Nuclear Physics Mid Term Plan in Italy

LNL – Session Legnaro, April 11th-12th 2022

Nuclear Structure:

Deformation and Collective States

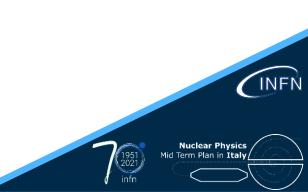
Fabio Crespi

Università degli Studi di Milano/INFN, Milano, Italy

Composition of the (active) working group

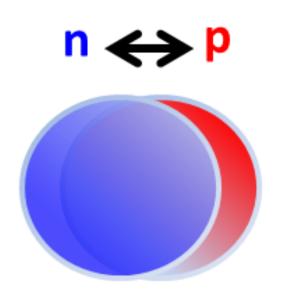
Fabio CRESPI (UNIMI / INFN) – Experimental (Convener)
Deniz SAVRAN (GSI) - Experimental
Giovanna BENZONI (INFN) - Experimental
Johann ISAAK (TU Darmstadt) - Experimental
Kazuhito MIZUYAMA (Duy Tan University) - Theoretical
Luna PELLEGRI (WITS & iTL South Africa) - Experimental
Marcus SCHECK (University of West Scotland) - Experimental

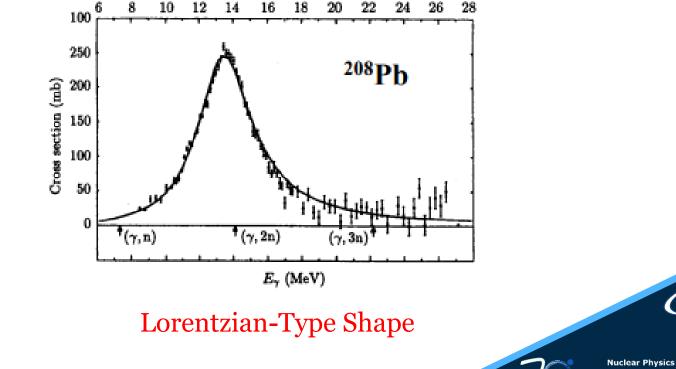
Maria KMIECIK (IFJ PAN Krakow) - Experimental Mark SPIEKER (Florida State University) - Experimental Oliver WIELAND (INFN) - Experimental Shinsuke OTA (RCNP Osaka University) - Experimental Volker WERNER (TU Darmstadt) - Experimental Xavier ROCA MAZA (UNIMI / INFN) - Theoretical Yi Fei NIU (Lanzhou University) - Theoretical


Giuseppe CARDELLA (external collaborator, convener of similar Working Group at LNS-INFN Catania)

(INFN

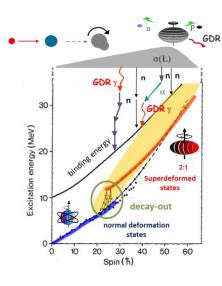
Nuclear Physics


Outline


- General Introduction
- Selected Theoretical Methods
- Summary Table-List of the Experiments
- Available Experimental Instrumentation
- Detailed Physics Cases (SPES beams)
- Detailed Physics Cases (stable beams)
- Conclusions and Perspectives

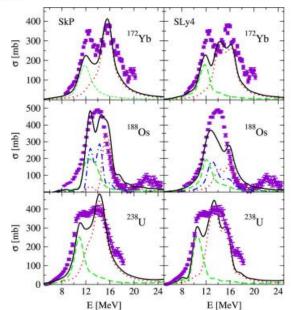
Resonances and Nuclear Structure

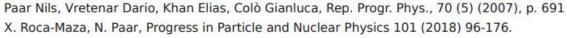
- One of the best examples of *collective modes* in nuclei is the <u>Isovector Electric Giant Dipole</u> <u>Resonance (IVGDR)</u>, that can be understood as a <u>density oscillation of neutrons against protons</u>
- This is also a perfect example of how a complex quantum system like the atomic nucleus can exhibit very simple collective configurations

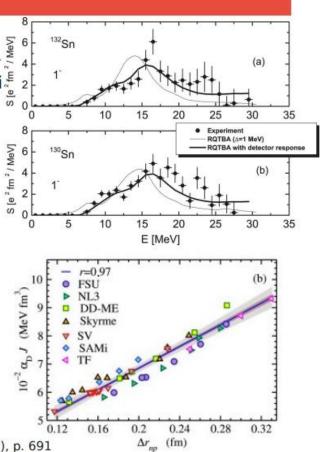


Resonances and Nuclear Structure

Fabio Crespi


- ✓ This phenomenological "simplicity" out of the "nuclear complexity" has been used to extract valuable information on the nuclear structure (*IVGDR reflects the bulk properties of nuclear matter*)
- In particular, the IVGDR has been widely studied in the past, <u>both at zero</u> <u>and finite temperature</u>, however, some interesting aspects are still subject of present important scientific research, like the understanding of its evolution as a function of isospin and of the low-lying dipole strength (**Pygmy Dipole Resonance**)
- In this respect experiments performed with SPES radioactive neutron
 rich beams are important. In addition, also experiments using stable
 beams have still an important role as will be outlined in the following
 example cases.



