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Motivations

(Particle) physics physical information often from fits to data
absence of direct signals for new physics → intensity frontier

precision is key word

Experiment
→ obtain data w/ stat.syst. errs

[Muon g-2 @ FermiLab]

Fit to data
driven by theory understanding

[Muon g-2 collab.]
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Motivations
(Particle) physics physical information often from fits to data

absence of direct signals for new physics → intensity frontier
precision is key word

HPC
→ obtain data w/ stat.syst. errs

[Leonardo @ CINECA]

Fit to data
driven by theory understanding

[Gambino et al ’22]

Figure 5. Effective mass aMe↵(t) ⌘ log (C(t)/C(t + a)) in lattice units for the Ds-meson (left
panel) and the Bs-meson (right panel) correlation function (2.21), evaluated using the ETMC
gauge ensemble B55.32 for bare quark masses equal to aµb = 0.50, aµc = 0.25 and aµs = 0.021,
corresponding to renormalised quark masses mb(MS, 2 GeV) ' 2.4 GeV, mc(MS, 2 GeV) ' 1.2 GeV
and ms(MS, 2 GeV) ' 100 MeV. The values of the Wilson r-parameter of the two valence quarks
are opposite, i.e. rc = �rs in the Ds meson and rb = �rs in the Bs meson.

charm quark masses very close to their physical values.
We have calculated the two-point function C(t), defined in eq. (2.21), using the in-

terpolating operator b(x)�5s(x) with a simulated b-quark mass equal to twice the physical
charm mass, i.e. mb(MS, 2 GeV) ' 2.4 GeV, and a physical strange quark. We set opposite
Wilson parameters for the two valence quarks in order to guarantee that cutoff effects on
the pseudoscalar mass are O(a2µf ) [30, 34, 35]. To improve the statistical precision we
have made use of the “one-end trick” stochastic method [36, 37] and employed 10 spatial
stochastic sources at a randomly chosen time-slice per gauge configuration. Moreover, in
order to suppress contributions of the excited states in the Bs-meson correlation function,
we have used Gaussian smeared interpolating quark fields [38] both at the source and at the
sink. For the values of the smearing parameters we set kG = 4 and NG = 30. In addition,
we apply APE smearing to the gauge links [39] in the interpolating fields with parameters
↵APE = 0.5 and NAPE = 20.

Smearing leads to improved projection onto the lowest-energy eigenstate at smaller
Euclidean time separations. As shown by the effective mass aMe↵(t) ⌘ log (C(t)/C(t + a))

in fig. 5, the dominance of the ground-state signal starts around t/a ' 13 for both the Ds

and Bs mesons. By averaging over the plateau regions shown in fig. 5 the ground-state
masses are respectively found to be mDs = 2.05(8) GeV and mBs = 3.08(11) GeV.

We have calculated the four-point function Cµ⌫(tsnk, t2, t1, tsrc; q), given by eq. (2.18),
as a function of t1, the time at which the first weak current is inserted with momentum q,
for fixed values of t2, where the second weak current is contracted with momentum insertion
�q, fixing tsrc = 0 and tsnk = T/2 = 32a. The momentum q is inserted along one spatial
direction, namely q = (0, 0, q) and we have considered eleven values for q ranging from
q = 0 up to q = qmax ' 0.9 GeV. On the lattice these values are injected through the use of

– 18 –
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Lattice field theories

Due to confinment → non-perturbative formulation is necessary

lattice spacing a → regulate UV divergences
finite size L → infrared regulator

Continuum theory a→ 0, L→∞

Euclidean metric → Boltzman interpretation
of path integral }a

L

〈O〉 = Z−1
∫

[DU ]e−S[U ]O(U) ≈ 1
N

N∑
i=1

O[Ui]

Very high dimensional integral → Monte-Carlo methods
Markov Chain of gauge field configs U0 → U1 → · · · → UN
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Framework

0. Nx true expectation values Yi
1. run a simulation with N configurations
2. measure estimators yi(t) at Monte Carlo time t

e.g. a two-point correlator with i labelling source-sink separation
3. calculate averages ȳi = 1

N

∑
t yi(t)

limN→∞ ȳi = Yi

Central-limit theorem: ȳi normally distributed around Yi, δȳ = ȳ − Y

PC(ȳ) = (2π)−Nx/2(detC)−1/2 exp
(
− 1

2(δȳ, C−1δȳ)
)

Cov. matrix 〈δȳiδȳj〉 ≡
∫

dȳ PC(ȳ) δȳiδȳj = Cij

C = O(1/N) and δȳ = O(N− 1
2 )

Notation: (z, y) = ziy
i and ||y||2 = (y, y)

3 / 13



χ2 distribution

Null Hypothesis (NH): Yi described by ȳi
statistical tests based on χ2 = (δȳ, C−1δȳ) = ||C−1/2δȳ||2

1. what is 〈χ2〉? → reduced χ2

〈χ2〉 = Nx degrees of freedom
criterion 1) if χ2 ' 〈χ2〉 then NH valid (more later..)

2. probability of finding χ2 larger than observed χ2
obs? → p-value

Q(χ2
obs) =

∫
dȳ PC(ȳ) θ(χ2(ȳ)− χ2

obs) = γ(k/2, χ2
obs/2)

γ incomplete Γ-function
criterion 2) if Q(χ2

obs) > 0.05 then NH valid

Exact cancellation of C in PC and χ2 → simple analytic results
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Problems

In practical calculations we estimate C

1. Lattice QCD (fermions) simulations expensive
O(100) independent samples

2. Limit N → Nx cov. matrix singular [Michael ’94]

3. Markov chains induce autocorrelations
consecutive configurations correlated along Monte-Carlo time
statistical independent information reduced [Madras-Sokal ’88]

error σ2 = 2τint/Nvar

For fits we need C−1, but hard to estimate in practice
→ uncorrelated fits, or SVD-cuts/regularized C−1
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Model function

Null-hypothesis: Yj described by model function Φ(xj , A) = φj(A)
Notation: Aα parameters, α = 1, . . . NA

Best fit parameters ā from correlated fits

minimize χ2(a) = ||C− 1
2 (ȳ − φ(a))||2 → ∂χ2(a)

∂aα

∣∣∣∣
a=ā

= 0

at minimum ā(ȳ) and χ2(ā)

If C ill-conditioned, χ2(a) = ||W (ȳ − φ(a))||2
e.g. Wij = δij/

√
Cii uncorrelated fits, or SVD cuts...

