Nuclear Physics Mid Term Plan in Italy

LNL – Session

Legnaro, April 11th-12th 2022

Light to medium-mass exotic nuclei

Simone Bottoni Università degli Studi di Milano and INFN

The working group and contributions

Simone Bottoni

Nuclear Physics Mid Term Plan in Italy/

Marlène Assié IJC Lab, Orsay, France

Carlo Barbieri University of Milano and INFN, Milano, Italy

> Riccardo Raabe KU Leuven, Leuven, Belgium

Carl Wheldon University of Birmingham, Birmingham, UK

> Kathrin Wimmer GSI, Darmstadt, Germany

Bogdan Fornal IFJ Pan, Krakow, Poland

Silvia Leoni University of Milano and INFN, Milano, Italy The complex wor of light nuclei

Study of light and medium mass nuclei

Comprehensive understanding of nuclear structure and dynamics from first principles

Nature of the nuclear forces and nuclear interactions

Implications for stellar nucleosynthesis

H. Hergert, Frontiers in Phys. 8, 379 (2020)

Synergy between experiments and theory

Different nuclear models

with different predictive powers

Shell Model calculations

E. Caurier *et al*, Rev. Mod. Phys. **77**, 427 (2005)

Density functional theories

G. Colò, Adv. Phys.-X 5, 1740061 (2020)

Ab initio methods

V. Soma, Frontiers in Phys. 8, 340 (2020)

Light and medium-mass nuclei: benchmark for heavier systems

A Guided Tour of *ab initio* nuclear Many-Body Theory

Nuclear Physics

Predictive and learning nuclear properties Solve the (hard) **few-** and **many-body problem**

Two pillars for *ab initio* nuclear theory

Learning Nuclar Forces from QCD p, **n**, π are the dominant d.o.f. \rightarrow **chial EFT** forces

Microscopic optical potentials

Opportunities at Laboratori Nazionali di Legnaro

Simone Bottoni

Onset of collectivization and clusterization Strong impact in nuclear astrophysics

Limited information from γ spectroscopy: very weak γ branchings < 10^{-3}

Shell Model Embedded in the Continuum (SMEC)

J. Okołowicz, M. Płoszajczak, W. Nazarewicz, Fortschr. Phys. 61, 66 (2013)

- Open quantum systems
- Prediction of narrow resonances
- Enhanced E/M transition probabilities
- Couplings with the continuum

Possible measurements

Simone Bottoni

α -cluster structures relevant for nuclear astrophysics

Break -out from the CNO cycle

le Nuclear states close to α-emission thresholds weak decay branchings ~ 10⁻³

Three states close to the alpha-decay threshold

M. Wiescher, et al., Prog. in Part. & Nucl. Phys. 59, 51 (2007)

¹⁵O

¹⁹Ne

Tentative α structures

M. Wiescher, et al., Annual Rev. Nucl. Part. Sci. 60, 381 (2010)

Clusterization in medium-light nuclei

Molecular octupole deformations

Identification of octupole bands weak and fast γ branchings < 10⁻³

C. Wheldon, et al., Eur. Phys. J. A 26, 321 (2015)

Cluster shell model

Octupole structure doesn't emerge easily from calculations R. Bijker and F. Iachello, Nucl. Phys. A **1010**, 122193 (2021)

Possible measurements

Resonant scattering with EXOTIC and stable beams

Reaction kinematics event-by-event (TPC)

¹⁵O(α,α') ¹¹C(α,α') No angular uncertainty at 0°

Solid ³He and ⁴He thin targets Next developments: ²⁰Ne and ²¹Ne

A. Fernández et al., Materials and Design 186, 108337 (2020).

²¹Ne inelastic scattering

INFN

Nuclear Physics

Mid Term Plan in Italy

(1951 2021 10

Simone Bottoni

ab initio No-Core-Shell-Model Calculations

C. Forssen et al., J. Phys. G: Nucl. Part. Phys. 40, 055105 (2013).

Possible measurements

Deep-inelastic reactions with ¹⁸O

- ¹⁹⁸Pt thick target and degrader
- AGATA to achieve enough sensitivity
- Advantages from PRISMA upgrade

(1951 2021

B. Fornal, S. Leoni

Nuclear Physics

INFN

Molecular orbitals and di-neutron correlations

Simone Bottoni

Nuclear Physics Mid Term Plan in Italy – LNL Session

12

Sensitivity to inelastic cross sections

- Transition strength from π to σ -type molecular states
- Di-neutron configuration

2 alphas +2n $(\pi_{3/2})^2$ 2 alphas + 2n $(\pi_{1/2})$ $(\pi_{3/2})$

Possible measurements

Inelastic excitation of ¹⁰Be SPES beam

- ${}^{10}\text{Be}(\alpha, \alpha') \text{ or } {}^{10}\text{Be}(d, d')$ probing molecular states γ detection needed
- ¹⁰Be(p,p') probing di-neutron correlations γ detection needed

Same technique with ¹⁴C

AGATA + GRIT CRYOGENIC TARGET

12

Superconductive phase

coherent superposition of 2p-2h

Predicted Energy $E \approx 10-20 \text{ MeV} / \text{Width: } \Gamma = 1-2 \text{ MeV}$ in heavy systems

