Thermalization with a multibath: an investigation in simple models

> Giovanni Battista Carollo Università degli Studi di Bari

> > December 20th, 2022

SM&FT2022

Preprint: 2212.00527 (with F. Corberi and G. Gonnella)

Spins on a lattice, out-of-equilibrium

Ising Hamiltonian

$$\mathcal{H} = -\sum_{ij} J_{ij} S_i S_j , \quad S_i = \pm 1;$$

 S_i in contact with a thermal bath

Spins on a lattice, out-of-equilibrium

Ising Hamiltonian

$$\mathcal{H} = -\sum_{ij} J_{ij} S_i S_j , \quad S_i = \pm 1;$$

 S_i in contact with a thermal bath

 Add a dynamics (ex. Glauber, 1963) to study the evolution towards equilibrium (if present)

Spins on a lattice, out-of-equilibrium

Ising Hamiltonian

$$\mathcal{H} = -\sum_{ij} J_{ij} S_i S_j , \quad S_i = \pm 1;$$

 S_i in contact with a thermal bath

- Add a dynamics (ex. Glauber, 1963) to study the evolution towards equilibrium (if present)
- for J_{ij} without fixed signs \rightarrow long relaxation time

Aging

Different groups of variables attached to different thermal baths?

- Different groups of variables attached to different thermal baths?
- Idea introduced in the context of Langevin dynamics (Cugliandolo, Kurchan & Peliti, 1996, Cugliandolo & Kurchan, 1998, 1999)

- Different groups of variables attached to different thermal baths?
- Idea introduced in the context of Langevin dynamics (Cugliandolo, Kurchan & Peliti, 1996, Cugliandolo & Kurchan, 1998, 1999)
- Naturally out of equilibrium, but rather simple models

- Different groups of variables attached to different thermal baths?
- Idea introduced in the context of Langevin dynamics (Cugliandolo, Kurchan & Peliti, 1996, Cugliandolo & Kurchan, 1998, 1999)
- Naturally out of equilibrium, but rather simple models
- Lack of literature for lattice models (Piscitelli et al., 2008, 2009, Borchers et al., 2012, Contucci et al., 2020)

Contucci et al. 2019, 2021

► Hamiltonian $\mathcal{H}(\mathbf{x}_1, \ldots, \mathbf{x}_r)$, each group of variables in contact with a different thermal bath, temperatures $T_a = \beta_a^{-1}$, relaxation times $\tau_r \ll \tau_{r-1} \ll \ldots \ll \tau_1$, $\zeta_a = \frac{\beta_a}{\beta_r}$

Contucci et al. 2019, 2021

- ► Hamiltonian $\mathcal{H}(\mathbf{x}_1, \ldots, \mathbf{x}_r)$, each group of variables in contact with a different thermal bath, temperatures $T_a = \beta_a^{-1}$, relaxation times $\tau_r \ll \tau_{r-1} \ll \ldots \ll \tau_1$, $\zeta_a = \frac{\beta_a}{\beta_r}$
- Nested partition function:

$$Z = \left\{ \int d\mathbf{x}_1 \left[\int d\mathbf{x}_2 \dots \left[\int d\mathbf{x}_r e^{-\beta_r H(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_r)} \right]^{\zeta_{r-1}/\zeta_r} \dots \right]^{\zeta_1/\zeta_2} \dots \right\}^{1/\zeta_1}$$

Multibath: relation with disordered systems theory

▶ Bibath: $\vec{\sigma}$ in contact at T_1 , \vec{S} in contact at T_2 , $\tau_2 \ll \tau_1$, $\zeta_1 = \frac{\beta_1}{\beta_2}$, $\zeta_2 = \frac{\beta_2}{\beta_2} = 1$

$$F = -\frac{1}{\beta_2} \log Z = -\frac{1}{\beta_2 \zeta_1} \log \left[\mathbb{E}_{\sigma} \left[\operatorname{tr}_S e^{-\beta_2 H} \right]^{\zeta_1} \right]$$

Multibath: relation with disordered systems theory

Bibath: \$\vec{\sigma}\$ in contact at \$T_1\$, \$\vec{S}\$ in contact at \$T_2\$, \$\tau_2\$ < \$\vec{\approx}\$_1\$, \$\zeta_1\$ = \$\frac{\beta_1}{\beta_2}\$, \$\zeta_2\$ = \$\vec{\beta_2}{\beta_2}\$ = \$1\$
\$F = \$-\frac{1}{\beta_2}\$ log \$Z = \$-\frac{1}{\beta_2\zeta_1}\$ log \$\left[\mathbb{E}_{\sigma}\$ \left[\text{tr}_S e^{-\beta_2 H} \right]^{\zeta_1}\$ \right]\$
\$if \$T_1 = \$T_2\$: \$\zeta_1\$ = \$1\$, \$F = \$-\frac{1}{\beta_2}\$ log \$\left[\mathbb{E}_{\sigma}\$ [\text{tr}_S e^{-\beta_2 H} \right]^{\zeta_1}\$]\$ (annealed)

Multibath: relation with disordered systems theory

b Bibath: $\vec{\sigma}$ in contact at T_1 , \vec{S} in contact at T_2 , $\tau_2 \ll \tau_1$, $\zeta_1 = \frac{\beta_1}{\beta_2}$, $\zeta_2 = \frac{\beta_2}{\beta_2} = 1$ $F = -\frac{1}{\beta_2} \log Z = -\frac{1}{\beta_2 \zeta_1} \log \left[\mathbb{E}_{\sigma} \left[\operatorname{tr}_S e^{-\beta_2 H} \right]^{\zeta_1} \right]$ **b** if $T_1 = T_2$: $\zeta_1 = 1$, $F = -\frac{1}{\beta_2} \log \left[\mathbb{E}_{\sigma} \left[\operatorname{tr}_S e^{-\beta_2 H} \right] \right]$ (annealed) **b** if $T_1 \to \infty$: $\zeta_1 \to 0$, $F = -\lim_{\zeta_1 \to 0} \frac{1}{\beta_2 \zeta_1} \log \left[\mathbb{E}_{\sigma} \left[\operatorname{tr}_S e^{-\beta_2 H} \right]^{\zeta_1} \right]$ (quenched)