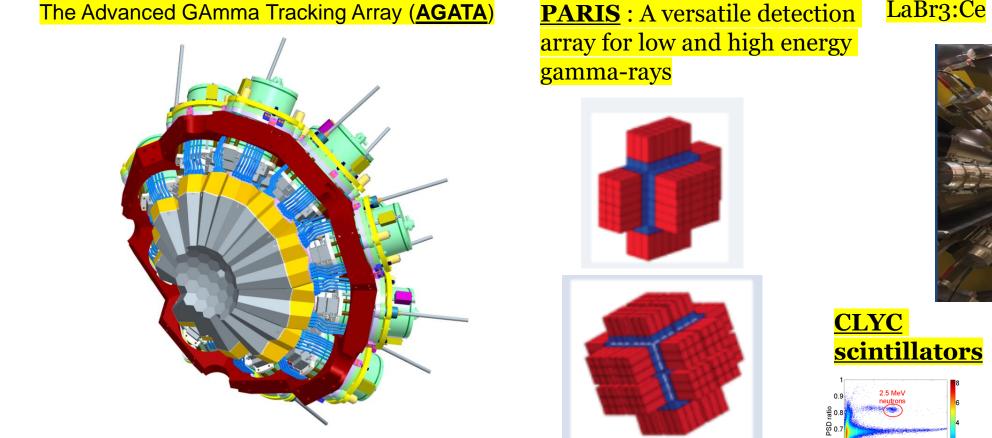


Selected theoretical methods Theory: Random Phase Approximation and extensions

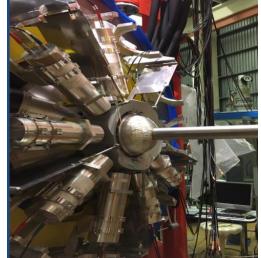
- **RPA**(1p-1h,2p-2h,...) has been shown to be a **successful** approach in the description of **collective modes** in nuclei.
- Only available approach for a systematic study of nuclei along the nuclear chart.
- Prediction of the excitation spectra and the nuclear EoS consistently within the same theoretical framework
- It has been extensively applied to the study of low-lying pygmy states

Summary table

	Expe	rimental Idea	s for the Deform	ation and c	ollective states Work	ing Group	- Legnaro Mid Tei	rm Pla	an		
						Detection of y rays			Detection of Particles		
PHYSICS TOPIC	BEAM (1)	BEAM (2)	BOMBARDING ENERGY	TARGET	REACTION	AGATA	PARIS/HECTOR+	CLY C	TRACE	EUCLIDES	Other
PDR	STABLE and SPES	different	10 MeV /A	p, alpha	inel. scattering	X	x				CTADIR
PDR	STABLE and SPES	different	Coulomb barrier	deuteron	(d, p) or (d, t)	x	x		x		CTADIR
Hot GDR / Jacobi Shape	STABLE and SPES	different	different	different	fusion-evaporation	x	x			x	
Octupole def B(E3)	SPES	146Ba	4.5 MeV /A	208Pb	Coulex	X					Coulex Silicor
BETA DECAY PDR	SPES	146Cs	STOPPED	_	beta decay to 146Ba						Ge+Si+CLYC(?
PQR	STABLE and SPES	different	10 MeV /A	p, alpha	inel. scattering	x	x		x		CTADIR
GQR / GDR	STABLE	170	20 MeV/A	40Ca, Heavier	inel. scattering	X	x		x		
Hot GDR /Isospin Mixing	STABLE	24Mg	40-80 MeV	28Si,30Si	fusion-evaporation	х	x	x			



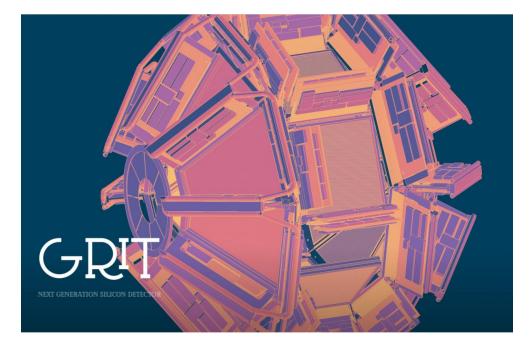
6


Nuclear Physics Mid Term Plan in Italy

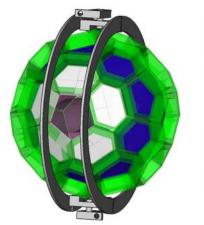
1951 2021 infn

Detection of Gamma-rays

HECTOR+ / Large volume LaBr3:Ce


000 4000 6000 Energy [keV]

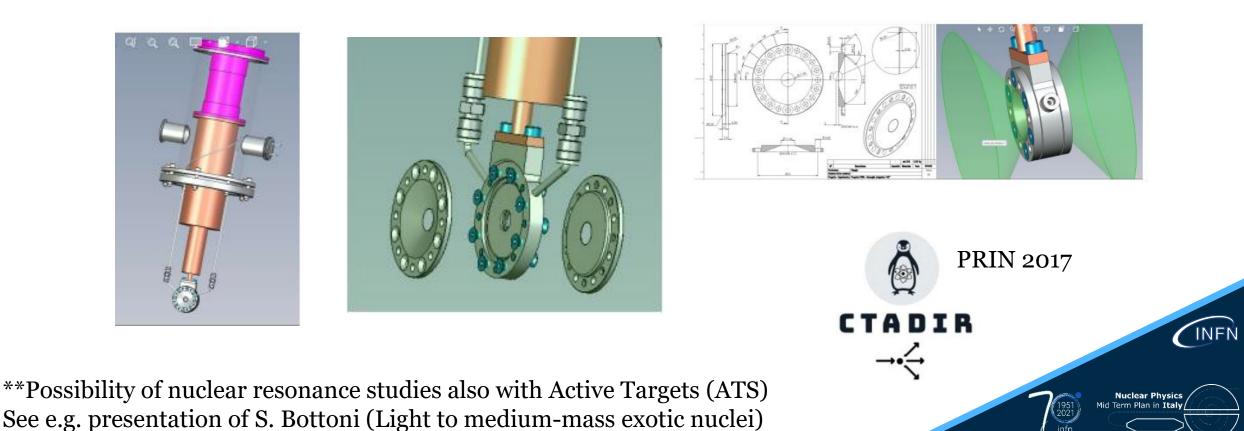
2000



Detection of Charged Particles

<u>GRIT</u> stands for "Granularity, Resolution, Identification, Transparency". It is a **new generation silicon array** for low energy nuclear physics

