Working Group: Shell Evolution

- Thomas Duguet, CEA Saclay, France
- Vittorio Somà, CEA Saclay, France
- Tomas Rodriguez, Universidad Autonoma de Madrid, Spain
- Luigi Coraggio, Università della Campania, Italy
- David Verney, IJCLab Orsay, France
- Freddy Flavigny, LPC Caen, France
- Adriana Nannini, INFN Firenze, Italy
- Marco Rocchini, University of Guelph, Canada
- Silvia Leoni, University of Milano, Italy
- Eugenio Gamba, Marta Polettini, University of Milano, Italy
- Giovanna Benzoni, INFN Milano, Italy

- Shell structure: the limits of its observability
- Ab-initio approaches for heavy nuclei
- Energy Density Functional for odd nuclei
- Shell evolution around N=50, ⁷⁸Ni
 - Medium-spin states
 - Intruder configurations
 - Single-particle structure

Shape coexistence around N=60 at Sr, Zr

Experimental plan

Shell evolution around N=82, ¹³²Sn

Z

- single-particle structure
 - neutron-proton multiplets

Theoretical developements

Nuclear Physics

Magic numbers ?!

"Impression I was certain of it. I was just telling myself that, since I was impressed, there had to be some impression in it — and what freedom, what ease of workmanship! A preliminary drawing for a wallpaper pattern is more finished than this seascape."

Louis Leroy, Le Charivari on 25 April 1874

Claude Monet's Impression, Sunrise (Impression, soleil levant)

It was actually **Eugene Paul Wigner** who coined the term "magic number". The physicists community at that time favored the **liquid-drop model**. "**Eugene Wigner** too believed in the liquid drop model, but he recognized, from the work of **Maria Mayer**, the very strong **evidence for the closed shells**. It seemed a little like **magic to him**, and that is how the words 'Magic Numbers' were coined.",

said Steven A. Moszkowski, who was a student of Maria Goeppert-Mayer, in a talk presented at the APS meeting in Indianapolis, May 4, 1996

G. Audi, International Journal of Mass Spectrometry 251 (2006) 85–94

Theoretical developements in a mid-term timescale

Nuclear shell structure

Goal is to further *correlate*

a large sequence of A-body observables (mass, 2_1^+ energy, one-nucleon sep. energies...) to a simpler one-body quantity

in order to deliver a simplified rationale of complex empirical patterns

Effective single-particle energies

Uniquely-defined mathematically [Baranger, 1970]

Values however depend on / change with theoretical [Duguet et al. 2015]

scheme, e.g. ab initio vs valence-space shell model
 scale = unitary freedom of quantum mechanics

Actual observable do not /must not!

shell structure

a) is **not observable**

b) exists only within theory (not to be « extracted » from empirical data)
c) is to be consistently computed through one given theoretical scheme&scale
d) delivers a simplified rationale depending on theoretical scheme&scale

Nuclear Physics

Diagonalization

 $[S_{v}]E_{v}$

 $e_{p}^{\text{cent}} \equiv \sum_{\mu \in \mathcal{H}_{A+1}} S_{\mu}^{+pp} E_{\mu}^{+} + \sum_{\nu \in \mathcal{H}_{A-1}} S_{\nu}^{-pp} E_{\nu}^{-}$

 $\mu \in \mathcal{H}_{A+1}$

h^{cent}

ESPE

One-nucleon separation energies = observables

Spectroscopic probability matrices (~SFs) = **non observable** = **only come from/depend on theory**

 $\nu \in \mathcal{H}_{A-1}$

 $[S_{\mu}^{+}E_{\mu}^{+}] +$

7

Stroberg *et al.*, 2021

INFN

Ab-initio methods: State of the art

Steady development over last few years

Current frontiers

• Extension to heavier nuclei

- Exponential (VS) vs polynomial (FS) scaling
 - \circ Inclusion of deformation
 - $\circ\,$ Enlarge accessible observables

Valence space (shell model) → systematic up to iron

Ab-initio methods – V. Somà

Andrea Gottardo

Nuclear Physics Mid Term Plan in Italy – LNL Session

9

Perspectives

● Around **Z=20** → **Precision calculations**

Revisit evolution of magicity e.g. along *N*=28-34 isotones
 Refine nuclear Hamiltonians (Bayesian analysis, emulators, ...)

