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Study of the reaction mechanism

%  Multinucleon transfer reactions at near- ad sub-barrier energies
o Production of neutron-rich heavy nuclei
o Nucleon-nucleon correlations

% Competition between transfer and near-barrier fusion

Applications of transfer to structure and astrophysical studies

% Asymptotic Normalization Constant and its implications

% The problem of *2C and the °He elastic breakup

Tools to study transfer at LNL

% Charged-particle detectors (PRISMA, GRIT, ...)

% Neutron detectors (NEDA, ...)

% Cryogenic targets (CTADIR, SUGAR, ...) @I_:?\J
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The transfer process
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Transfer reactions are an excellent spectroscopic probe. They are often used for:

- unveil the nuclear structure of nuclei (single-particle states, pairing correlations, etc);

- probe the energies of shell model orbitals;

- study partial decay widths of states involved in resonant reactions (nuclear astrophysics);

- multinucleon transfer reactions are applied to produce neutron-rich isotopes.

CINF
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The cluster of nucleons (x) can populate multiple states in the residual nucleus C* = A+x

The kinematics of the ejectile c gives information on the properties of these states

The angular distribution of ¢ depends on the transferred angular momentum L

Therefore, knowledge about the bombarding energy and Q-value allows the determination of L (spin)

Absolute cross sections are linked with the spectroscopic strengths of the populated levels

CINF
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In Physics Nuclear Physics
REVIEW article ,.)
Front. Phys., 30 March 2021 | https://doi.org/10.3389/fphy.2020.602920 o
updates

Transfer Reactions As a Tool in Nuclear Astrophysics

Fairouz Hammache* and Nicolas de Séréville*

IJCLab, Université Paris-Saclay, CNRS/IN2P3, Orsay, France

Nuclear reaction rates are one of the most important ingredients in describing how stars evolve. The study of the nuclear
reactions involved in different astrophysical sites is thus mandatory to address most questions in nuclear astrophysics.
Direct measurements of the cross-sections at stellar energies are very challenging—if at all possible. This is essentially due
to the very low cross-sections of the reactions of interest (especially when it involves charged particles), and/or to the
radioactive nature of many key nuclei. In order to overcome these difficulties, various indirect methods such as the transfer
reaction method at energies above or near the Coulomb barrier are used to measure the spectroscopic properties of the @a\l
involved compound nucleus that are needed to calculate cross-sections or reaction rates of astrophysical interest. In this

review, the basic features of the transfer reaction method and the theoretical concept behind are first discussed, then the

Mid Term Plan in Italy
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MINI REVIEW article ,.)
Front. Phys., 12 March 2019 | https://doi.org/10.3389/fphy.2019.00020 Pl
updates

TDHF Theory and Its Extensions for the Multinucleon
Transfer Reaction: A Mini Review

" Kazuyuki Sekizawa’

Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata, Japan

Time-dependent Hartree-Fock (TDHF) theory has been a powerful tool in describing a variety of complex nuclear
dynamics microscopically without empirical parameters. In this contribution, recent advances in nuclear dynamics studies
employing TDHF and its extensions are briefly reviewed, in line with the study of multinucleon transfer (MNT) reactions.
The latter lies at the core of this Research Topic, whose application for the production of extremely neutron-rich nuclei has

CINF

been extensively discussed in recent years. Having in mind the ongoing theoretical developments, it is envisaged how

microscopic theories may contribute to the future MNT study.
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Multinucleon transfer in a nutshell
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adiabatic cut-off function:
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Multinucleon transfer
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Y.X. Watanabe ef al., PRL115(2015)172503

A With (radioactive) n-rich beams neutron stripping and proton pick-up 10°
channels open! 10 / *
L MNT very promising way to populate n-rich heavy nuclei 3 o
d  Important implications for nuclear structure and astrophysical (r o~ el Rl
process) studies o 10 L7
E 107 T J*
But: .. © 107 136 198 * g \ Fragmentation (Expt.):
e Proton transfer process is still poorly understood jotE  MNT: “PXet Pt % 208pp (1GeV/4) +Be
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Multinucleon transfer - Secondary effects
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136Xe+238U @ 1 GeV