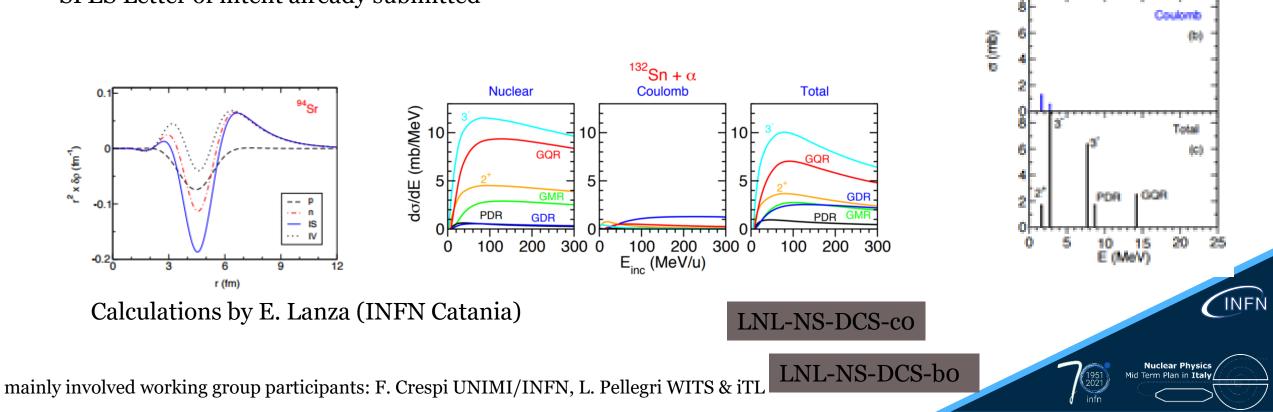
The 4π highly-efficient light-charged-particle detector <u>EUCLIDES</u>



Nuclear Physics Mid Term Plan in Italy/ 8

Other Complementary Instrumentation

The Cryogenic Target for Direct Reactions (CTADIR)



@ 10 MeV/u

10

SPES Beams - Pygmy Dipole Resonance (1)

- **Inelastic scattering** in inverse kinematics + gamma-rays in coincidence
- Beam Energy: 10 MeV / u Possibly Studied nuclei: ⁹⁴Sr, ¹³²Sn, ¹⁴⁰Xe, ¹⁴²Ba, ¹³⁴Te + <u>STABLE**</u>
- **Setup**: Cryogenic target CTADIR (p or alpha) + AGATA + PARIS/LaBr3:Ce + GRIT
- SPES Letter of intent already submitted

SPES Beams - Pygmy Quadrupole Resonance

Eur. Phys. J. A (2019) 55: 235

DOI 10.1140/epja/i2019-12797-y

Regular Article – Theoretical Physics

Are they new excitation modes?

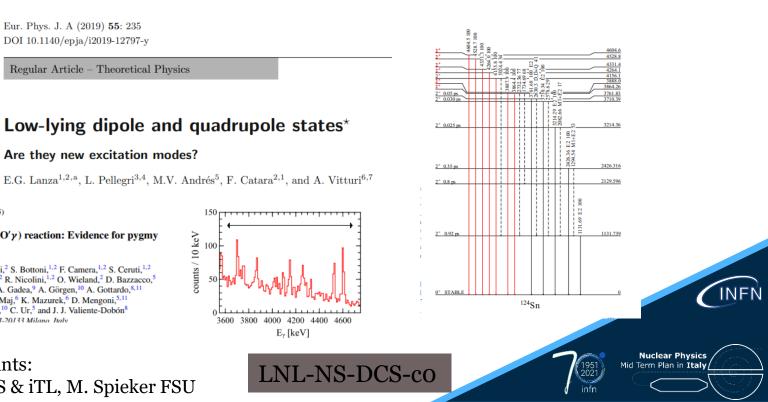
150 -

Ey [keV]

10 keV

- **Inelastic scattering** in inverse kinematics + gamma-rays in coincidence
- Beam Energy: 10 MeV / u Possibly Studied nuclei: 94Sr, 132Sn, 140Xe, ¹⁴²Ba, ¹³⁴Te + STABLE**
- **Setup**: Cryogenic target CTADIR (p or alpha) + AGATA + PARIS/LaBr3:Ce + GRIT

www.elsevier.com/locate/nuclphys


SPES Letter of intent already submitted

The pygmy quadrupole resonance and neutron-skin modes in ¹²⁴Sn

M. Spieker^{a,*}, N. Tsoneva^{b,c,d}, V. Derya^a, J. Endres^a, D. Savran^{e,b}, M.N. Harakeh^f, S. Harissopulos^g, R.-D. Herzberg^h, A. Lagoyannis^g, H. Lenske^c, N. Pietrallaⁱ, L. Popescu^{f,j}, M. Scheck^{k,i}, F. Schlüter^a, K. Sonnabend¹, V.I. Stoica^{f,1}, H.J. Wörtche^{f,1}, A. Zilges^a

Fine structure of the pygmy quadrupole resonance in 112,114 Sn

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics A 990 (2019) 183-198

N. Tsoneva^{a,*,1}, M. Spieker^{b,2}, H. Lenske^c, A. Zilges^b

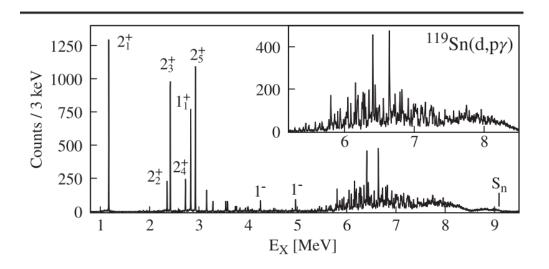
PHYSICAL REVIEW C 92, 014330 (2015)

Multitude of 2⁺ discrete states in ¹²⁴Sn observed via the (${}^{17}O, {}^{17}O'\gamma$) reaction: Evidence for pygmy quadrupole states