● Around **N=50** → **Discovery calculations**

 \circ Probe theoretical description of deformation and **collectivity** \circ Fully develop machinery for **spectroscopy of complex nuclei**

● Around N=82 → Exploratory calculations

Innovative computational techniques required
 Few flagship measurements might motivate pivot applications
 First attempts very successful in reproducing e⁻ scattering data

• Different and complementary observables will be needed to address

- Ground-state properties (masses, charge radii, ...)
- Excited state energies (e.g., 2+) and associated decay probabilities
- \circ Cross sections & separation energies for **one-nucleon addition/removal**

Energy density functional methods

EDF calculations for even-even systems: Routinely performed to study masses, radii, excitation energies and transition probabilities including beyond-mean-field effects.

EDF calculations for odd-systems (of interest for the study of the shell evolution): Challenging!

- ➡ Blocking effect \Rightarrow time-reversal symmetry breaking \Rightarrow modification of the existing EDF solvers + large increase of the computational time \Rightarrow very few applications with beyond-mean-field effects (e.g., Bally et al., Borrajo et al.) \Rightarrow without BMF effects is difficult to compare directly with experimental data
- ➡ Pragmatic option for global analyses: mean-field calculations with blocking

Experimental possibilities in a mid-term timescale

The N=50 region close to ⁷⁸Ni

Nuclear Physics Mid Term Plan in Italy – LNL Session

The N=50 ⁷⁸Ni region

The N=50 shell gap

- Mass gap: from measured Sn values
- Quadratic behaviour of the shell gap
- Spectroscopic gap: from $5^+, 6^+, 7^+$ levels which are a $g_{9/2}$ - $d_{5/2}$ N=50 core excitation

What is the origin of the «quadratic» behaviour of the N=50 gap ? What components of the nuclear interaction can explain it ?

5

N=28

5

J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)
S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008)
K. Heyde et al., Phys. Lett. B 176, 255 (1986).
T. Rzaca-Urban et al., Phys. Rev. C 76, 027302 (2007)

INFN

Nuclear Physics

16

N=50

Shape coexistence around N=50

²⁰⁸Pb, ²³⁸U + ⁹Be fusion-fission reactions

- Fusion-fission reactions populate up to L=8-10 •
- few pnA of ²⁰⁸Pb, ²³⁸U @ 1300 MeV from PIAVE-ALPI
- Spectroscopy and lifetimes with plunger/DSAM •

Limits of spectroscopy

	lons/day in PRISMA	AGATA efficiency	γ-ray-ion / 14 days
⁸⁰ Zn: 5+,6+	5600	(1400 keV) 7%	1600
⁷⁹ Cu: 9/2 ⁻		(3000 keV) 4%	40
⁷⁹ Cu: 11/2 ⁻ ,13/2 ⁻	130	(500) 12%	100

INFN

Nuclear Physics

Mid Term Plan in Italy

β decay for N=50 shell structure

states

states

- GT decay breaks the N=50 • core
- Large Q values (>10 MeV) in neutron-rich neuclei make GT decay possibile
- **B(GT)** (energy, strength) probes theoretical models

transition

neutron-neutron

particle-hole "collision"

proton-neutron particle-hole "collision"

proton-neutron particle-particle "collision"

1951 2021

SPES 1⁺ beams (> 10¹ pps):

⁷⁸⁻⁸⁰Cu, ⁷⁸⁻⁸²Zn, ⁸⁰⁻⁸⁷Ga, ⁸⁰⁻⁸⁷Ge, ⁸²⁻⁸⁹As, ⁹⁴⁻¹⁰²Rb

excited configuration after GT back spin-flip core polarized

 $d_{5/2}^{S_{1/2}}$ $g_{9/2}$ $p_{1/2}$ E1 partners p_{3/2} -00 -0 available $t_{5/2}$ $t_{7/2}$ all involve high ℓ ($\ell \ge 2$) neutron transitions \rightarrow inhibited

