Nuclear Physics Mid Term Plan in Italy

LNL – Session Legnaro, April 11th-12th 2022

Nucleosynthesis of trans-iron elements

Teresa Kurtukian-Nieto

LP2i Bordeaux/CNRS-IN2P3, Gradignan, France

Neutron Pathways to Nucleosynthesis

\checkmark The r process

(neutrino-wind, NS mergers, jet-SNe, etc) Nn 10²⁰ n cm⁻³;

\checkmark The n process

(explosive He-burning in CCSN) 10^{18} n cm⁻³ < Nn < 10^{20} n cm⁻³;

\checkmark The i process

(H ingestion in convective He burning conditions) 10^{14} n cm⁻³ < Nn < 10^{16} n cm⁻³;

 Neutron capture triggered by the ²²Ne(α,n)²⁵Mg in massive AGB stars and super-AGB stars Nn < 10¹⁴ n cm⁻³;

\checkmark The s process

(s process in AGB stars, s process in massive stars and fast rotators) Nn < few 10¹² n cm⁻³.

Nucleosynthesis processes beyond iron

Experimental nuclear data at 1^{rst} peak

beta decay rates ⁸⁹As

Nucleosynthesis processes beyond iron

3

Experimental nuclear data at 2nd peak

How good are models?

Experimental nuclear data at 1^{rst} peak

Nucleosynthesis processes beyond iron

Teresa Kurtukian-Nieto

Experimental nuclear data at 2nd peak

6

- Implantation and decay in the same measuring point
- Equipped with HPGe for γ and Plastic (or Si) for β particles
- Trigger given by proton arrival and β signal
- Long-living activity is removed by moving away the tape

Use of SPES HRMS for isobar purification

Measurement of the decay characteristics

Tape transport system Beam-on/off time sequence β-γ, γ-γ coincidence for β decay studies

detection

- β plastic scintillator
- -γ germanium

Can be coupled with a neutron-detector (NEDA)

- \checkmark Pn of the nuclei of interest.
- ✓ neutron-gated γ -ray spectra

Experimental nuclear data

- beta decay rates
- Beta-delayed neutron emission
- neutron capture rates

А

Decay schemes for (n, γ) cross-sections

95

Activation measurements of isotopes of interest for the s-process

Maxwellian Averaged Cross Section (MACS)

$$MACS = \langle \sigma \rangle = \frac{\langle \sigma v \rangle}{v_T} = \frac{2}{\sqrt{\pi}} \frac{1}{(kT)^2} \int_0^\infty \sigma(E) \ E \ \exp \left(-\frac{E}{kT}\right) \ dE$$

s-process reaction rate

$$\langle \sigma v \rangle = \int_0^\infty \Phi(v) \sigma(v) v dv = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} \int_0^\infty \sigma(v) v^3 \exp\left(-\frac{\mu v^2}{kT}\right) dv$$

Predicted Abundance

Comparison with experimental observed abundances

MACS calculated uncertainties of several stable and most of the unstable isotopes are higher than the requested accuracy (for s-process: 3-5%).

Activation measurements of isotopes of interest for the s-process

Mastinu, P.F., Martín-Hernández, G., Praena, J., 2009. Nucl. Instrum. Methods. A 601, 333.

Activation measurements of isotopes of interest for the s-process

PHASE B irradiation of radioactive targets produced at SPES

Neutron capture cross sections via surrogate reaction approach

Neutron capture cross sections via surrogate reaction approach

When ²²Ne neutron source is active

<u>At high neutron densities (5 x 10⁸ n/cm³⁾</u>, about the 80% of the flux goes through ⁸⁵Kr, allowing the production of ⁸⁶Kr and ⁸⁷Rb:

--> ⁸⁷Rb in AGB stars in an indicator of the neutron density!

⁸⁶Kr, ⁸⁷Rb, and ⁸⁸Sr are all magic, with low neutron capture cross sections

✓ In low-mass stars: ⁸⁸Sr produced

✓ In massive AGB: ⁸⁷Rb

⁸⁵Kr(d,p) w/ Ex=10 MeV, just above S_n

⁸⁵Kr branching

 $\sigma(^{85}$ Kr) = (55 ± 45) mb

SPES reaccelerated beams

Targets

- Hydrogen (h,d) target in a solid phase near triple point (~17K)
- Thickness 50 200 μm
- No window C free
- Continuous flow in vacuum 2-10mm/sec
- Compatible with particle detection

 H, D, ^{3,4}He
 Dense: up to ~10²¹ nuclei/cm²
 Havar window
 Compativle with particle det.

CTADIR PRIN Giovani A.Gottardo et al.

Neutron capture cross sections via surrogate reaction approach

- ➔ collaboration with INFN Pg and INAF Teramo
- ➔ 2 LoIs presented at the 3rd SPES workshop in 2016
- Tests proposed at LNL

- Collaboration with ORNL/Rutgers Univ. (exp) and NSCL (theory)
- ➔ 2 Lols presented at the 3rd SPES workshop in 2016
- Commissioning tests needed with stable beam

Instrumentation

Traditional gamma/particle spectroscopy but state-of-the-art tech.