We want robust statistical tests to judge quality of fit
1. what is 〈χ2(ā)〉? → reduced χ2

2. how likely finding χ2 larger than χ2
obs? → p-value
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〈χ2(ā)〉

We evalute 〈||W (ȳ − φ(ā))||2〉 [MB, Sommer ’22]
notation: δā = ā−A and φα(a) = ∂φ(a)/∂aα

1. Use minimum condition to define projector P span Wφα(ā)(
Wφα(ā),W (ȳ − φ(ā))

)
= 0 → PW (ȳ − φ(ā)) = 0

χ2(ā) = ||(1− P)W (ȳ − φ(ā)||2

2. Expand φ(ā) about A
φ(ā) = φ(A) + φα(ā)δāα +O(δā2)
ȳ − φ(ā) = ȳ − φ(A) + φαδāα +O(δā2) = δȳ + φαδāα +O(δȳ2)

3. χ2(ā) = ||(1− P)Wδȳ||2 +O(δȳ3) +O(δȳ4)

Taking W = O(N1/2), i.e. a function of C−1/2

〈O(δȳ3)〉 = 0 up to corrections
〈χ2(ā)〉 = tr[(1− P)WCW ] +O(N−1)
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p-value

Q(χ2
obs) =

∫
dȳ PC(ȳ) θ(χ2(ȳ)− χ2

obs)

1. a useful relation is given by change of variables z = C−1/2δȳ

〈f(δȳ)〉 =
∫

dȳ PC(ȳ) f(δȳ) =
∫

dz (2π)−Nx/2e−
1
2 ||z||

2
f(C1/2z)

2. replace χ2(ā) with ||(1− P)Wδȳ||2 = (z, νz)
matrix ν = C1/2W (1− P)WC1/2

Q(χ2
obs) =

∫
dz (2π)−Nx/2e−

1
2 ||z||

2
θ((z, νz)− χ2

obs)

Integral in Q evaluated numerically (easy)
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Summary

[MB, Sommer ’22]
For arbitrary W , i.e. uncorrelated fits, SVD cuts, correlated fits ...

robust statistical tests based on p-value (and reduced χ2)
C and C1/2, i.e. large (not small) eigenvalues of C

For correlated fits [W = C−1/2] + [trP = NA], imply:
tr[(1− P)WC] = tr[1− P] = Nx −NA = degrees of freedom
similarly trν = Nx −NA, so p-value takes standard form

C never known, only its estimator C̄: consequences?
estimator of 〈χ2〉 with error O(N−1/2)
estimator of p-value, no closed-form for error

bootstrap? to be explored [MB, Kelly in prep]
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Autocorrelations - I
[Madras-Sokal ’88][Wolff ’03][Schaefer et al. ’11]

Assume yi(t) measured on single ensemble at Monte Carlo time t
autocorrelation function Γij(t) = 〈∆yi(t+ t0) ∆yj(t0)〉
covariance matrix Cij = 1

N

∑∞
t=−∞ Γij(t)

Expected χ2 in presence of autocorrelations
〈χ2(ā)〉 = 1

N

∑∞
t=−∞tr

[
Γ(t)W (1− P)W

]
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[MB, Sommer ’22]
Estimator E of 〈χ2〉

1. estimator of Γ
2. truncate sum (W ) 3.
∆E2 ' 2

N (2W + 1)E2

example in toy model
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Autocorrelations - II

Autocorrelation effects from matrix ν = C1/2W (1− P)WC1/2
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obs = 2.0 〈χ2(ā)〉

Uncorrelated fit
Error on p-value from several
replicas
Example in toy model
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p-value

Correlated fits
large d.o.f.
p-value sharp drop for χ2

d.o.f ' 1
→ χ2/d.o.f ' 1 valid criterion

small d.o.f.
χ2/d.o.f ' 1 not good
→ p-value preferable
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χ2
obs/〈χ2(ā)〉
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corr. fit Nx = 22

uncorr. fit Nx = 22

corr. fit Nx = 4

uncorr. fit Nx = 4

Uncorrelated fits
χ2/d.o.f ' 1 meaningless; χ2/〈χ2〉 ' 1 not good criterion
→ p-value from our method preferred choice
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Conclusions

Lattice QCD
predictions often involve fits to correlated and autocorrelated data
correlated fits always preferred, but estimator of C is often singular
alternatives: uncorrelated fits, SVD cuts...

Our work novel analytic control of 〈χ2〉 and p-value
unlocks robust statistical tests (only C,C1/2 involved)

Autocorrelations are easily incorporated
Γ-method, jackknife/bootstrap with binning

Thanks for your attention
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a different method

Bootstrap generates new ’fake’ resampled ensembles
for each ensemble minimize χ2

build histogram → well-defined “probability” density of χ2? No
re-centering χ2 allows to build proper density [Kelly Lattice ’19]
well-defined p-value, valid for arbitrary W

More work under preparation [MB, Kelly in prep]
formal proof of equivalence of two ideas
extension of recentering to jackknife
study of 1/N neglected terms