Gamow-Teller doorway states

 $S_{1/2}$

 $d_{5/2}$

 $g_{9/2}$

 $p_{1/2}$

 $p_{3/2}$

 $t_{5/2}$

 $f_{7/2}$

Nuclear Physics Mid Term Plan in Italy – LNL Session

- N=50 s.p. structure evolution
- Lifetimes after transfer reactions

Transfer reactions – F. Flavigny

28

π

 82 Ge(gs)

0.25

0.64

0.32

0.27

0.46

0.86

0.86

1951 2021

89Sr

 $\pi p_{3/2}$

0.12

0.18

0.96

0.75

0.17

0.19

0.69

1.02

Studies enabled by

new SPES beams

0.11

22

0.21

0.28

0.15 0.12

0.21

0.24

0.34

0.63

0.83 1/2+

1.05 5/2+

πp_{1/2} / πg_{9/2}

Nuclear Physics Mid Term Plan in Italy/

INFN

91_{Zr}

28

π

⁸³Ge: sp. states

(5/2+,3/2+,7/2+)

ν

π

 79 Zn (gs)

Andrea Gottardo

π

⁸⁰Zn: 1p-1h states

ν

INFN

Transfer reactions – F. Flavigny

Andrea Gottardo

Nuclear Physics Mid Term Plan in Italy – LNL Session

Transfer reaction studies: tools and technique

GRIT + AGATA setup

- High efficiency for particles and γ -rays (many reactions channels meas. simultaneously)
- High granularity (strip pitch < 1 mm) ۰
- Large dynamical range
- Special targets (Cooled ^{3,4}He cell, pure H, tritium)
- PID using Pulse Shape Analysis techniques
- New Integrated electronics

Illustration of p-*γ* **capabilities**

- Study of odd-odd ⁴⁸K from ⁴⁷K(d,p)
- High density of states
- Courtesy of C. Paxman (Univ. of Surrey)
- GRIT prototype

(MUGAST) + AGATA @ GANIL

Sn

INFN

Nuclear Physics Mid Term Plan in Italy

Cryogenic ^{1,2}H, ^{3,4}He targets

- •PRIN2017 call, 770 k€
- •3.8 -2 μm HAVAR windows
- GM cryocooler for horizont al use
- •3 K guaranteed in the head
- Design: finished
 Construction: finished
 Gas filling system in 2022
 Test in Autumn 2022 at CN

•^{3,4}He 1-2 mg/cm²

Cryogenic semisolid ^{1,2}H target

CHyMENE (CEA Saclay)

A. Gilibert et al., Eur. Phys. J. A (2012) 49: 155

Study for integration with AGATA- GRIT
 ^{1,2}H 0.1-0.5 mg/cm²

From ⁷⁸Ni to ¹³²Sn

27

INFN

Nuclear Physics Mid Term Plan in Italy/

Shape coexistence

Nuclear shape coexistence is the phenomenon in which **distinct shapes** occur within the same nucleus and at a **similar** energy

Kris Heyde and John L. Wood, Rev. Mod. Phys. 83 (2011) 4

β-delayed e⁻ (E0) spectroscopy for ⁹⁶Sr

Wave function mixing

$$\rho^{2}(E0) = \frac{Z^{2}}{R^{4}}a^{2}b^{2}\left(\Delta\left\langle r^{2}\right\rangle\right)^{2}$$

Structure above the ⁹⁶Sr THIRD 0⁺ state

1) $0^+_3 \rightarrow 2^+_2$ decay by

very retarded E2

- 2) 0_{3}^{+} state may be correspond to a THIRD minimum associated to another shape
- \rightarrow NOT predicted by HFB Theory

Other LOIs:

LOI SPES: 96,97Y (L. Iskra, S. Leoni) LOI SPES: ⁹⁶Sr (S. Leoni, B. Fornal)

Difference in mean square radii

SLICES at the β -decay station of SPES

⁹⁶Rb yield 2.5 x 10⁷ pps [SPES Phase 1 (I_p =5µA and UCx target)]

INFN

Lifetimes from **B** decay

- Lifetime measurements using fast scintillators
- Access to ps tens of ns lifetime range
- Extra selectivity thanks to β radiation detection

SPES will open the possibility of investigating shape coexistence in new regions, where new orbitals become active In particular around Kr, Zr, Mo, Pd and Cd isotopes around mass A=100

