Nuclear Physics Mid Term Plan in Italy
LNL - Session

Legnaro, April 11 ${ }^{\text {th }}-12^{\text {th }} 2022$

Light to medium-mass exotic nuclei

Simone Bottoni

Università degli Studi di Milano and INFN

Marlène Assié
IJC Lab, Orsay, France

Carlo Barbieri

University of Milano and INFN, Milano, Italy

Riccardo Raabe
KU Leuven, Leuven, Belgium

Carl Wheldon

University of Birmingham, Birmingham, UK

Kathrin Wimmer

GSI, Darmstadt, Germany

Study of light and medium mass nuclei
Comprehensive understanding of nuclear structure and dynamics from first principles

Nature of the nuclear forces and nuclear interactions

Implications for stellar nucleosynthesis

A Guided Tour of ab initio nuclear Many-Body Theory
H. Hergert, Frontiers in Phys. 8, 379 (2020)

Synergy between experiments and theory

Different nuclear models

with different predictive powers
Shell Model calculations
E. Caurier et al, Rev. Mod. Phys. 77, 427 (2005)

Density functional theories G. Colò, Adv. Phys.-X 5, 1740061 (2020)

Two pillars for ab initio nuclear theory

Learning Nuclar Forces from QCD
$\mathrm{p}, \mathbf{n}, \boldsymbol{\pi}$ are the dominant d.o.f. \rightarrow chial EFT forces

Predictive and learning nuclear properties Solve the (hard) few- and many-body problem

Nuclear spectroscopy

C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009) V. Somà et al., Phys. Rev. C 101, 014318 (2020)

Exp. $\mathrm{NNLO}_{\text {sat }} \mathrm{NN}+3 \mathrm{~N}(\mathrm{lnl})$
Tight connection with LNL experimental programs

Microscopic optical potentials

A. Idini, C. Barbieri, P. Navratil, Phys. Rev. Lett. 123, 092501 (2019)

A great opportunity and a current challenge for low-energy nuclear physics!

Light beams at LNL

Detection systems and targets

PRISMA
heavy ions

GRIT charged particles

NEDA
neutrons

ACTIVE TARGETS

SPES (phase 2-3)${ }^{14} \mathrm{C}$

PRIN2017

CTADIR

CRYOGENIC

TARGET
INFN

Nuclear correlations and nuclear forces

INFN

Nuclear Physics
Mid Term Plan in Italy

Onset of collectivization and clusterization

Strong impact in nuclear astrophysics
Limited information from γ spectroscopy: very weak γ branchings $<10^{-3}$

Shell Model Embedded in the Continuum (SMEC)

J. Okołowicz, M. Płoszajczak, W. Nazarewicz, Fortschr. Phys. 61, 66 (2013)

- Open quantum systems
- Prediction of narrow resonances
- Enhanced E/M transition probabilities
- Couplings with the continuum

Possible measurements

$$
{ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \mathrm{p}\right)^{11} \mathrm{~B} \quad{ }^{13} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{p}\right){ }^{19} \mathrm{O} \quad{ }^{7} \mathrm{Li}\left({ }^{14} \mathrm{C}, \mathrm{p}\right)^{20} \mathrm{O}
$$

11 B experiment with GALILEO (2021) $\xrightarrow{\text { with GALILEO (2021) }}$
${ }^{19} \mathrm{O}$

Fusion reactions with stable beams $+{ }^{14} \mathrm{C}$
AGATA + TRACE/GRIT
α-cluster structures relevant for nuclear astrophysics
Nuclear states close to
α-emission thresholds weak decay branchings $\sim 10^{-3}$

${ }^{19} \mathrm{Ne}$
Three states close to the alpha-decay threshold
M. Wiescher, et al., Prog. in Part. \& Nucl. Phys. 59, 51 (2007)
${ }^{15}$ Tentative α structures
M. Wiescher, et al., Annual Rev. Nucl. Part. Sci. 60, 381 (2010)

