Nuclear Physics Mid Term Plan in Italy

LNL – Session Legnaro (Pd), April 11th-12th 2022

Nuclear Structure @ LNL Summary & conclusions

Daniele Mengoni Università and INFN, Padova

Nuclear Structure @LNL Nuclear Physics Mid Term Plan:

- Light and medium-mass exotic nuclei
- N~Z nuclei and isospin symmetry
- Shell evolution
- Deformation and collective modes

Enormous progress in theory

70

60

50

40

30

20

10

1980

Mass Number (A)

Ab-initio Method: Solve A

controlled approximations

Realistic: BEs within 5% of

experiment and starts from

1990

2000

Year

nucleon problem with

and systematically

improvable.

NN + 3NFs

²⁰⁸Pb (2022)

¹³²Sn, ¹³⁸Xe

(2020)

Light and medium-mass nuclei

models -130 obtained in large many-body spaces Calculations based on Energy (MeV) chiral NN and 3NF forces. Continuum not taken into -150 160 MR-IM-SRG 0 IT-NCSM -170 SCGF Lattice EFT -180 CC 20 22 24 26 28 16 18 Mass Number A

Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

Deep-inelastic reactions with ¹⁸O

Enormous leap forward in exp techniques

- High-sensitivity to lifetime measurement thanks the tracking array tech
- **Discrimination among** different models

2010

2020

Interaction

Shell evolution

- Shell evolution around 78Ni
- Deformation and shape coexistence
- Shell evolution around 132Sn

Limit of observability

Stable beams (fission): corecoupled states and intruders 1+ SPES beams q+ SPES beams : lifetime (plunger or DSAM) after transfer (d,p) , (d,t), coulex on intruder states

INFN

Nuclear Physics

Similar approaches for the the regions around 132Sn (~2 order of magn. more intense than currently available at ISOL facilities) key nucleus for physics and astrophysics purposes

Also with higher-I transfer \rightarrow alpha transfer $^{\bigcirc}$

6

Deformation and Collective states

<u>Simplicity from complexity and relevant implications on nuclear matter and astrophysics.</u>

Isovector Electric Giant Dipole Resonance that can be understood as a density oscillation of neutrons against protons. *This is also a perfect example of how a complex quantum system like the atomic nucleus can exhibit very simple collective configurations.*

Highlights over

time

Daniele Mengoni

Nuclear Physics Mid Term Plan in Italy – LNL Session

9

	time 🖍				
					С
Light and medium mass exotic nuclei		γ decay from near-threshold states		n cluster states	γ decay from near-threshold states
			Particle decays from clus		Nucleon correlations and molecular orbitals
					Isoscalar Giant Monopole Resonance in light deformed nuclei
				,. <i>,</i>	Proton excitations and 0+ states in Ar isotopes
N~Z nuclei		shape coexistence – lifetime measurements	Fundamental interact measurement of mir branching ratios)	ror beta decay	
		T=0 vs T=1 p-n pairing			
Shell		New theory developments for shell structure			
Evolution		Shell-evolution around N=50: shape coexistence and gap reduction towards 78Ni			
			Shape coexistence and evolution around N=60	l type II shell in Zr, Sr	Lifetimes after transfer reactions for interplay of deformation and single particle
					Shell-evolution at N=82 around 132Sn
and Collective modes		GDR/GQR gamma+particle decay, Jacobi shape	PDR (alpha scattering inv. kin. with different stable nuclei and SPES beams) and PDR Beta Decay		

The International community extensively participated to the mid-term plan for the nuclear structure at LNL, addressing a rich panorama of physics opportunities, encompassing shell evolution and collective phenomena, properties of light and medium-mass exotic nuclei and N~Z nuclei.

- Complementary experimental techniques and cross approaches to the workings groups, assisted by theoretical guidance, led to define challenging physics goals to boost our understanding of exotic nuclei
- The presence and support of cutting-edge instruments (AGATA, GRIT, NEDA, PARIS, CTADIR, PRISMA, ACTAR, ...) are key to achieve the physics objectives that have emerged
- The development of new beams, the availability of exotic targets as well as the operation of new accelerator complex SPES would guarantee a leading position to the laboratory within the panorama of nuclear structure community

Nuclear Physics Mid Term Plan in Italy – LNL Session

Nuclear Physics Mid Term Plan in Italy

(1951) 2021) infn INFN