¹¹⁸ La ¹¹⁹ La ¹²⁰ La ¹²¹ La ¹²² La ¹²³ La ¹²⁴ La ¹²⁵ La ¹²⁶ La ¹²⁷ La ¹²⁸ La ¹²⁹ La ¹³⁰ La ¹³¹ La ¹³² La ¹³³ La ¹³⁴ La ¹³⁵ La ¹³⁶ La ¹³⁷ La ¹³⁸ La ¹³⁹ La ¹⁴⁰ L	_a ¹⁴¹ La ¹⁴² La ¹⁴³ La ¹⁴⁴ La ¹⁴⁵ La ¹⁴⁶ La ¹⁴⁷ La ¹⁴⁸ La ¹⁴⁹ La ¹⁵⁰ La ¹⁵¹ La ¹⁵² La ¹⁵³ La ¹⁵⁴ La ¹⁵⁵ La ¹⁵⁶ La ¹⁵⁷ La
¹¹⁷ Ba ¹¹⁸ Ba ¹¹⁹ Ba ¹²⁰ Ba ¹²¹ Ba ¹²² Ba ¹²³ Ba ¹²⁴ Ba ¹²⁵ Ba ¹²⁶ Ba ¹²⁷ Ba ¹²⁸ Ba ¹²⁹ Ba ¹³⁰ Ba ¹³¹ Ba ¹³² Ba ¹³³ Ba ¹³⁴ Ba ¹³⁵ Ba ¹³⁶ Ba ¹³⁷ Ba ¹³⁸ Ba ¹³⁹ B	Ba ¹⁴⁰ Ba ¹⁴¹ Ba ¹⁴² Ba ¹⁴³ Ba ¹⁴⁴ Ba ¹⁴⁵ Ba ¹⁴⁶ Ba ¹⁴⁷ Ba ¹⁴⁸ Ba ¹⁴⁹ Ba ¹⁵⁰ Ba ¹⁵¹ Ba ¹⁵² Ba ¹⁵³ Ba ¹⁵⁴ Ba
¹¹⁶ Cs ¹¹⁷ Cs ¹¹⁸ Cs ¹¹⁹ Cs ¹²⁰ Cs ¹²¹ Cs ¹²² Cs ¹²³ Cs ¹²⁴ Cs ¹²⁵ Cs ¹²⁶ Cs ¹²⁷ Cs ¹²⁸ Cs ¹²⁹ Cs ¹³⁰ Cs ¹³¹ Cs ¹³² Cs ¹³³ Cs ¹³⁴ Cs ¹³⁵ Cs ¹³⁶ Cs ¹³⁷ Cs ¹³⁸ C	Cs ¹³⁹ Cs ¹⁴⁰ Cs ¹⁴¹ Cs ¹⁴² Cs ¹⁴³ Cs ¹⁴⁴ Cs ¹⁴⁵ Cs ¹⁴⁶ Cs ¹⁴⁷ Cs ¹⁴⁸ Cs ¹⁴⁹ Cs ¹⁵⁰ Cs ¹⁵¹ Cs ¹⁵² Cs
¹¹⁵ Xe ¹¹⁶ Xe ¹¹⁷ Xe ¹¹⁸ Xe ¹¹⁹ Xe ¹²⁰ Xe ¹²¹ Xe ¹²² Xe ¹²³ Xe ²⁴ Xe ¹²⁵ Xe ²⁶ Xe ¹²⁷ Xe ¹²⁸ Xe ¹²⁹ Xe ¹³⁰ Xe ¹³¹ Xe ¹³² Xe ¹³³ Xe ³⁴ Xe ¹³⁵ Xe ¹³⁶ Xe ¹³⁷ X	Ke ¹³⁸ Xe ¹³⁹ Xe ¹⁴⁰ Xe ¹⁴¹ Xe ¹⁴² Xe ¹⁴³ Xe ¹⁴⁴ Xe ¹⁴⁵ Xe ¹⁴⁶ Xe ¹⁴⁷ Xe ¹⁴⁸ Xe ¹⁴⁹ Xe ¹⁵⁰ Xe
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 134 135 136	137 138 139 140 141 142 143 144 145 146 147
