On fits to correlated and Autocorrelated data

Mattia Bruno in collab. with R. Sommer based on *Comp. Phys. Comms (2022) 108643, 2209.14188*

SM&FT 2022 - The XIX Workshop on Statistical Mechanics and nonpertubative Field Theory, Bari, Italy, December 20th, 2022

MOTIVATIONS

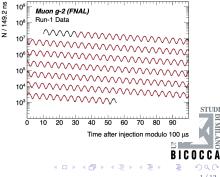
(Particle) physics physical information often from fits to data absence of direct signals for new physics \rightarrow intensity frontier precision is key word

Experiment

 \rightarrow obtain data w/ stat.syst. errs [Muon g-2 @ FermiLab]

Fit to data driven by theory understanding

[Muon g-2 collab.]



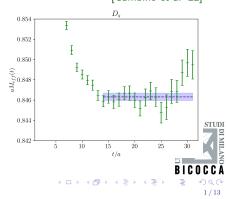
MOTIVATIONS

(Particle) physics physical information often from fits to data absence of direct signals for new physics \rightarrow intensity frontier precision is key word

HPC

 \rightarrow obtain data w/ stat.syst. errs [Leonardo @ CINECA]

Fit to data driven by theory understanding [Gambino et al '22]



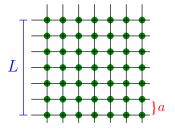
LATTICE FIELD THEORIES

Due to confinment \rightarrow non-perturbative formulation is necessary

lattice spacing $a \to \text{regulate UV}$ divergences finite size $L \to \text{infrared regulator}$

Continuum theory $a \to 0$, $L \to \infty$

$$\label{eq:bound} \begin{split} \text{Euclidean metric} & \rightarrow & \text{Boltzman interpretation} \\ & \text{of path integral} \end{split}$$



$$\langle O \rangle = \mathcal{Z}^{-1} \int [DU] e^{-S[U]} O(U) \approx \frac{1}{N} \sum_{i=1}^{N} O[U_i]$$

Very high dimensional integral \rightarrow Monte-Carlo methods Markov Chain of gauge field configs $U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_N$

FRAMEWORK

- 0. $N_{\rm x}$ true expectation values Y_i
- 1. run a simulation with N configurations
- 2. measure estimators $y_i(t)$ at Monte Carlo time t

e.g. a two-point correlator with i labelling source-sink separation 3. calculate averages $\bar{y}_i=\frac{1}{N}\sum_t y_i(t)$ $\lim_{N\to\infty} \bar{y}_i=Y_i$

Central-limit theorem: \bar{y}_i normally distributed around Y_i , $\delta \bar{y} = \bar{y} - Y$

$$P_C(\bar{y}) = (2\pi)^{-N_{\rm x}/2} (\det C)^{-1/2} \exp\left(-\frac{1}{2}(\delta \bar{y}, C^{-1}\delta \bar{y})\right)$$

Cov. matrix $\langle \delta \bar{y}_i \delta \bar{y}_j \rangle \equiv \int d\bar{y} \ P_C(\bar{y}) \ \delta \bar{y}_i \delta \bar{y}_j = C_{ij}$ $C = O(1/N) \text{ and } \delta \bar{y} = O(N^{-\frac{1}{2}})$

Notation: $(z, y) = z_i y^i$ and $||y||^2 = (y, y)$

BICOCCA 3/13

χ^2 DISTRIBUTION

Null Hypothesis (NH): Y_i described by \bar{y}_i statistical tests based on $\chi^2 = (\delta \bar{y}, C^{-1} \delta \bar{y}) = ||C^{-1/2} \delta \bar{y}||^2$

- 1. what is $\langle \chi^2 \rangle$? \rightarrow reduced χ^2 $\langle \chi^2 \rangle = N_x$ degrees of freedom criterion 1) if $\chi^2 \simeq \langle \chi^2 \rangle$ then NH valid (more later..)
- 2. probability of finding χ^2 larger than observed χ^2_{obs} ? \rightarrow p-value $Q(\chi^2_{obs}) = \int d\bar{y} \ P_C(\bar{y}) \ \theta(\chi^2(\bar{y}) \chi^2_{obs}) = \gamma(k/2, \chi^2_{obs}/2)$ γ incomplete Γ -function criterion 2) if $Q(\chi^2_{obs}) > 0.05$ then NH valid