O Secondary effects (evaporation, fission) significantly change the yield 97Au+'3°Te @ 1.07 GeV 107
distribution of heavy primary nuclei 210 [
[  Need to study the best experimental conditions for a large survival 55
probability of n-rich heavy nuclei - _
A Studies performed with PRISMA coupled to second arm, DANTE, 205 | y -
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g T4 - 107
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Il 10
107
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Multinucleon transfer - Understanding the reaction mechanism

> Validate different types of reaction models
(GRAZING, DWBA, TDHF, Zagrebaev-Greiner
model) and improve cross section prediction

> Microscopic theories have been developed with
the use of supercomputers:
o TDFH and extended approaches (TDRPA,
SMF, TDHFB)
> Quantitative comparison with the experimental

data: mean values and distributions

(mb)
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KS and K. Yabana, PRC88(2013)014614; KS, PRC96(2017)014615

Production cross section for projectile-like fragments

“Ni+238U (E,, =307 MeV, E/Vy=1.27 [tip], 1.16 [side])
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Nucleon-nucleon correlations 12 ||
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Two-nucleon transfer reactions are among the best tools 2000 T ) 90 5
to investigate correlations gy 1500 Ni S 6o N e i ;
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Proton-proton correlations | ”
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102
208pp . BCa

4l
Stable beams: Radioactive beams: ’
% 298pp+48Ca double magic nuclei % 1328n+40Ca
% 206pp+62Nj closed proton and open neutron % 1325n+54Nj
shell % 1325n+208pp
& 208pp+144Sm 1445 m+88Sr superfluid proton
system
e Investigate nucleon-nucleon correlations simultaneously for a complete set
of transfer channels, involving both addition and removal of neutron and
proton pairs
o To learn more about the influence of the pair mode in the proton
channels, especially the pick-up one
o The optimum Q value for proton transfer channels is not 0
e Nuclei with an extended n distribution: study the density dependence of the
pairing force
e Comparison of results with theory and cross comparison between reactions

performed with stable and radioactive beams will provide valuable insight

into this topic @I_:?\J
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The PRISMA magnetic spectrometer at LNL for MNT studies
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Transfer and near barrier fusion
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The neutron transfer channel affect the near-barrier fusion of heavy-ions!

However ....

- the reaction mechanisms for fusion is still not yet fully understood

* coupled reaction channel effects, sequential fusion, reaction dynamics (transfer/breakup), etc

- in general, coupled channel models can describe well collective excitation effects

* the situation is more obscure concerning the neutron transfer process
- reactions with positive Q-values neutron transfer enhance the sub-barrier fusion probability
* many examples in the literature: Ni+Ni, Ni+Ge, Ca+Ca, Ca+Zr, S+Sn, etc

- both pickup and stripping transfer reactions affect the near barrier fusion cross sections?

* pickup (yes) PRC 30, 1223 (1984); PRL 45, 1472 (1980); NPA 633, 421 (1998)

stripping (no) PRC 30, 2088 (1984), PLB 175, 271 (1986), Nature 431, 823 (2004) - '®0+%Ni (2n stripping) shows large enhancements ???