¹¹³ Te ¹¹⁴ Te ¹¹⁵ Te ¹¹⁶ Te ¹¹⁷ Te ¹¹⁸ Te ¹¹⁹ Te ²⁰ Te ¹²¹ Te ¹²² Te ²³ Te ¹²⁴ Te ¹²⁵ Te ¹²⁶ Te ¹²⁷ Te ¹²⁸ Te ¹²⁹ Te ¹³⁰ Te ¹³¹ Te ¹³² Te ¹³³ Te ¹³⁴ Te ¹³⁵ T	Te ¹³⁶ Te ¹³⁷ Te ¹³⁸ Te ¹³⁹ Te ¹⁴⁰ Te ¹⁴¹ Te ¹⁴² Te ¹⁴³ Te ¹⁴⁴ Te ¹⁴⁵ Te
112Sb113Sb114Sb115Sb116Sb117Sb118Sb119Sb120Sb121Sb122Sb123Sb124Sb125Sb126Sb127Sb128Sb129Sb130Sb131Sb132Sb133Sb134S	Sb ¹³⁵ Sb ¹³⁶ Sb ¹³⁷ Sb ¹³⁸ Sb ¹³⁹ Sb ¹⁴⁰ Sb ¹⁴¹ Sb ¹⁴² Sb
<mark>111Sn 12Sr</mark> 113Sn 114Sn 115Sn 116Sn 117Sn 118Sn 119Sn 120Sn 121Sn 22Sr 123Sn 24Sr 125Sn 126Sn 127Sn 128Sn 129Sn 130Sn 131Sn 132Sn 133S	Sn ¹³⁴ Sn ¹³⁵ Sn ¹³⁶ Sn ¹³⁷ Sn ¹³⁸ Sn ¹³⁹ Sn ¹⁴⁰ Sn
¹¹⁰ ln ¹¹¹ ln ¹¹² ln ¹¹³ ln ¹¹⁴ ln ¹¹⁵ ln ¹¹⁶ ln ¹¹⁷ ln ¹¹⁸ ln ¹¹⁹ ln ¹²⁰ ln ¹²¹ ln ¹²² ln ¹²³ ln ¹²⁴ ln ¹²⁵ ln ¹²⁶ ln ¹²⁷ ln ¹²⁸ ln ¹²⁹ ln ¹³⁰ ln ¹³¹ ln ¹³² li	In ¹³³ In ¹³⁴ In ¹³⁵ In ¹³⁶ In ¹³⁷ In
¹⁰⁹ Cd ¹¹⁰ Cd ¹¹¹ Cd ¹¹² Cd ¹¹³ Cd ¹¹⁴ Cd ¹¹⁵ Cd ¹¹⁶ Cd ¹¹⁷ Cd ¹¹⁸ Cd ¹¹⁹ Cd ¹²⁰ Cd ¹²¹ Cd ¹²² Cd ¹²³ Cd ¹²⁴ Cd ¹²⁵ Cd ¹²⁶ Cd ¹²⁷ Cd ¹²⁸ Cd ¹²⁹ Cd ¹³⁰ Cc ¹³¹ C	Cd ¹³² Cd ¹³³ Cd ¹³⁴ Cd ¹³⁵ Cd
¹⁰⁸ Ag ¹⁰⁹ Ag ¹¹⁰ Ag ¹¹¹ Ag ¹¹² Ag ¹¹³ Ag ¹¹⁴ Ag ¹¹⁵ Ag ¹¹⁶ Ag ¹¹⁷ Ag ¹¹⁸ Ag ¹¹⁹ Ag ¹²⁰ Ag ¹²¹ Ag ¹²² Ag ¹²³ Ag ¹²⁴ Ag ¹²⁵ Ag ¹²⁶ Ag ¹²⁷ Ag ¹²⁸ Ag ¹²⁹ Ag ¹³⁰ A	Ag ¹³¹ Ag ¹³² Ag ¹³³ Ag

