out of equilibrium temperature?

- Difficult to define

Out of equilibrium temperature?

- Difficult to define
- Autocorrelation function: $C\left(t, t^{\prime}\right)=\left\langle S_{i}(t) S_{i}\left(t^{\prime}\right)\right\rangle\left(t>t^{\prime}\right)$

Out of equilibrium temperature?

- Difficult to define
- Autocorrelation function: $C\left(t, t^{\prime}\right)=\left\langle S_{i}(t) S_{i}\left(t^{\prime}\right)\right\rangle\left(t>t^{\prime}\right)$
- Integrated response function (h linear perturbation of \mathcal{H}):

$$
\chi\left(t, t^{\prime}\right)=\int_{t^{\prime}}^{t} R\left(t, t^{\prime \prime}\right) d t^{\prime \prime} \quad \text { where } \quad R\left(t, t^{\prime}\right)=\left.\frac{\delta\left\langle S_{i}\right\rangle}{\delta h_{i}}\right|_{h=0}
$$

Out of equilibrium temperature?

- Difficult to define
- Autocorrelation function: $C\left(t, t^{\prime}\right)=\left\langle S_{i}(t) S_{i}\left(t^{\prime}\right)\right\rangle\left(t>t^{\prime}\right)$
- Integrated response function (h linear perturbation of \mathcal{H}):

$$
\chi\left(t, t^{\prime}\right)=\int_{t^{\prime}}^{t} R\left(t, t^{\prime \prime}\right) d t^{\prime \prime} \quad \text { where } \quad R\left(t, t^{\prime}\right)=\left.\frac{\delta\left\langle S_{i}\right\rangle}{\delta h_{i}}\right|_{h=0}
$$

- Fluctuation-Dissipation Theorem: at equilibrium

$$
T \chi\left(t, t^{\prime}\right)=1-C\left(t, t^{\prime}\right)
$$

Effective temperature

Effective temperature (Cugliandolo, Kurchan \& Parisi, 1994):

$$
T_{\mathrm{eff}}=-\left(\frac{d(T \chi)}{d C}\right)^{-1}
$$

Problematic?

- 1D Ising chain, quenching at $T=0$ (Lippiello \& Zannetti, 2000): $T \chi\left(t, t^{\prime}\right)=\frac{\sqrt{2}}{\pi} \arctan \left(\sqrt{2} \cot \left(\frac{\pi}{2} C\left(t, t^{\prime}\right)\right)\right)$

Problematic?

- 1D Ising chain, quenching at $T=0$ (Lippiello \& Zannetti, 2000): $T \chi\left(t, t^{\prime}\right)=\frac{\sqrt{2}}{\pi} \arctan \left(\sqrt{2} \cot \left(\frac{\pi}{2} C\left(t, t^{\prime}\right)\right)\right)$

- This plot depends on the observables in the correlator (Sollich, Mayer \& Fielding, 2002)

Paradigmatic models we considered

- 1-dimensional;

Paradigmatic models we considered

- 1-dimensional;
- Binary Variables (± 1) :

Paradigmatic models we considered

- 1-dimensional;
- Binary Variables (± 1) :
- S_{i} coupled to a bath with reciprocal temperature B;

Paradigmatic models we considered

- 1-dimensional;
- Binary Variables (± 1) :
- S_{i} coupled to a bath with reciprocal temperature B;
- σ_{i} coupled to a bath with reciprocal temperature β.

Paradigmatic models we considered

- 1-dimensional;
- Binary Variables (± 1) :
- S_{i} coupled to a bath with reciprocal temperature B;
- σ_{i} coupled to a bath with reciprocal temperature β.
- S_{i} colder $(B>\beta)$.

Paradigmatic models we considered

- 1-dimensional;
- Binary Variables (± 1) :
- S_{i} coupled to a bath with reciprocal temperature B;
- σ_{i} coupled to a bath with reciprocal temperature β.
- S_{i} colder $(B>\beta)$.
- Dynamical evolution:

Paradigmatic models we considered

- 1-dimensional;
- Binary Variables (± 1):
- S_{i} coupled to a bath with reciprocal temperature B;
- σ_{i} coupled to a bath with reciprocal temperature β.
- S_{i} colder $(B>\beta)$.
- Dynamical evolution:
- Glauber dynamics (simple);

Paradigmatic models we considered

- 1-dimensional;
- Binary Variables (± 1):
- S_{i} coupled to a bath with reciprocal temperature B;
- σ_{i} coupled to a bath with reciprocal temperature β.
- S_{i} colder $(B>\beta)$.
- Dynamical evolution:
- Glauber dynamics (simple);
- σ_{i} evolve slower, with relative timescale $\tau>1$.

Paradigmatic models we considered

Basic models (with PBC):

1. $\mathcal{H}=-\sum_{i} S_{i} \sigma_{i}$ (paramagnet); advantage: fully analitically solvable; disadvantage: not interacting (trivial);

Paradigmatic models we considered

Basic models (with PBC):

1. $\mathcal{H}=-\sum_{i} S_{i} \sigma_{i}$ (paramagnet); advantage: fully analitically solvable; disadvantage: not interacting (trivial);
2. $\mathcal{H}=-\sum_{i} S_{i} \sigma_{i} S_{i+1}$ (ferromagnet);
advantage: interacting and highly non trivial phenomenology; disadvantage: not analytically solvable;

Paradigmatic models we considered

Basic models (with PBC):

1. $\mathcal{H}=-\sum_{i} S_{i} \sigma_{i}$ (paramagnet);
advantage: fully analitically solvable; disadvantage: not interacting (trivial);
2. $\mathcal{H}=-\sum_{i} S_{i} \sigma_{i} S_{i+1}$ (ferromagnet);
advantage: interacting and highly non trivial phenomenology; disadvantage: not analytically solvable;
3. $\mathcal{H}=-\sum_{i}\left(S_{i} \sigma_{i}+\sigma_{i} S_{i+1}\right)$ (alternated).

First result: stationarization

Energy per spin $B=\infty, \beta=0$

Paramagnet:

$$
E(t)=-\frac{m+\frac{\mu}{\tau}}{1+\frac{1}{\tau}}\left(1-e^{-t\left(1+\frac{1}{\tau}\right)}\right), \quad m=\tanh B, \quad \mu=\tanh \beta
$$

Second result: effective temperatures

Paramagnet (analytical curves, $\tau=100, B=1$):

Second result: effective temperatures

Ferromagnet (numerical simulation, $\tau=20, B=\infty$):

Conclusions

1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.

Conclusions

1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
2. We considered the simplest models in this contest and we found that:

Conclusions

1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
2. We considered the simplest models in this contest and we found that:
2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;

Conclusions

1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
2. We considered the simplest models in this contest and we found that:
2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;
2.2 effective temperatures:

Conclusions

1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
2. We considered the simplest models in this contest and we found that:
2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;
2.2 effective temperatures:
2.2.1 paramagnet: standard picture;

Conclusions

1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
2. We considered the simplest models in this contest and we found that:
2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;
2.2 effective temperatures:
2.2.1 paramagnet: standard picture;
2.2.2 ferromagnet: complicated picture.