ACTAR-TPC + ANCILLARY DETECTORS

- Si-Csl telescope
- LaBr3/CeBr3 for γ-tagging

PHASE B/C

Experimental nuclear data

- beta decay rates
- Beta-delayed neutron emission
- neutron capture rates

•
$$(\alpha, \mathbf{n}) \quad \mathbf{n-1} \xrightarrow{\alpha \mathbf{n}}_{\beta \mathbf{n}} \mathbf{n}$$

THE ASTROPHYSICAL JOURNAL, 927:116 (8pp), 2022 March 1

Reac	Table 1 tion Rate Variations That Affect Most Elen	nents	
Reaction	Z of Element	Tracer	
80 Zn(α ,n)	25-28, 33-52	1, 2, 3, 6	
79 Zn(α ,n)	25-27, 34-52	1, 2, 3, 6	
81 Zn(α ,n)	25-28, 34-46, 48-52	2, 3	
⁸¹ Ga(α ,n)	25-28, 34-45, 47, 48, 50-52	2, 8	
⁷⁹ Cu(α ,n)	25-29, 52-66	2, 4	
82 Ge(α ,n)	25-27, 42-52	2, 8	
83 Ge(α ,n)	25-28, 44-52	2, 8	
$^{88}As(\alpha,n)$	25-29, 33-39	2	
87 As(α ,n)	25-29, 33-38	2	
84 Ge(α ,n)	26-29, 32, 33, 50-52	2, 8	
⁷⁹ Ga(α ,n)	44-52	8	
⁸⁸ Se(α ,n)	25-27, 34-39	2	
90 Se(α ,n)	25-27, 34, 36-39	2	
$^{86}As(\alpha,n)$	25-28, 35, 36, 38	2	
$^{78}Ni(\alpha,n)$	25-29	2, 3	
$^{86}\text{Ge}(\alpha,n)$	25-29, 32	2	
⁸⁹ As(α ,n)	25–28, 33, 35	2	

(a, n) reactions with reaccelerated SPES beams and SUGAR

 77 Cu $(\alpha, n)^{80}$ Ga 86 Kr(α , n) 89 Sr 72 Zn $(\alpha, n)^{75}$ Ge 87 Kr $(\alpha, n)^{90}$ Sr 76 Zn $(\alpha, n)^{79}$ Ge ${}^{88}\mathrm{Kr}(\alpha,\mathrm{n}){}^{91}\mathrm{Sr}$ 78 Zn $(\alpha, n)^{81}$ Ge 89 Kr $(\alpha, n)^{92}$ Sr 79 Zn $(\alpha, n)^{82}$ Ge 90 Kr $(\alpha, n)^{93}$ Sr 80 Zn $(\alpha, n)^{83}$ Ge $^{87}\text{Rb}(\alpha, n)^{90}\text{Y}$ 81 Ga $(\alpha, n)^{84}$ As 89 Rb $(\alpha, n)^{92}$ Y $^{78}\text{Ge}(\alpha, n)^{81}\text{Se}$ ${}^{88}\mathrm{Sr}(\alpha,\mathrm{n}){}^{91}\mathrm{Zr}$ ${}^{80}\text{Ge}(\alpha, n){}^{83}\text{Se}$ 89 Sr(α , n) 92 Zr $^{82}\text{Ge}(\alpha, n)^{85}\text{Se}$ 90 Sr(α , n) 93 Zr 83 As $(\alpha, n)^{86}$ Br 91 Sr $(\alpha, n)^{94}$ Zr ${}^{84}Se(\alpha, n){}^{87}Kr$ 92 Sr(α , n) 95 Zr ${}^{85}Se(\alpha, n){}^{88}Kr$ 93 Sr $(\alpha, n)^{96}$ Zr ${}^{85}\mathrm{Br}(\alpha,\mathrm{n}){}^{88}\mathrm{Rb}$ 94 Sr(α , n) 97 Zr ${}^{87}\mathrm{Br}(\alpha,\mathrm{n}){}^{90}\mathrm{Rb}$ 94 Y(α , n) 97 Nb 88 Br(α , n) 91 Rb 95 Y(α , n) 98 Nb

 $^{94}\mathrm{Zr}(\alpha,\mathbf{n})^{97}\mathrm{Mo}$ $^{96}\mathrm{Zr}(\alpha,\mathbf{n})^{99}\mathrm{Mo}$

J. Bliss et al., Journal of Physics G: Nuclear and Particle Physics 44, 054003 (2017)

TALYS 1.6 considered 909 (alpha,n) reactions on stable and neutron-rich nuclei between Fe (Z=26) and Rh (Z=45). masses, which were taken from data table if available, or from the FRDM otherwise.