Example: Cd isotopic chain

P.E. Garrett, M. Zielińska and E. Clément, Progress in Particle and Nuclear Physics 124 (2022) 103931

Direct reactions for shape coexistence/transition around N=60

- Study of shape transition from a **single-particle perspective**
- **Microscopic nature** of coexisting 0⁺, 2⁺ states
- $\bullet \quad {\rm Many}\, {\bf unexpected}\, observations\, {\rm compared}\, {\rm to}\, {\rm SM}\, {\rm prediction}$
- Several beams very well produced at SPES in the region (94,95,96 Kr,96,97,98 Sr)

→ allow **precise studies** with part.- γ coincidences

Nuclear Physics

Low-Energy Coulomb Excitation

- ¹³⁴Sn: 2¹⁺ at 726 keV, unusual low energy for a semi-magical even-even nucleus
- ¹³⁶Te: B(E2; 21⁺ → 01⁺) value significantly smaller than those in the close heavier isotones
- ¹²⁸Cd: Energy of the first 2⁺ state lower than that in ¹²⁶Cd (deformation?)
- ¹³⁵Sb: Energy drop of the lowest 5/2⁺ state in comparison to the isotopes with N ≤ 82

33

Low-Energy Coulomb Excitation

- Available intensities and energies at SPES suitable for low-energy Coulomb excitation (first-day technique at other ISOL RIB facilities)
- Clean spectra, population from the ground state
- Access to B(E2), B(E3) values and spectroscopic quadrupole moments Qs of excited states
- In favorable conditions, direct access to the shape (β₂ and γ Hill-Wheeler parameters) through quadrupole sum rules

Ideal technique to investigate emerging or vanishing deformation due to shell evolution

GOSIA calculations – M. Rocchini

.

- Beams at the safe energy on ²⁰⁸Pb target 1-mg/cm² thick
- $\varepsilon_{\gamma} = 4\%$ at 1332.5 keV, particle detection at forward angles (30 80 deg)

Expected SPES (post-accelerated) intensities			Nucleus	Transitions	γ Energy [keV]	Counts/h		
B(E2) values from systematics or shell-model calculations				$5/2^+ \rightarrow 7/2^+$	282	84		
Nu 12	Nucleus	Transitions	γ Energy [keV]	Counts/h	125 C b	$3/2^+ \rightarrow 5/2^+$	158	51
	¹²⁶ Cd	$2^+ \rightarrow 0^+$	652	1000 90		$3/2^+ \rightarrow 7/2^+$	440	34
						$1/2^+ \rightarrow 5/2^+$	241	0.15
		$4^+ \rightarrow 2^+$	815		_	$11/2^+ \rightarrow 7/2^+$	707	191
	1971	$11/2^+ \rightarrow 7/2^+$	621	300		$9/2^+ \rightarrow 7/2^+$	798	57
	[*] 37 I	$9/2^+ \rightarrow 7/2^+$	554	30	LOI SPES: 9 ^{6,97} Y (L. Iskra, S. Leoni)			
	¹³⁴ Sn	$2^+ \rightarrow 0^+$	726	20	LOISPES: 96Sr (S. Leoni, B. Fornal)			

2021 infn 34

INFN

The region around ¹³²Sn

36

INFN

Nuclear Physics Mid Term Plan in Italy

(1951) 2021) infn

- Poor knowledge of shell structure for both protons and neutrons
- Theoretical ab-initio calculations start to become available

Direct transfer for large-*l* shells

 Neutron shells: (d,p); (d,t) reactions with ¹²⁶⁻¹³⁴Sn beams at 10 MeV/u BUT: large-ℓ shells (ℓ=5, ℓ=6) implies low cross sections

Population or

large ℓ shells

D. Mengoni et al.

- Proton shells: (³He,d); (t,⁴He) reactions with ¹²⁶⁻¹³⁴Sn beams at 10 MeV/u
- <u>Use of an active target (TPC also possible)</u>

Lifetimes after direct transfer reactions

- Plunger or DSAM techniques after (d,p), (d,t) reactions
- How collective are the states populated by the transfer reaction ?

Two observables at the same time

Possible reactions:

- Beam intensity >10⁵ pps
- GRIT+AGATA+plunger
- ^{130,132}Sn(d,p)^{131,133}Sn
- ^{80,82}Ge(d,p)^{81,83}Ge, ⁸⁴Se(d,p)⁸⁵Se

Cluster Transfer Reactions

$$^{A}X + ^{7}Li \rightarrow (^{A}X + t) + \alpha$$
$$\rightarrow (^{A}X + \alpha) + t$$