Nuclear Physics Mid Term Plan in Italy — LNL Session
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Transfer and near barrier fusion
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H. M. Jia et al., Phys. Rev. C 86, 044621 (2012) 10" & . r ] : ) - ' ]
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Transfer and near barrier fusion
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How to investigate the transfer effect on fusion (experimentally)?
1) by comparing two or more nearby reactions (with positive and negative Q-values for the neutron transfer channel)
2) measuring “simultaneously” fusion, transfer/breakup and other peripheral processes (elastic, inelastic)

3) measuring fusion barrier distributions

Where to measure such reactions?
1) @ TANDEM - ALPI (regular and weakly bound projectiles)
2) @ SPES using radioactive projectiles

— Pisolo beamline

Few reactions recently investigated
1) 82348 4112116.120,124G1y @ CIAF, China

2) 32S+13°Te @ IUAC, India

CINF

* First measurements are from 80’s but some recent efforts demonstrate that there are still few important questions to be addressed

Mid Term Plan in Italy

* It is a subject that presents a clear interplay with other key areas presented in the INFN MidTerm plan o~ Nuclear Physics Q




Transfer and near barrier fusion

L Gasques, F Galtarossa Nuclear Physics Mid Term Plan in Italy — LNL Session

MCP1  MCP2 Si-detector V

pickup ('RB\
— >
;

r
58NT; 4 124 ]
Ni+'*4Sn 0.510 5.952 4.956 | Nuclear
®9Ni+124Sn -1.183 -2.865 -4.789
7°Ni+'24Sn -4.225 -3.280 -8.142 The transfer cross section

could be measured in PRISMA
in a complementary

stripping experiment
I O N N
58Ni+24Sn -6.483 -8.540 -19.656 @
69Ni+'24Sn 1.147 1.545 1.265
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Transfer reactions: ANC
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SF’s are very sensitive to the choice of the binding potential between the core and the transferred particle(s)

The Asymptotic Normalization Constant (ANC) was introduced to facilitate the comparison of structure information obtained from
transfer direct reaction data

Nuclear Physics
Mid Term Plan in Italy
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SF’s are very sensitive to the choice of the binding potential between the core and the transferred particle(s)

The Asymptotic Normalization Constant (ANC) was introduced to facilitate the comparison of structure information obtained from
transfer direct reaction data

—— probes the strength of the tail of the exponential wave function (almost free from geometrical parameters - radius, diffuseness)

—— less sensitive to the entrance and exit channel potentials

CINF

Nuclear Physics
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Transfer reactions: ANC
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SF’s are very sensitive to the choice of the binding potential between the core and the transferred particle(s)

The Asymptotic Normalization Constant (ANC) was introduced to facilitate the comparison of structure information obtained from
transfer direct reaction data

—— probes the strength of the tail of the exponential wave function (almost free from geometrical parameters - radius, diffuseness)

—— less sensitive to the entrance and exit channel potentials

The ANC plays an important role in low-energy elastic scattering, transfer nuclear and radiative capture reactions
- can provide information on the nuclear structure;

- helps to determine if the nucleus has an halo;

- often used to constrain cross sections of astrophysical interest radiativeeapture (n,g) and (a,g) reactions C
INFN

Nuclear Physics
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Requirements from the experimental point of view:

- The reaction must be peripheral to provide precise ANC values;

- Low energy beam (E < 10 MeV/u) and forward angles < 12 degrees;

do/dQ2 (mb/sr)

100 y T y T T T y T
= 14C(d,p)**C @ 17 MeV
10 o -3
X Y Rt
I L *
x x
= =
I!
1k x i .
¥ o I
: | ; ! B - |
0 20 40 60 80
ec.m. (deg)

Moschini, Yang and Capel, PRC 100 (2019) 044615
Mukhamedzhanov et al., PRC 84 (2011) 024616

CINF
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Transfer reactions: ANC
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Requirements from the experimental point of view:
- The reaction must be peripheral to provide precise ANC values;

- Low energy beam (E < 10 MeV/u) and forward angles < 12 degrees;

Some interesting cases to be investigated:

- study of 8Li and 8B mirror nuclei;

CINF

Nuclear Physics
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Requirements from the experimental point of view:
- The reaction must be peripheral to provide precise ANC values;

- Low energy beam (E < 10 MeV/u) and forward angles < 12 degrees;