Exact cancellation of C in P_C and $\chi^2 \rightarrow$ simple analytic results

PROBLEMS

In practical calculations we estimate ${\boldsymbol C}$

- 1. Lattice QCD (fermions) simulations expensive O(100) independent samples
- 2. Limit $N
 ightarrow N_{
 m x}$ cov. matrix singular
- 3. Markov chains induce autocorrelations consecutive configurations correlated along Monte-Carlo time statistical independent information reduced [Madras-Sokal '88] error $\sigma^2 = 2\tau_{\rm int}/N$ var

For fits we need C^{-1} , but hard to estimate in practice \rightarrow uncorrelated fits, or SVD-cuts/regularized C^{-1}

[Michael '94]

MODEL FUNCTION

Null-hypothesis: Y_j described by model function $\Phi(x_j, A) = \phi_j(A)$ Notation: A_{α} parameters, $\alpha = 1, \dots N_A$

Best fit parameters \bar{a} from correlated fits minimize $\chi^2(a) = ||C^{-\frac{1}{2}}(\bar{y} - \phi(a))||^2 \rightarrow \frac{\partial \chi^2(a)}{\partial a_{\alpha}}\Big|_{a=\bar{a}} = 0$ at minimum $\bar{a}(\bar{y})$ and $\chi^2(\bar{a})$

If C ill-conditioned, $\chi^2(a) = ||W(\bar{y} - \phi(a))||^2$ e.g. $W_{ij} = \delta_{ij}/\sqrt{C_{ii}}$ uncorrelated fits, or SVD cuts...

We want robust statistical tests to judge quality of fit

- 1. what is $\langle \chi^2(\bar{a}) \rangle$? \rightarrow reduced χ^2
- 2. how likely finding χ^2 larger than χ^2_{obs} ? \rightarrow p-value

[MB, Sommer '22]

We evalute $\langle ||W(\bar{y} - \phi(\bar{a}))||^2 \rangle$ notation: $\delta \bar{a} = \bar{a} - A$ and $\phi^{\alpha}(a) = \partial \phi(a) / \partial a_{\alpha}$

- 1. Use minimum condition to define projector \mathcal{P} span $W\phi^{\alpha}(\bar{a})$ $\left(W\phi^{\alpha}(\bar{a}), W(\bar{y} - \phi(\bar{a}))\right) = 0 \rightarrow \mathcal{P}W(\bar{y} - \phi(\bar{a})) = 0$ $\chi^{2}(\bar{a}) = ||(1 - \mathcal{P})W(\bar{y} - \phi(\bar{a}))|^{2}$
- 2. Expand $\phi(\bar{a})$ about A $\phi(\bar{a}) = \phi(A) + \phi^{\alpha}(\bar{a})\delta\bar{a}_{\alpha} + O(\delta\bar{a}^2)$ $\bar{y} - \phi(\bar{a}) = \bar{y} - \phi(A) + \phi^{\alpha}\delta\bar{a}_{\alpha} + O(\delta\bar{a}^2) = \delta\bar{y} + \phi^{\alpha}\delta\bar{a}_{\alpha} + O(\delta\bar{y}^2)$

3. $\chi^2(\bar{a}) = ||(1 - \mathcal{P})W\delta\bar{y}||^2 + O(\delta\bar{y}^3) + O(\delta\bar{y}^4)$

Taking $W = O(N^{1/2})$, i.e. a function of $C^{-1/2}$ $\langle O(\delta \bar{y}^3) \rangle = 0$ up to corrections

 $\langle \chi^2(\bar{a}) \rangle = \operatorname{tr}[(1 - \mathcal{P})WCW] + O(N^{-1})$

P-VALUE

$$Q(\chi^2_{\rm obs}) = \int \mathrm{d}\bar{y} \ P_C(\bar{y}) \ \theta(\chi^2(\bar{y}) - \chi^2_{\rm obs})$$

1. a useful relation is given by change of variables $z = C^{-1/2} \delta \bar{y}$ $\langle f(\delta \bar{y}) \rangle = \int d\bar{y} \ P_C(\bar{y}) \ f(\delta \bar{y}) = \int dz \ (2\pi)^{-N_x/2} e^{-\frac{1}{2}||z||^2} f(C^{1/2}z)$

2. replace $\chi^2(\bar{a})$ with $||(1 - \mathcal{P})W\delta \bar{y}||^2 = (z, \nu z)$ matrix $\nu = C^{1/2}W(1 - \mathcal{P})WC^{1/2}$

$$Q(\chi^2_{\rm obs}) = \int dz \ (2\pi)^{-N_{\rm x}/2} e^{-\frac{1}{2}||z||^2} \theta((z,\nu z) - \chi^2_{\rm obs})$$