Weakly Bound Target $B.E.(\alpha$ -t) = 2.5 MeV

Cluster Structure

- Inverse Kinematics, few MeV/A
- Transfer of **t or** α
- Evaporation of few neutrons
- Population of medium-spins and excited states
- Clean Tagging on emitted particle
- Very Forward Focused 0
- No need for recoil detection
 - for Doppler correction
 - N. Cieplicka, S. Leoni, B. Fornal

INFN

Nuclear Physics

Mid Term Plan in Italy

(1951 2021

MULTIPLETS of valence nucleons around

¹³²Sn

 $\pi d_{5/2} v p_{3/2}$

 $\pi d_{5/2} v f_{-1}$

 $\pi g_{7/2} v f_{7/2}$

0

2

πg7/2

2

1

0

→ Two-Body Matrix Elements

L. Coraggio, A. Covello, A. Gargano, N. Itaco, PRC 80, 021305(R) (2009)

6

 $\pi g_{7/2} v h_{9/2}$

8

10

theory

12

Experiment

(β-decay, fission)

J [ħ]

132
Sb = 130 Sn + 1π + 1ν
 134 Sb = 132 Sn + 1π + 1ν

LOI: ¹³²⁻¹³⁴Sb (N. Cieplicka, S. Leoni, B. Fornal)

Theoretical development plan:

- New theoretical developments to **link nuclear Hamiltonian** to **QCD**
 - calculation method which also provides uncertainties
- **Precision measurements** of observables for a meaningful comparison with theory:
 - electromagnetic and nuclear interaction observables
 - measuring transfer cross sections with the sensitivity requested by models

Mid-term experimental plan : «designer nuclei»

- Shell-evolution around N=50:
 - U, Pb fusion-fission with AGATA+PRISMA-Plunger
 - SPES 1⁺ β decay GT strength with **\beta-decay station**
 - SPES beams with AGATA+ SPIDER-GRIT-Cryotarget CTADIR- Plunger
- Shape coexistence and deformation around N=60-N=80
 - SPES 1⁺ β decay EO and fast-timing with β -decay station- SLICES
 - SPES beams with AGATA+ SPIDER-GRIT-Cryotarget CTADIR- Plunger
- Shell-evolution around N=82:

- SPES beams with - AGATA+ SPIDER-GRIT-Cryotarget CTADIR- Plunger

- Active target

(1951) 2021) infn

TOPICS	Α	В	С	
New theory developements for shell struct ure	EDF approaches extended to the N=50 and N=82 odd nuclei	Ab-initio approaches extended to the N=50 and N=82 regions, calculations of spectro scopic observables	Study of the single- particle strength distribution in energy and spectroscopic amplitude	A : stable beams (2022)
Shell- evolution around N=50: shape coexist ence and gap reduction towards 78Ni	Fusion-fission reactions with stable Pb, U beams: lifetimes and spectroscopy in 80Zn,81Ga, 79Cu and nearby isotopes	Beta-delayed e- (E0), neutron and gamma- ray spectroscopy around N=50 for shape coexistence: 80,82Ga	 Coulex of isomeric intruder states in 79Zn, 81Ga (d,p), (d,t) on 80Zn-84Se (3He,d) on 80Zn-84Se Coulex and (d,p) transfer on the intruder isomer in 79Zn, 81Ge 	B : 1+ SPES beams (2024)
Shape coexistence and type II shell evolution around N=60 in Zr, Sr		 Beta-delayed e⁻(EO) spectroscopy in 96Sr Beta-delayed gamma- ray spectroscopy with fast-timing in Kr, Zr, isotopes around A=100 	•Coulex of 96,97Y, 96Sr •(d,p) transfer on deformed nuclei: 94,95,96Kr, 96,97,98Sr	C : SPES beams (2025)
Shell-evolution at N=82 around 132Sn			•Coluex of 126;128Cd,136Te and 135Sb •(d,p), (d,t) on 132,134Sn •(3He,d) on 132,134Sn - 7Li cluster transfer on 132,1342Sb	
Lifetimes after transfer reactions for interplay of deformation and single-particle			Plunger device with: •(d,p), (d,t) on 80Zn-84Se •(d,p) transfer on deformed nuclei: 94,95,96Kr, 96,97,98Sr •(d,p), (d,t) on 132,134Sn •- 7Li cluster transfer on 132,1342Sb	INFN
				Nuclear Physics Mid Term Plan in Italy

Thanks for the attention !