L. Pellegri,^{1,2,*} A. Bracco,^{1,2,†} N. Tsoneva,^{3,4} R. Avigo,^{1,2} G. Benzoni,² N. Blasi,² S. Bottoni,^{1,2} F. Camera,^{1,2} S. Ceruti,^{1,2} F. C. L. Crespi,^{1,2} A. Giaz,² S. Leoni,^{1,2} H. Lenske,³ B. Million,² A. I. Morales,^{1,2} R. Nicolini,^{1,2} O. Wieland,² D. Bazzacco,⁵ P. Bednarczyk,⁶ B. Birkenbach,⁷ M. Ciemała,^{6,†} G. de Angelis,⁸ E. Farnea,⁵ A. Gadea,⁹ A. Görgen,¹⁰ A. Gottardo,^{8,11} J. Grebosz,⁶ R. Isocrate,⁵ M. Kmiecik,⁶ M. Krzysiek,⁶ S. Lunardi,^{5,11} A. Maj,⁶ K. Mazurek,⁶ D. Mengoni,^{5,11} C. Michelagnoli,^{5,11,‡} D. R. Napoli,⁸ F. Recchia,^{5,11} B. Siebeck,⁷ S. Siem,¹⁰ C. Ur,⁵ and J. J. Valiente-Dobón⁸ ¹Dinartimento di Fisica dell'Università deeli Studi di Milano, I-20133 Milano, Italy

ELSEVIER

mainly involved working group participants: F. Crespi UNIMI/INFN, L. Pellegri WITS & iTL, M. Spieker FSU


SPES Beams - Pygmy Dipole Resonance (2)

- **Transfer reactions** in inverse kinematics + gamma-rays in coincidence
- Beam Energy: sub-Coulomb, few MeV/u above Coulomb barrier
- Reactions: ¹³¹Sn(d,p)¹³²Sn* ¹³³Sn(d,t)¹³²Sn* + <u>STABLE**</u>

Example: ¹¹⁹Sn(d,py)¹²⁰Sn @ 8.5 MeV

Institute for Nuclear Physics in Cologne

• **Setup**: Cryogenic target CTADIR (deuteron) + AGATA + PARIS/LaBr3:Ce + GRIT

PHYSICAL REVIEW LETTERS 127, 242501 (2021)

Microscopic Structure of the Low-Energy Electric Dipole Response of ¹²⁰Sn

M. Weinert^{1,*} M. Spieker^{0,2} G. Potel^{0,3} N. Tsoneva^{0,4} M. Müscher^{0,1} J. Wilhelmy,¹ and A. Zilges^{0,1} ¹Institute for Nuclear Physics, University of Cologne, 50937 Köln, Germany ²Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ³Lawrence Livermore National Laboratory, Livermore, California 94550, USA ⁴Extreme Light Infrastructure (ELI-NP), Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Măgurele RO-077125, Romania

(Received 21 June 2021; revised 7 September 2021; accepted 28 October 2021; published 6 December 2021)

The microscopic structure of the low-energy electric dipole response, commonly denoted as pygmy dipole resonance (PDR), was studied for ¹²⁰Sn in a ¹¹⁹Sn(*d*, $p\gamma$)¹²⁰Sn experiment. Unprecedented access to the single-particle structure of excited 1⁻ states below and around the neutron-separation threshold was obtained by comparing experimental data to predictions from a novel theoretical approach. The novel approach combines detailed structure input from energy-density functional plus quasiparticle-phonon model theory with reaction theory to obtain a consistent description of both the structure and reaction aspects of the process. The presented results show that the understanding of one-particle–one-hole structures of the 1⁻ states in the PDR region is crucial to reliably predict properties of the PDR and its contribution to nucleosynthesis processes.

DOI: 10.1103/PhysRevLett.127.242501

mainly involved working group participants: F. Crespi UNIMI/INFN, L. Pellegri WITS & iTL, M. Spieker FSU

prolate

25

Nuclear Physics

20

INFN

SPES Beams - Jacobi shape (hot GDR)

 $\gamma = 0^{\circ}$

5

10

15

E_[MeV]

Beam: 420 MeV 94Rb - radioactive/re-accelerated

Target: 48Ca

¹⁴²La

```
Fusion-evaporation, E* = 109MeV, Lmax=98 h
```

Measured: high-energy γ rays, discrete transitions and multiplicity (PARIS)

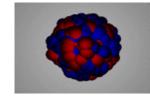
Detectors: PARIS, AGATA

LNL-NS-DCS-c2

mainly involved working group participants: M. Kmiecik, IFJ-PAN Krakow

GDR - nuclear shape probe

 $\beta = 0.3$


 $\gamma = 0^{\circ}$

5

25

spherical

20

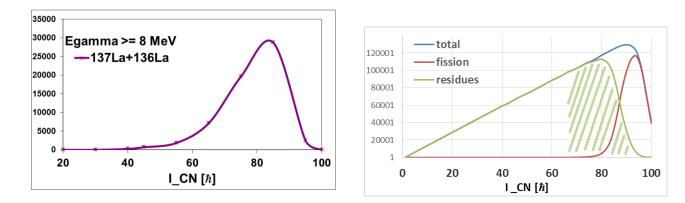
15

E_[MeV]

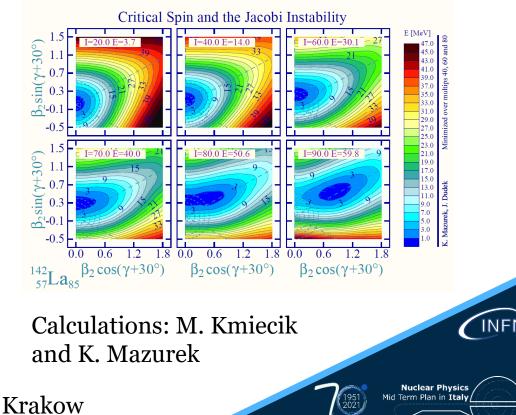
10

SPES Beams - Jacobi shape (hot GDR)

<u>142La</u>


Beam: 420 MeV 94Rb

Target: 48Ca


Fusion-evaporation, E* = 109MeV, Lmax=98 h,

Gated on discrete transitions (137La, 136La)