• Autocorrelation function: $C(t, t') = \langle S_i(t)S_i(t') \rangle$ (t > t')

- ▶ Autocorrelation function: $C(t,t') = \langle S_i(t)S_i(t') \rangle$ (t > t')
- Integrated response function (h linear perturbation of \mathcal{H}):

$$\chi(t,t') = \int_{t'}^t R(t,t'')dt'' \quad \text{where} \quad R(t,t') = \frac{\delta \langle S_i \rangle}{\delta h_i} \bigg|_{h=0}$$

- ▶ Autocorrelation function: $C(t,t') = \langle S_i(t)S_i(t') \rangle$ (t > t')
- Integrated response function (h linear perturbation of \mathcal{H}):

$$\chi(t,t') = \int_{t'}^t R(t,t'') dt'' \quad \text{where} \quad R(t,t') = \left. \frac{\delta \langle S_i \rangle}{\delta h_i} \right|_{h=0}$$

Fluctuation-Dissipation Theorem: at equilibrium $T\chi(t,t') = 1 - C(t,t')$

Effective temperature

Effective temperature (Cugliandolo, Kurchan & Parisi, 1994):

$$T_{\rm eff} = -\left(\frac{d(T\chi)}{dC}\right)^{-1}$$

Problematic?

Problematic?

• Binary Variables (± 1) :

• Binary Variables (± 1) :

• S_i coupled to a bath with reciprocal temperature B;

- Binary Variables (± 1) :
 - S_i coupled to a bath with reciprocal temperature B;
 - σ_i coupled to a bath with reciprocal temperature β .

- Binary Variables (± 1) :
 - S_i coupled to a bath with reciprocal temperature B;
 - σ_i coupled to a bath with reciprocal temperature β .
- S_i colder $(B > \beta)$.

- Binary Variables (± 1) :
 - S_i coupled to a bath with reciprocal temperature B;
 - σ_i coupled to a bath with reciprocal temperature β .
- S_i colder $(B > \beta)$.
- Dynamical evolution:

- Binary Variables (± 1) :
 - S_i coupled to a bath with reciprocal temperature B;
 - σ_i coupled to a bath with reciprocal temperature β .
- S_i colder $(B > \beta)$.
- Dynamical evolution:
 - Glauber dynamics (simple);

- ► Binary Variables (±1):
 - \triangleright S_i coupled to a bath with reciprocal temperature B;
 - σ_i coupled to a bath with reciprocal temperature β .
- S_i colder $(B > \beta)$.
- Dynamical evolution:
 - Glauber dynamics (simple);
 - σ_i evolve slower, with relative timescale $\tau > 1$.

Basic models (with PBC):

1. $\mathcal{H} = -\sum_{i} S_i \sigma_i$ (paramagnet); advantage: fully analitically solvable; disadvantage: not interacting (trivial); Basic models (with PBC):

1. $\mathcal{H} = -\sum_{i} S_i \sigma_i$ (paramagnet); advantage: fully analitically solvable; disadvantage: not interacting (trivial);

2.
$$\mathcal{H} = -\sum_{i} S_i \sigma_i S_{i+1}$$
 (ferromagnet);

advantage: interacting and highly non trivial phenomenology; disadvantage: not analytically solvable;

Basic models (with PBC):

1. $\mathcal{H} = -\sum_{i} S_i \sigma_i$ (paramagnet); advantage: fully analitically solvable; disadvantage: not interacting (trivial);

2.
$$\mathcal{H} = -\sum_{i} S_i \sigma_i S_{i+1}$$
 (ferromagnet);

advantage: interacting and highly non trivial phenomenology; disadvantage: not analytically solvable;

3. $\mathcal{H} = -\sum_i (S_i \sigma_i + \sigma_i S_{i+1})$ (alternated).

First result: stationarization

Paramagnet:

$$E(t) = -\frac{m + \frac{\mu}{\tau}}{1 + \frac{1}{\tau}} \left(1 - e^{-t\left(1 + \frac{1}{\tau}\right)} \right) \ , \quad m = \tanh B \ , \quad \mu = \tanh \beta$$
12/15

Second result: effective temperatures

Paramagnet (analytical curves, $\tau = 100, B = 1$):

Second result: effective temperatures

Ferromagnet (numerical simulation, $\tau = 20$, $B = \infty$):

1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.

- 1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
- 2. We considered the simplest models in this contest and we found that:

- 1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
- 2. We considered the simplest models in this contest and we found that:
 - 2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;

- 1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
- 2. We considered the simplest models in this contest and we found that:
 - 2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;
 - 2.2 effective temperatures:

- 1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
- 2. We considered the simplest models in this contest and we found that:
 - 2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;
 - 2.2 effective temperatures:
 - 2.2.1 paramagnet: standard picture;

- 1. In lattice models one can compute averages by coupling the variables to a multibath and studying the dynamics.
- 2. We considered the simplest models in this contest and we found that:
 - 2.1 the multibath leads the system to a nonequilibrium stationary state, destroying aging;
 - 2.2 effective temperatures:
 - 2.2.1 paramagnet: standard picture;
 - 2.2.2 ferromagnet: complicated picture.