Some interesting cases to be investigated:

- study of 8Li and 8B mirror nuclei;

Proposal: measure the 7Li(d,p)®Li and 7Be(d,n)®B reactions at low beam energies and forward angles

- pin down the ANC associated with both transfer reactions

- good occasion to test the theory for mirror nuclei INFN

Nuclear Physics
Mid Term Plan in Italy
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Requirements from the experimental point of view:
- The reaction must be peripheral to provide precise ANC values;

- Low energy beam (E < 10 MeV/u) and forward angles < 12 degrees; neutrons might be difficult to measure

’Be(3He,d)®B can be an alternatives

— S3He cryogenic targets?

Some interesting cases to be investigated:

- study of 8Li and 8B mirror nuclei;

Proposal: measure the 7Li(d,p)®Li and 7Be(d,n)®B reactions at low beam energies and forward angles

- pin down the ANC associated with both transfer reactions

- good occasion to test the theory for mirror nuclei INFN

Nuclear Physics
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Requirements from the experimental point of view:
- The reaction must be peripheral to provide precise ANC values;

- Low energy beam (E < 10 MeV/u) and forward angles < 12 degrees;

Some interesting cases to be investigated:

- extract the 7F ANC values from the *0O(d,n)'"F reaction;

CINF

Nuclear Physics
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Transfer reactions: ANC o ||
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Another case: Using **0O beam we could also test 2C(alpha,gamma)'®O

when measured at low energy, it allows to extract the phase shift of the continuum state from which the alpha is captured;

valuable info for ab initio theories and lattice QCD;

there are previous data for the 2C(°Li, d)'°O and 2C("Li, t)'°O reactions;

it might be a good opportunity to update the results.

CINF

Nuclear Physics
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Other devices for reaction studies
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The === p arra
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Granularity Resolution Identification Transparency

411 Silicon array fully integrable in AGATA & PARIS

"o .
..........

% e High efficiency for particles
_.8 e High granularity (strip pitch < 0.8 mm)
)
© Silicon 500 ym DSSD pitch < 0.8 mm
O | layers 1.5 mm DSSD pitch ~ 10mm
~4 S\
= e Large Qynamlcal range | 'ﬁ“ S |D| e -
O e PID using Pulse Shape Analysis > /\\\I{_"/?\
0 techniques . \\‘\ = 7.712'?//
9 e New Integrated Digital electronics /
O e Integration into AGATA (radius=23 cm) \
% e Transparency to y rays s Y |
'<C.> e High compactness \ °
@ e Special targets : cryogenic, tritium, windowless :
S ¢ e




Cryogenic and gas targets for reaction studies

CTADIR

Havar windows (2 - 3.8 um)

GM cryocooler for horizontal use
Temperature of 3K guaranteed in
the head

Design and construction are
completed

Gas filling system in 2022
Commissioning in Autumn 2022 at &
the CN accelerator

SUGAR

% Windowless supersonic gas jet
target

% High pressure gas (1-5 atm)
injected into the scattering
chamber

%  Already commissioned (F. Favela
at al., Accel. and Beams 18 (2015)
123502)

g . S o b o

) o

1-2 mg/cm? of 34He

% Density of scattering centers:
10'7-10'® atoms/cm?

CINF

| Nuclear ?hysich
Courtesy of A. Gottardo (l25); e Tom n n ey
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12(C is the seed nucleus for the creation of heavier elements

- Triple alpha process

» %He o Be e
<J L‘& 3J
7 N 7
SN NN

o He V%

12C ;

4He(an,g)°Be ) .
(an.g) — %Be(a,n)*C (alternative path for the **C formation)

4He(nn,g)®He(a,n)’Be

CINF

*** Already discussed yesterday by A. Caciolli and T. Kurtukian Nieto ***

Nuclear Physics
Mid Term Plan in Italy
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Thanks for your attention !!!

CINF

Nuclear Physics
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