Clusterization in medium-light nuclei

Molecular octupole deformations
Identification of octupole bands weak and fast γ branchings $<10^{-3}$
C. Wheldon, et al., Eur. Phys. J. A 26, 321 (2015)

Octupole structure doesn't emerge easily from calculations

Cluster shell model

Break -out from the CNO cycle

Possible measurements

Resonant scattering with EXOTIC and stable beams

Reaction kinematics event-by-event (TPC)

$$
\begin{aligned}
& { }^{15} \mathrm{O}\left(\alpha, \alpha^{\prime}\right) \\
& { }^{11} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)
\end{aligned}
$$

No angular uncertainty at 0°

Solid ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ thin targets Next developments: ${ }^{20} \mathrm{Ne}$ and ${ }^{21} \mathrm{Ne}$ A. Fernández et al., Materials and Design 186, 108337 (2020).
${ }^{21} \mathrm{Ne}$ inelastic scattering

ACTIVE TARGET

AGATA
C. Wheldon

Possible measurements

Deep-inelastic reactions with ${ }^{18} \mathrm{O}$

- ${ }^{198} \mathrm{Pt}$ thick target and degrader
- AGATA to achieve enough sensitivity
- Advantages from PRISMA upgrade
(

AGATA + PRISMA

INFN

$a b$ initio No-Core-Shell-Model Calculations

C. Forssen et al., J. Phys. G: Nucl. Part. Phys. 40, 055105 (2013).

Sensitivity to 3-body forces

development of lifetime measurement techniques for deep-inelastic reactions

\qquad

Possible measurements

Inelastic excitation of ${ }^{10} \mathrm{Be}$ SPES beam

Molecular bonding

Density Functional theory
J. -P. Ebran, E. Khan et al., Phys. Rev. C 90, 054329 (2014)

- ${ }^{10} \operatorname{Be}\left(\alpha, \alpha^{\prime}\right)$ or ${ }^{10} \operatorname{Be}\left(\mathrm{~d}, \mathrm{~d}^{\prime}\right)$ probing molecular states γ detection needed
- ${ }^{10} B e\left(p, p^{\prime}\right)$ probing di-neutron correlations γ detection needed

Same technique with ${ }^{14} \mathrm{C}$

AGATA + GRIT

 CRYOGENIC TARGETM. Assié

Possible measurements

(${ }^{3} \mathrm{He}, \mathrm{n}$) reactions with stable C beams $+{ }^{14} \mathrm{C}$ Two-proton Giant Pairing vibration

- Narrower due to the Coulomb Barrier
- $\mathrm{L}=0$ angular distribution from scattered n
- Trigger on the $2 p$ decay
R. Broglia, Phys. Lett. B. 69(1977) 129 M.W. Herzog Phys. Rev. C 31, (1985) 259
nn GPV not observed in heavy nuclei with (p, t) reactions continuum effect (low 1 state dominant with low centrifugal barrier): too wide to be observed

Possible signature of nn GPV identified in light C isotopes

F. Capuzzello et al., Nat. Commun. 6, 6743 (2015)

Giant monopole resonances in light deformed nuclei

Y.K. Gupta et al., Phys. Lett. B 748, 343 (2015)

Nuclear incompressibility

Energy Density
Functional theory
U. Garg and G. Colò,

Prog. Part. Nucl. Phys. 101 (2018)

Left of $\mathrm{N}=\mathrm{Z}$ nuclei

T. Peach et al., Phys. Rev. C 93064325 (2016)

Possible measurements

Elastic and inelastic scattering in inverse kinematics with SPES

$$
{ }^{26} \operatorname{Si}\left(\alpha, \alpha^{\prime}\right)
$$

- Inelastic scattering
- Low momentum transfer
- Fragmentation of ISGMR
- $\mathrm{K}=0$ couplings with $\mathrm{L}=2$