- if beam intensity > 10^{10}

Detectors: PARIS, AGATA, Measured: high-energy γ rays and multiplicity (PARIS) – <u>if beam intensity > 10⁸⁻10⁹</u>

mainly involved working group participants: M. Kmiecik, IFJ-PAN Krakow

SPES Beams - Octupole Deformation in ¹⁴⁶Ba

- Coulomb excitation in inverse kinematics + gamma-rays in coincidence
- Beam Energy: 4.5 MeV/A
- Reactions: ¹⁴⁶Ba(²⁰⁸Pb,²⁰⁸Pb)¹⁴⁶Ba*
- ¹⁴⁶Ba(⁴⁸Ti, ⁴⁸Ti)¹⁴⁶Ba*
- ¹⁴⁶Ba(⁵⁸Ni, ⁵⁸Ni)¹⁴⁶Ba*
- Silicon Det. + AGATA

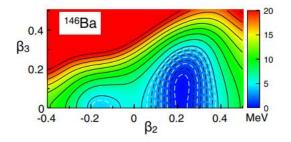


FIG. 3. The HFB potential energy surface. Axial quadrupole (β_2) and octupole (β_3) deformation parameters are defined as $\beta_{\lambda} \equiv 4\pi \langle \mathbf{q} | r^{\lambda} Y_{\lambda 0} | \mathbf{q} \rangle / (3r_0^{\lambda} A^{\lambda/3+1})$ with $r_0 = 1.2$ fm and *A* being the mass number. Dashed (solid) contour lines are separated by 0.5 (2.0) MeV.

PRL 118, 152504 (2017)	PHYSICAL REVIEW LETTERS	week ending 14 APRIL 2017
	ence for Octupole Deformation in ¹⁴⁶ Ba and t E1 Moment Variations in Reflection-Asymmetr	
A. B. Hayes, ⁵ A. D. Ayangeal H. M. David, ^{3,‡} C. Dickerson, ³ R. ¹ Lawren ⁴ Departamento ⁶ Lawren	 Wu,¹ R. V. F. Janssens,³ R. N. Bernard,⁴ L. M. Robledo,⁴ G. xaa,³ M. Q. Buckner,¹ C. M. Campbell,⁶ M. P. Carpenter,³ J. J. Harker,^{3,7} C. R. Hoffman,³ B. P. Kay,³ F. G. Kondev,³ T. La, C. Pardo,³ G. Savard,³ D. Seweryniak,³ and R. Vondrasek <i>ice Livermore National Laboratory, Livermore, California 94550</i>,² Idaho National Laboratory, Idaho Falls, Idaho 83415, USA ³Argonne National Laboratory, Argonne, Illinois 60439, USA de Física Teórica, Universidad Autónoma de Madrid, E-28049 M. ⁵University of Rochester, Rochester, New York 14627, USA ence Berkeley National Laboratory, Berkeley, California 94720, ¹⁷University of Maryland, College Park, Maryland 20742, USA (Received 13 January 2017; published 12 April 2017) 	A. Clark, ³ H. L. Crawford, ⁶ uuritsen, ³ A. O. Macchiavelli, ⁶ USA Madrid, Spain
¹⁴⁴ Ba and ¹⁴⁶ Ba, the	than 1 order of magnitude difference between the measured d e octupole correlations in ¹⁴⁶ Ba are found to be as strong as those	se in ¹⁴⁴ Ba with a
unambiguously the isotopes, but also ma	of $B(E3; 3^- \rightarrow 0^+)$ determined as $48(\binom{+21}{-29})$ W,u. The new results presence of a region of octupole deformation centered on these mifest the dependence of the electric dipole moments on the occu aclei with enhanced octupole strength, as revealed by fully microso	e neutron-rich Ba pancy of different
DOI: 10.1103/PhysRev	Lett.118.152504	-DCS-c3

mainly involved working group participants: M. Scheck UWS, M. Spieker FSU

Nuclear Physics Mid Term Plan in Italy

Fabio Crespi

Nuclear Physics Mid Term Plan in Italy – LNL Session

SPES Beams - PDR Beta decay

Decay spectroscopy SPES Beta decay station

- -> <u>setup shown in the next slide</u>
- + possibility of adding a neutron detector array under consideration

Orsay-ALT	0 83Ga (decay, I	N=50

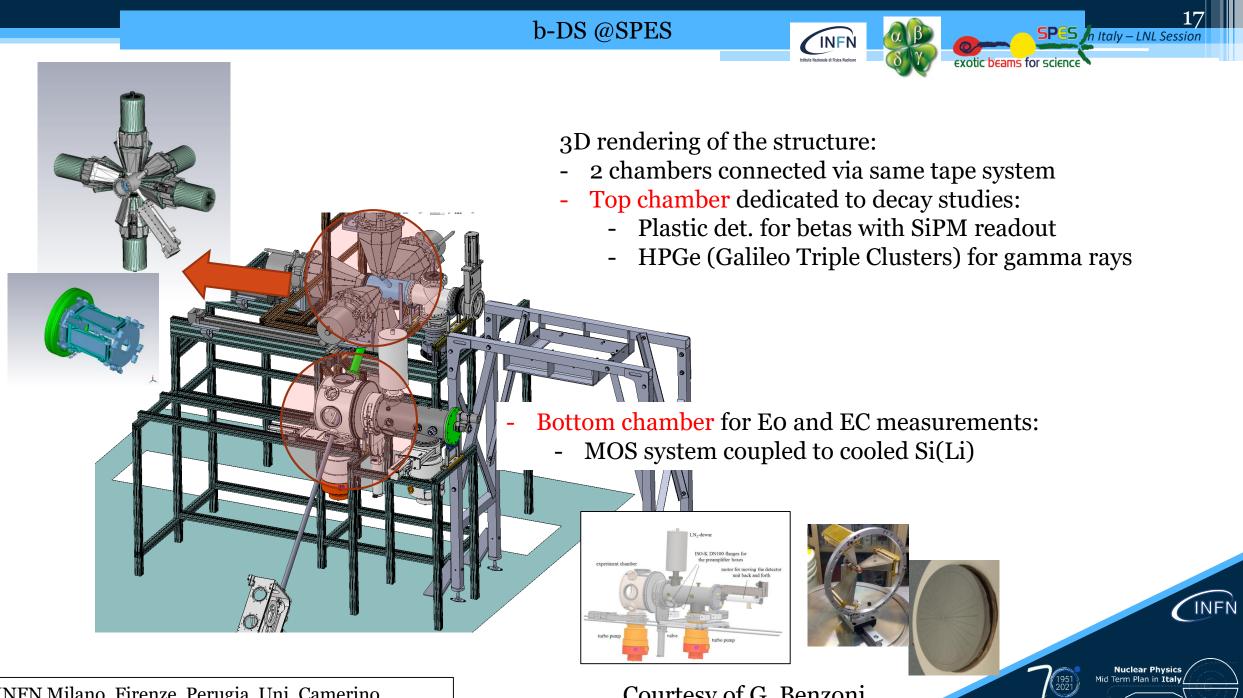
PHYSICAL REVIEW C 95, 054320 (2017)