Integral in Q evaluated numerically (easy)

BICOCCA E SQC 8/13

SUMMARY

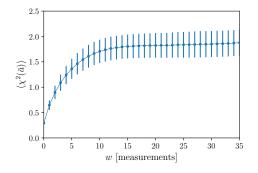
9/13

[MB. Sommer '22] For arbitrary W, i.e. uncorrelated fits, SVD cuts, correlated fits ... robust statistical tests based on p-value (and reduced χ^2) C and $C^{1/2}$, i.e. large (not small) eigenvalues of CFor correlated fits $[W = C^{-1/2}] + [trP = N_A]$, imply: $\operatorname{tr}[(1-\mathcal{P})WC] = \operatorname{tr}[1-\mathcal{P}] = N_{\mathrm{x}} - N_{\mathrm{A}} = \operatorname{degrees}$ of freedom similarly $tr\nu = N_x - N_A$, so p-value takes standard form C never known, only its estimator \overline{C} : consequences? estimator of $\langle \chi^2 \rangle$ with error $O(N^{-1/2})$ estimator of p-value, no closed-form for error [MB, Kelly in prep] → DEGLI bootstrap? to be explored

AUTOCORRELATIONS - I

[Madras-Sokal '88][Wolff '03][Schaefer et al. '11]Assume $y_i(t)$ measured on single ensemble at Monte Carlo time tautocorrelation function $\Gamma_{ij}(t) = \langle \Delta y_i(t+t_0) \, \Delta y_j(t_0) \rangle$ covariance matrix $C_{ij} = \frac{1}{N} \sum_{t=-\infty}^{\infty} \Gamma_{ij}(t)$

Expected χ^2 in presence of autocorrelations $\langle \chi^2(\bar{a}) \rangle = \frac{1}{N} \sum_{t=-\infty}^{\infty} \operatorname{tr} \left[\Gamma(t) W(1-\mathcal{P}) W \right]$



 $\label{eq:mb} \begin{array}{c} \mbox{[MB, Sommer '22]} \\ \mbox{Estimator E of $\langle \chi^2 \rangle$} \end{array}$

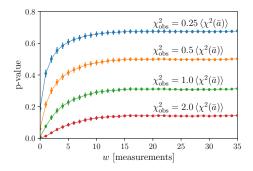
1. estimator of Γ 2. truncate sum (W) 3. $\Delta E^2 \simeq \frac{2}{N}(2W+1)E^2$

example in toy model

イロト イボト イヨト イヨト

Autocorrelations - II

Autocorrelation effects from matrix $\nu = C^{1/2} W(1-\mathcal{P}) W C^{1/2}$



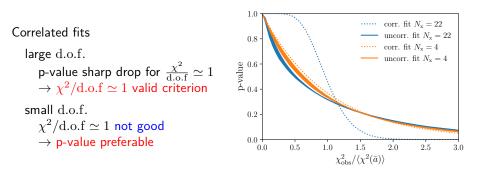
Uncorrelated fit

Error on p-value from several replicas

Example in toy model

P-VALUE

イロト イボト イヨト イヨト



Uncorrelated fits

 $\chi^2/d.o.f \simeq 1$ meaningless; $\chi^2/\langle \chi^2 \rangle \simeq 1$ not good criterion \rightarrow p-value from our method preferred choice

CONCLUSIONS

Lattice QCD

predictions often involve fits to correlated and autocorrelated data correlated fits always preferred, but estimator of C is often singular alternatives: uncorrelated fits, SVD cuts...

Our work novel analytic control of $\langle \chi^2 \rangle$ and p-value unlocks robust statistical tests (only $C, C^{1/2}$ involved)

Autocorrelations are easily incorporated Γ -method, jackknife/bootstrap with binning

Thanks for your attention

A DIFFERENT METHOD

Bootstrap generates new 'fake' resampled ensembles for each ensemble minimize χ^2 build histogram \rightarrow well-defined "probability" density of χ^2 ? No re-centering χ^2 allows to build proper density [Kelly Lattice '19] well-defined p-value, valid for arbitrary W

More work under preparation formal proof of equivalence of two ideas extension of recentering to jackknife study of 1/N neglected terms

[MB, Kelly in prep]

A D F A B F A B F A B F