R. Broglia, Phys. Lett. B. 69(1977) 129 M. Assié et al Eur. PJA 55 (2019) 245 M.W. Herzog Phys. Rev. C 31, (1985) 259.

nn GPV not observed in heavy nuclei with (p,t) reactions continuum effect (low l state dominant with low centrifugal barrier): too wide to be observed

Possible signature of nn GPV identified in light C isotopes

F. Capuzzello et al., Nat. Commun. 6, 6743 (2015)

Possible measurements

 $(^{3}\text{He,n})$ reactions with stable C beams + ^{14}C Two-proton Giant Pairing vibration

- Narrower due to the Coulomb Barrier
- L=0 angular distribution from scattered n
- Trigger on the 2p decay

Simone Bottoni

14

INFN

Nuclear Physics Mid Term Plan in Italy/

Giant monopole resonances in light deformed nuclei

Y.K. Gupta et al., Phys. Lett. B 748, 343 (2015)

Nuclear incompressibility

Energy Density Functional theory

U. Garg and G. Colò, Prog. Part. Nucl. Phys. 101 (2018)

T. Peach *et al.*, Phys. Rev. C **93** 064325 (2016)

- Effects of deformations
- Fragmentation of ISGMR
- K=0 couplings with L=2

Astrophysical interest

Path of the rp-process

- Resonant excited states
- Impact on capture rates

R.K.Wallace and S.E.Woosley, Astr. J. 45, 389 (1981)

Possible measurements

Elastic and inelastic scattering in inverse kinematics with SPES

 $^{26}Si(\alpha, \alpha')$

Inelastic scattering

Resonance region

Beam

• Low momentum transfer

Recoil

proton

(1951 2021

^{24,25}Al(p,p')

- Resonant scattering
- Large CM angles

ACTIVE TARGET Possible coupling with γ detections

R. Raabe

15

INFN

Nuclear Physics

Mid Term Plan in Italy

1951 2021

medium-mass nuclei

Approaching the Island of Inversion at higher spins

K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010)

Anomalies towards N=20

- Non-standard ordering of orbitals
- Inversion of spherical and deformed structures

Tracking shape changes

Monte-Carlo Shell Model

Possible measurements

Multi-nucleon transfer reactions

Island of Inversion at higher spin Origin of collectivity

Mixing of multi-particle-multi hole configurations

Approaching N=20

Simone Bottoni

- *γ* spectroscopy
- Lifetimes
- Advantages from PRISMA upgrade

AGATA + PRISMA

K. Wimmer

ຊິ<u></u> 10

(1951 2021 Α

Nuclear Physics

Mid Term Plan in Italy

INFŃ

Discrepancies with standard shell-model interactions

S. Calinescu et al., Phys. Rev. C **93**, 044333 (2016)

• Ti • Sc • Ca • K • M. Bernas et al., Phys. Lett. B, 113 279 (1982)

possible with *ab-initio*

V. Somà, C. Barbieri et al.,

Eur. Phys. J. A 57, 135 (2019)

AGATA + GRIT

K. Wimmer

Possible measurements

(¹⁴C,¹⁶O) two-proton transfer reactions

Sensitivity to transferred angular momentum Study of 2p-2h proton strength

Study of 0+ states Search for shape coexistence

Nuclear Physics

Mid Term Plan in Italy

- γ decays + lifetimes
- E0 decays

18

Simone Bottoni

Nuclear Physics Mid Term Plan in Italy – LNL Session

Title	Topics	Beams	Reactions	Setup	Phase
γ decay from near-threshold states	Onset of collectivization and clusterization	STABLE	 ⁶Li(⁶Li,p)¹¹B ¹³C(⁷Li,p)¹⁹O ⁷Li(¹⁴C,p)²⁰O* 	AGATA + GRIT	A/C
Particle and γ decays from α -cluster states	Breakout of CNO cycleMolecular octupole deformations	EXOTIC and STABLE	 ¹¹C(α,α') ¹⁵O(α,α') ²¹Ne inelastic 	ACTIVE TARGET and AGATA	В
Role of 3-body forces in C and O nuclei	Sensitivity to 3-body forces	STABLE	• ¹⁸ O deep inelastic	AGATA+PRISMA	Α
Molecular orbitals and di-neutron correlations	Molecular bonding	SPES	 ¹⁰Be(α,α') ¹⁰Be(p,p') 	AGATA + GRIT+ CTADIR	С
Two-proton giant pairing vibrations	Superconductive phases	STABLE + ¹⁴ C	• ^A C(³ He,n)	NEDA+ GRIT	B/C
Resonance in proton-rich nuclei	Nuclear incompressibilityPath of rp-process	SPES	 ²⁶Si(α,α') ²⁴⁻²⁵Al(p,p') 	ACTIVE TARGET	С
Approaching the Island of Inversion at higher spins	Origin of collectivity	STABLE	• Multi-nucleon transfer ²² Ne, ²⁶ Mg, ³⁰ Si	AGATA+PRISMA	Α
Proton excitations and 0+ states in Ar isotopes	• Emergence of shape coexistance	¹⁴ C	• Two-proton transfer ^A Ca(¹⁴ C, ¹⁶ O)	AGATA + GRIT	С

Nuclear Physics

(1951 2021) infn