Pygmy Gamow-Teller resonance in the N = 50 region: New evidence from staggering of β -delayed neutron-emission probabilities

D. Verney,¹ D. Testov,^{1,2,*} F. Ibrahim,¹ Yu. Penionzhkevich,^{2,3} B. Roussière,¹ V. Smirnov,² F. Didierjean,⁴ K. Flanagan,⁵ S. Franchoo,¹ E. Kuznetsova,² R. Li,^{1,1} B. Marsh,⁶ I. Matea,¹ H. Pai,⁷ E. Sokol,² I. Stefan,¹ and D. Suzuki^{1,‡}
¹Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
²Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia
³National Research Nuclear University, Kashirskoye Shosse 31, Moscow 115409, Russia
⁴Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
⁵University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
⁶CERN, CH-1211 Geneva 23, Switzerland
⁷Nuclear Physics Division, Saha Institute of Nuclear Physics, I/AF Bidhannagar, Kolkata 700 064, India
(Received 20 March 2017; published 23 May 2017)

PRL 116, 132501 (2016)	PHYSICAL REVIEW LETTERS	week ending 1 APRIL 2016						
Invest	gating the Pygmy Dipole Resonance Using β Decay		Mother	J^{π}	Daughter	S_n [keV]	Q_{β} [keV]	$P_{\beta n}$ [%]
		12	⁴⁸ K	(2-)	⁴⁸ Ca	9945	12090	1.1
M. Scheck, S. Mishev,	⁴ V. Yu. Ponomarev, ⁵ R. Chapman, ^{1,2} L. P. Gaffney, ^{1,2} E. T. Gregor P. Spagnoletti, ^{1,2} D. Savran, ⁶ and G. S. Simpson ^{1,2}	N. Pietralla,	⁵⁰ K	$(0^{-}, 1^{-}, 2^{-})$	⁵⁰ Ca	6353	14220	22.5
	¹ School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, United Kingdom		⁸⁴ Ga	(0-)	⁸⁴ Ge	5243	12900	42.5
	ntish Universities Physics Alliance, Glasgow G12 8QQ, United Kingdom NR, Joint Institute for Nuclear Research, Dubna 141980, Russia		⁸⁶ Br	(1-)	⁸⁶ Kr	9857	7626	
	⁴ Institute for Advanced Physical Studies, New Bulgarian University, Sofia 1618, Bulgaria ⁵ Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany		96Y	0-	⁹⁶ Zr	7856	7096	
	ute EMMI and Research Division, GSI Helmholtzzentrum für Schwerioner		98 V	(0)-	98Zr	6415	8824	0.33
	D-64291 Darmstadt, Germany (Received 30 October 2015; published 30 March 2016)		130In	1(-)	130 Sn	7596	10249	0.92
In this contributio	it is explored whether γ -ray spectroscopy following β decay with high Q va	ues from	136I	(1-)	136Xe	8084	6930	0.72
mother nuclei with lo	w ground-state spin can be exploited as a probe for the pygmy dipole resona	ince. The	140Cs	1-	140Ba	6428	6220	
	pproach is demonstrated by a comparison between data from photon s			1				0.00
	I $[J_0^{\pi} = (1^{-})] \rightarrow {}^{136}$ Xe* β -decay data. It is demonstrated that β decay j		142Cs	0-	¹⁴² Ba	6181	7325	0.09
	with the pygmy dipole resonance, but only a fraction of those. The complet functions probed by β decay is elucidated by calculations within the qua		144Cs	1(-)	144Ba	5901	8500	2.9
	demonstrated that β decay dominantly populates complex configurations, v		146Cs	1-	¹⁴⁶ Ba	5495	9370	12.4
only weakly excited	in inelastic scattering experiments.				1511			

mainly involved working group participants: G. Benzoni INFN Mi, F. Crespi UNIMI-INFN , M. Scheck UWS

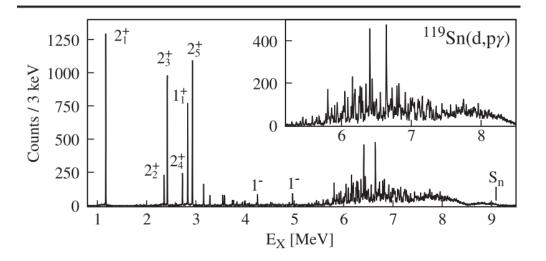


Nuclear Physics

Mid Term Plan in Italy

(1951 2021

INFN Milano, Firenze, Perugia, Uni. Camerino


Courtesy of G. Benzoni

Stable Beams - PDR and PQR

- Inelastic scattering and transfer reactions (also in inverse kinematics) + gamma-rays in coincidence
- Setup: Cryogenic target CTADIR (p or alpha) (AGATA and PARIS/LaBr3:Ce) (TRACE)
- **Reactions:** ⁹¹Zr(p,d)⁹⁰Zr* also Sn and Te
- neutron removal (investigation of hole states)