Astrophysical interest

Path of the rp-process

- Resonant excited states
- Impact on capture rates

ACTIVE TARGET

Possible coupling with γ detections

K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010)

Tracking shape changes
Monte-Carlo Shell Model

Possible measurements

Multi-nucleon transfer reactions

Island of Inversion at higher spin Origin of collectivity

Mixing of multi-particle-multi hole configurations

A. N. Deacon, et al., Phys. Rev. C 82 (2010) 034305.c

Approaching $\mathbf{N}=20$

- γ spectroscopy
- Lifetimes
- Advantages from PRISMA upgrade

AGATA + PRISMA
INFN
 Emergence of shape coexistence

Discrepancies with standard shell-model interactions

Two-particle overlaps possible with ab-initio
V. Somà, C. Barbieri et al., Eur. Phys. J. A 57, 135 (2019)

Possible measurements

$\left({ }^{14} \mathrm{C},{ }^{16} \mathrm{O}\right)$ two-proton transfer reactions

Sensitivity to transferred angular momentum
Study of 2p-2h proton strength

Study of 0+ states Search for shape coexistence

- γ decays + lifetimes
- E0 decays
M. Bernas et al., Phys. Lett. B, 113279 (1982)

AGATA + GRIT

K. Wimmer

Conclusions

Nuclear Physics
Term Plan in Italy

Title	Topics	Beams	Reactions	Setup	Phase
γ decay from near-threshold states	- Onset of collectivization and clusterization	STABLE	- ${ }^{6} \mathrm{Li}\left({ }^{(} \mathrm{Li}, \mathrm{p}\right)^{11} \mathrm{~B}$ - ${ }^{13} \mathrm{C}\left({ }^{(} \mathrm{Li}, \mathrm{p}\right){ }^{19} \mathrm{O}$ - ${ }^{7} \mathrm{Li}\left({ }^{14} \mathrm{C}, \mathrm{p}\right)^{20} \mathbf{O}^{*}$	AGATA + GRIT	A/C
Particle and γ decays from α-cluster states	- Breakout of CNO cycle - Molecular octupole deformations		- ${ }^{11} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ - ${ }^{15} \mathrm{O}\left(\alpha, \alpha^{\prime}\right)$ - ${ }^{21} \mathrm{Ne}$ inelastic	ACTIVE TARGET and AGATA	B
Role of 3-body forces in C and O nuclei	- Sensitivity to 3-body forces	STABLE	- ${ }^{18} \mathrm{O}$ deep inelastic	AGATA+PRISMA	A
Molecular orbitals and di-neutron correlations	- Molecular bonding	SPES	- ${ }^{10} \operatorname{Be}\left(\alpha, \alpha^{\prime}\right)$ - ${ }^{10} \mathrm{Be}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$	AGATA + GRIT+ CTADIR	C
Two-proton giant pairing vibrations	- Superconductive phases	STABLE + ${ }^{14} \mathrm{C}$	- ${ }^{\mathrm{A}} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)$	NEDA+ GRIT	B/C
Resonance in proton-rich nuclei	- Nuclear incompressibility - Path of rp-process	SPES	- ${ }^{26} \operatorname{Si}\left(\alpha, \alpha^{\prime}\right)$ - ${ }^{24-25} \mathrm{Al}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$	ACTIVE TARGET	C
Approaching the Island of Inversion at higher spins	- Origin of collectivity	STABLE	- Multi-nucleon transfer ${ }^{22} \mathrm{Ne}^{26}{ }^{26} \mathrm{Mg},{ }^{30} \mathrm{Si}$	AGATA+PRISMA	A
Proton excitations and 0+ states in Ar isotopes	- Emergence of shape coexistance	${ }^{14} \mathrm{C}$	- Two-proton transfer ${ }^{\mathrm{A}} \mathrm{Ca}\left({ }^{14} \mathrm{C},{ }^{16} \mathrm{O}\right)$	AGATA + GRIT	C