 $1 \text{ GK} \lesssim T \lesssim 5 \text{ GK}$

The production of molybdenum in stars: a nuclear astrophysics challenge

25

The production of molybdenum in MHD SNe

Element	Reaction	Rate varied	R(i)	Tracer
Мо	80 Zn(α ,n)	100	0.326, 0.224, 0.099	3, 6, 1
(Z = 42)	⁸¹ Ga(α ,n)	100	0.234, 0.034	8, 3
	⁸² Ge(α ,n)	100, 0.01	0.108, 0.110	8
	79 Zn(α ,n)	100	0.195, 0.149, 0.066	3, 6, 1
	78 Zn(α ,n)	100	0.173, 124	3, 6
	81 Zn(α ,n)	100	0.119, 106, 0, 063	3, 6, 1
	⁸³ Ge(α ,n)	100	0.094	8
	⁷⁹ Ga(α ,n)	100	0.086	8
	⁸⁰ Ga(α ,n)	100	0.072	8
	⁸¹ Ge(α ,n)	100	0.059	8
	90 Se(α ,n)	100	0.049	2
	$^{87}As(\alpha,n)$	100	0.045	2
	⁸⁸ Se(α ,n)	100	0.028	2
	¹²¹ Tc(α ,n)	100	0.020	6
	¹¹⁹ Tc(α ,n)	100	0.018	6
	⁸⁹ Nb(α ,n)	0.01	0.016	6
	103 Nb(α ,n)	0.01	0.011	6
	103 Mo(α ,n)	100	0.010	6

SUGAR@LNL coupled with NEDA

Teresa Kurtukian-Nieto

27

¹²C PRODUCTION IN EXPLOSIVE SCENARIOS

r-process escenario

¹²C is the seed nucleus for the creation of heavier nuclei (A=50-80)

 $\mathbf{28}$

 ${}^{9}\text{Be}(\alpha,n)$ 12C

-

Direct kinematic. ⁹Be target.

For instance: detector GRIT (charged particles and NEDA (neutrons). Possible coincidence n - ¹²C

⁹Be beam at LNL???

20

 ${}^{9}\text{Be}(\alpha,n){}^{12}\text{C}$

- **Inverse kinematic**. ⁴He target.
 - Gas target (CTADIR or SUGAR)
 - For instance: detector **GRIT** (charged particles) and **NEDA** (neutron). -

a+a+a+n Q=-1.57 MeV

- ⁸Be+n+α Q=-1.66 MeV
 - ⁵He+ 2α

Q=-2.31 MeV

PHASE C

⁴He(nn,γ)⁶He

Inclusive Coulomb breakup of ⁶He on heavy target

For instance: detector **GRIT (charged particles)**

- Exclusive breakup measurements ⁶He+A

For instance: detector **GRIT (charged particles)** and **NEDA (neutrons)**.

Possible coincidence n - ⁴He

- Study the reaction ⁶He(⁴He,γ)¹⁰Be

The ⁶He+⁴He cluster structure of ¹⁰Be is under study at the LNS with a ¹⁰Be beamFor instance: detector AGATA (gamma) $^{6}He(^{4}He,\gamma)^{10}Be$ Q= 7.4 MeVGas target (CTADIR or SUGAR) $^{6}He(^{4}He,n)^{9}Be$ Q= 0.6 MeV

PHASE C

Reaction rate ⁴He(nn,γ) ⁶He

J. Casal et al., Phys. Rev C 93 (2016) 041602(R);

SUMMARY

- ✓ Decay properties of neutron-rich nuclei at the first and second r-process peak : $T_{1/2}$, Pn, decay schemes
- $\checkmark\,$ Neutron capture cross sections :
 - ✓ s-process : activation measurements and surrogate reaction approach
 - \checkmark i-and r-process nucleosynthesis via surrogate reaction approach
- \checkmark Abundances of the elements at the first r-process peak: (a,n) reactions
- ✓ R-process seeds: ${}^{9}Be(\alpha,n){}^{12}C$; ${}^{4}He(2n,\gamma){}^{6}He$

For a very long term: fission of heavy neutron-rich Separator able to cope with overlapping A/q

Extra

138Ba

STABLE

71.698%

137Cs

30.08 y

B = 100.00%

136Xe

> 2.4E+21 y

8.8573%

137Ba

STABLE

11.232%

136Cs

13.04 d

B = 100.00%

135Xe

9.14 h

33

Measurement of the ¹³⁴Cs excited state at 60.03 keV, whose SPIN is not known: it is currently identified as (3)+. It may be 3+, 4+ or 5+.

- Population via b-decay not viable
- Access via different technique
- MOS technique could help accessing low-energy state
- Dedicated set of magnets for low-energy electrons transport
- Colling of Si(Li) might not be needed

Band 1

The beta-decay rate in astrophysical plasmas may change depending on the spin of that state, even at relatively low temperatures.

Possible measurement from $^{134}Xe + ^{208}Pb$ or 133 Cs(d,p) beams?

134Ba

STABLE

2.417%

133Cs

STABLE

100%

132Xe

STABLE

26.9086%

Ba 51 y

0.00%

2Cs 30 d

3.13%

.87%

BLE

32%

135Ba

STABLE

6.592%

134Cs

2.0652 y

B = 100.00%

 $\epsilon = 3.0E - 4\%$

133Xe

5.2475 d

136Ba

STABLE

7.854%

135Cs

2.3E+6 y

B = 100.00%

134Xe

> 5.8E+22 y

10.4357%