Example: ¹¹⁹Sn(d,pγ)¹²⁰Sn @ 8.5 MeV

Institute for Nuclear Physics in Cologne

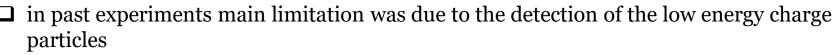
PHYSICAL REVIEW LETTERS 127, 242501 (2021)

Microscopic Structure of the Low-Energy Electric Dipole Response of ¹²⁰Sn M. Weinert¹,^{1,*} M. Spieker⁰,² G. Potel⁰,³ N. Tsoneva⁰,⁴ M. Müscher⁰,¹ J. Wilhelmy,¹ and A. Zilges¹ ¹Institute for Nuclear Physics, University of Cologne, 50937 Köln, Germany ²Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ³Lawrence Livermore National Laboratory, Livermore, California 94550, USA ⁴Extreme Light Infrastructure (ELI-NP), Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Măgurele RO-077125, Romania ⁶ (Received 21 June 2021; revised 7 September 2021; accepted 28 October 2021; published 6 December 2021) The microscopic structure of the low-energy electric dipole response, commonly denoted as pygmy

The microscopic structure of the low-energy electric dipole response, commonly denoted as pygmy dipole resonance (PDR), was studied for 120 Sn in a 119 Sn $(d, p\gamma)^{120}$ Sn experiment. Unprecedented access to the single-particle structure of excited 1⁻ states below and around the neutron-separation threshold was obtained by comparing experimental data to predictions from a novel theoretical approach. The novel approach combines detailed structure input from energy-density functional plus quasiparticle-phonon model theory with reaction theory to obtain a consistent description of both the structure and reaction aspects of the process. The presented results show that the understanding of one-particle–one-hole structures of the 1⁻ states in the PDR region is crucial to reliably predict properties of the PDR and its contribution to nucleosynthesis processes.

DOI: 10.1103/PhysRevLett.127.242501

mainly involved working group participants: F. Crespi UNIMI/INFN, L. Pellegri WITS & iTL, M. Spieker FSU

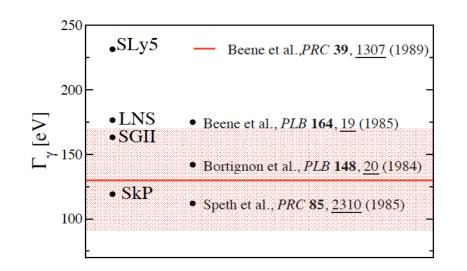

LNL-NS-DCS-ao LNL-NS-DCS-bo

Stable Beams - GDR / GQR

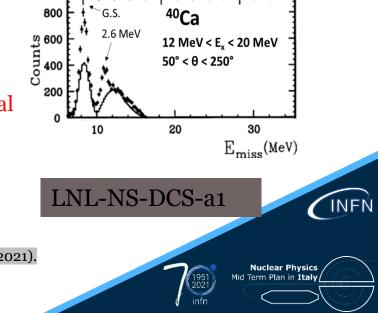
<u>Gamma and Particle Decay of Giant Resonances</u> <u>Excited by Inelastic Scattering of ¹⁷O ions at 20 MeV/A</u>

- □ The gamma-decay width is a small fraction ($\approx 10^{-3}$) of the total width
- □ A microscopic model based on Skyrme functionals has been [*] developed

The particle decay from GR states

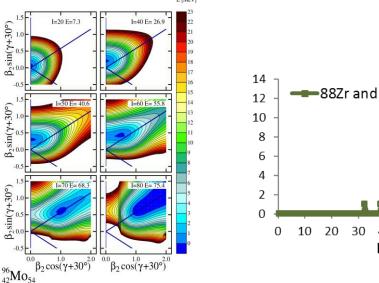


- decay was mainly measured for the ground state and the first excited state
- □ We would like to measure the GR particle decay via detection of gamma rays from residual nuclei (high efficiency of AGATA allows to determine the entry point after particle emission)
 - □ Better energy resolution and no problems for detection of low energy particles

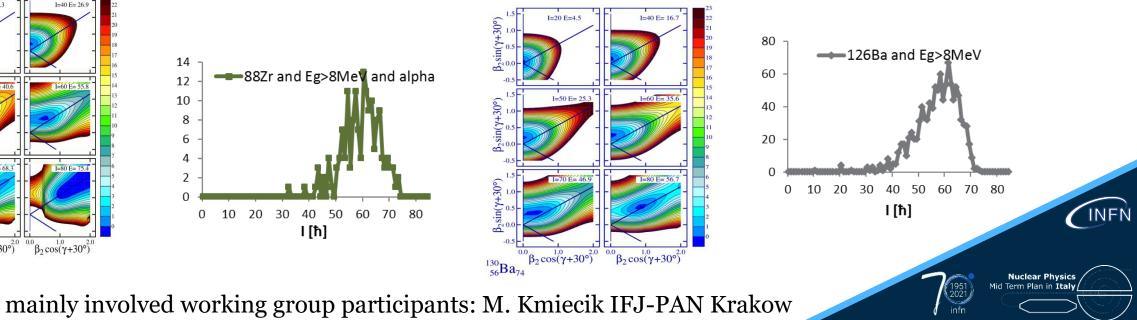

Interesting nuclear systems to study first are ⁴⁰Ca, ²⁴Mg and Ni isotopes

**Learning about the structure of giant resonances from their γ decay, W. L. Lv, Y. F. Niu, and G. Colo, Phys. Rev. C 103, 064321 (2021).

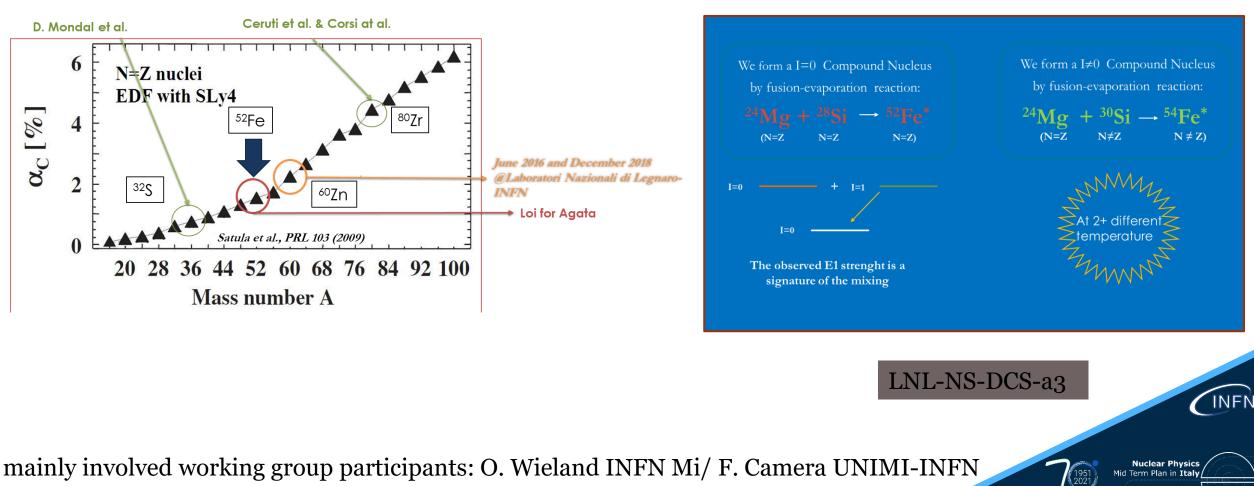
mainly involved working group participants: F. Crespi UNIMI-INFN

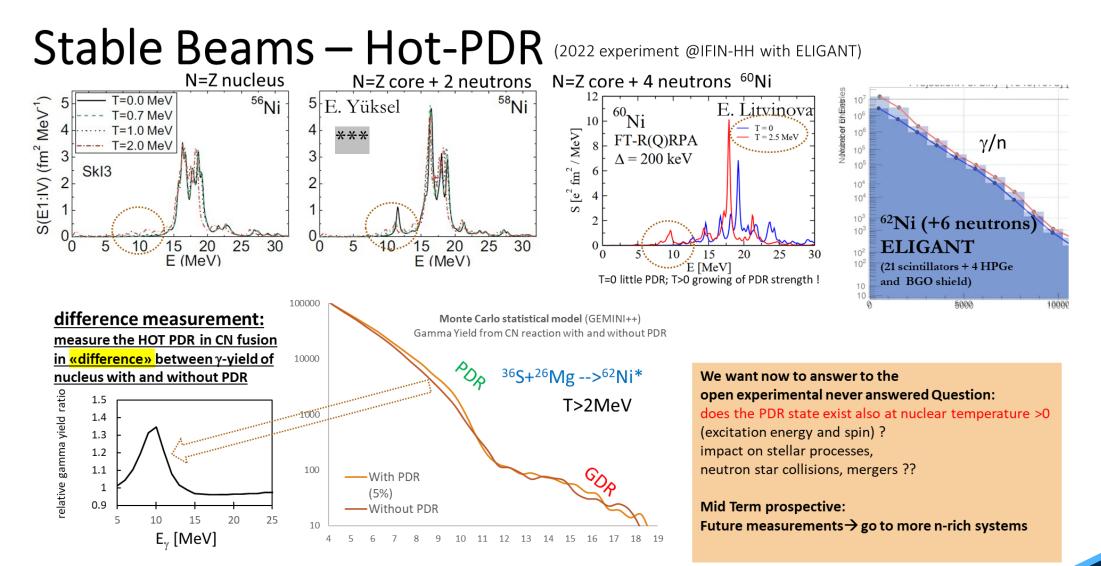

[*] M. Brenna, G. Colò, and P.F. Bortignon, Phys. Rev. C85, 014305 (2012)

Stable Beams - Jacobi shape (hot GDR)


⁹⁶Mo Beam: 250 MeV ⁴⁸Ca - stable Target: ⁴⁸Ti Fusion-evaporation, $E^* = 121$ MeV, Lmax=80 h Measured: high-energy γ rays, discrete transitions and α particles

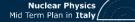
Detectors: PARIS, AGATA, Euclides




━ 88Zr and Eg>8MeV and alpha 10 20 30 40 50 60 70 80 I [ħ] ¹³⁰₅₆Ba₇₄

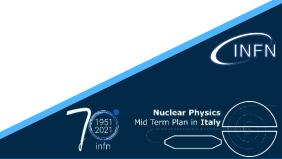
¹³⁰Ba LNL-NS-DCS-a2 Beam: 350 MeV ⁸²Se - stable Target: ⁴⁸Ti Fusion-evaporation, $E^* = 90 \text{MeV}$, Lmax=78 h Measured: high-energy y rays, discrete transitions and multiplicity (PARIS) Detectors: PARIS, AGATA,

Stable Beams - Isospin Mixing



*** Low-energy monopole and dipole response in nuclei at finite temperature, Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, Phys. Lett. B 681, 315 (2009) Temperature effects on neutron-capture cross sections and rates through electric dipole transitions in hot nuclei, A. Berceanu, Y. Xu, and Y. F. Niu, Phys. Rev. C 104, 044332 (2021).

mainly involved working group participants: O. Wieland INFN Mi


LNL-NS-DCS-a4

INFŃ

Conclusions and Perspectives

- Lively discussions and significant work performed by the Deformation and Collective States Working Group, show the scientific vitality of this sub-field
- Several selected central physics cases that can be addressed taking advantage of the specific instrumentations and accelerators available at LNL (*presently and in the next few years, like SPES*)
- Preparation of the paper...

