

A Brief History Of the Universe: Motivation

"Density" of hadron states important shortly after the big bang:

Missing $N^*/Y */\Xi^*...$

Hyperons related to neutron star (Hyperon-Nucleon Interaction)

Production Mechanisms: Polarization variables essential

(Some people want to be in PDG)

Motivation

Overall status

**

**

Particle

 $\Xi(2250)$

 $\Xi(2370)$ $\Xi(2500)$

- PDG status table $\Xi(1820)$ *** *** $\Xi(1950)$ *** $\Xi(2030)$ $\Xi(2120)$
- Experimentally underexplored
- ➤ Many states expected to be narrow
- > Production mechanism interesting to explore

Early Experiments on E Search

- Early experiments in 1960's used K⁻ beam on low-sensitive hydrogen bubble chamber (LRL, ANL, BNL)
- ➤ SPS (super proton synchrotrons)

 charged hyperon beam at CERN

 studied Ξ⁻N interaction. Analysis

 of Ξ⁻Be interaction concluded

 spin parity of Ξ*⁻(1820) with ~50

 data events.
- ➤ Kaon production experiment in 1980's at BNL with MPS using Missing Mass technique $(K^-p \rightarrow K^+(X^-))$ claimed multiple Ξ states

S. F. Biagi et al. Z. Phys. C 34, 175 (1987)

CLAS6 (Not so long ago): Cascade Cross Sections

CLAS6 (Not so long ago): Cascade Polarization

Results VS Predictions (Nakayama et al):

R~0.3

Model Variance: K or K* exchange?

Higher mass hyperon contribution (PRC83, 2011)

JLab 12 GeV Upgrade: It's done!

CLAS12 Spectrometer

Forward Detector:

 $(5^o \le \theta \le 35^o)$

- > TORUS magnet
- > HT Cherenkov Counter
- Drift chamber system
- > LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:

 $(35^o \le \theta \le 125^o)$

- SOLENOID magnet
- ➤ Barrel Silicon Tracker
- Central Time-of-Flight

Upgrades:

- Micromegas (CD)
- Neutron detector (CD)
- > RICH detector (FD)

Forward Tagger (FT)

 $(2^o < \theta < 5^o)$

CLAS12: Forward Tagger and RGA

• FT layout

- Calorimeter determine the electron energy using homogenous PbWO4 crystals
- Tracker: Determines electron scattering plane, hence the photon polarization
- Hodoscope: Distinguish photons from electrons

Forward Tagger			
E,	0.5-4.5 GeV		
ν	7-10.5 GeV		
θ	2.5-4.5 deg		
Q ²	0.007 - 0.3 GeV ²		
W	3.6-4.5 GeV		
Photon Flux	$5 \times 10^7 \text{y/s} \ \text{@} \ \text{L}_{\text{e}} = 10^{35}$		

Why do we want FT:

- First of its kind
- Quasi-real photon production (FT) of multiple particle final states (CLAS12)
- Wide range of hadron spectroscopy programs
 - Hybrid meson and baryons
 - Multi-strangeness hyperons
 -

- ➤ Electron beam:: 10.6 GeV and 10.2 GeV Longitudinally polarized electron beam from CEBAF
- ➤ Target :: 5 cm unpolarized liquid hydrogen (LH2) target
- ➤ Beam Current:: 5nA to 75nA
- Fall 2018 in, Fall 2018 out, Spring 2019 in datasets available to analyze. The Spring 2018 dataset is not ready to analyze

The Very Strange Experiment @ CLAS12 (RGA)

What is so "strange" about Ω -photoproduction?

Mechanism totally unknown

None of the constituent quark (s) is K*(892)from the target ($\Delta S=-3$)

opposite angular preferences

V. Shklyar (Éffective Lagragian) Different models predicts $\Lambda*(3000)$ $\Xi*(2370)$ Ω (p')

Cross section predictions are consistent: σ ~1nb at GlueX/CLAS12 energy range

Backward 9

The Very Strange Experiment: Cascade Spectroscopy at CLAS12

- \triangleright IF we want to search for Ω^- , we better seen cascades first
 - This talk:
 - $ep \to eK^+K^+ (\Xi^{-*})$
 - $ep \rightarrow eK^+K^+K^-(\Lambda/\Sigma), \Xi^{-*} \rightarrow K^-\Lambda/\Sigma$
- \triangleright Scattered electron e' detected in two different regions
 - ► Low- $Q^2(0.03 0.13 \text{ GeV}^2)$ region to study quasi-real photoproduction e' detected in the FT system which covers a very forward polar angle range of 2^o to 5^o
 - ► Large- $Q^2(0.16 1.28 \, GeV^2(\text{out-bending}) / 1.28 2.88 \, GeV^2(\text{in-bending}))$ region to study electroproduction e' detected in the **FD** system which covers a forward polar angle range of 5^o to 35^o
- > Charged Kaons detected in the CLAS12 detector (FD) in coincidence with scattered electrons.
- Analyzed Fall2018(in/out) and Spring2019(in) data. Total **six data sets** analyzed with **FT/FD electron separately** (in/out torus)

CLAS12 cascade quasi-real photoproduction: $ep \rightarrow eK^+K^+$ ($\Xi^{-(*)}$), ELECTRON in FT

- Background shaped fixed by mixed events technique
- Event excess seen around 1.8GeV region
- 1.8-2GeV region excluded from the fit
- Excess persist when $\Xi^-(1530)$ resolution fixed
- Work done by FIU Ph.D student Jose Carvajal

CLAS12 cascade electroproduction: $ep \rightarrow eK^+K^+$ ($\Xi^{-(*)}$), **ELECTRON** in **FD**

All particles (including electron) detected in FD; Central detector data to come! FD resolution better then FT electron

Q²-dependency of the ground states cross section To be extracted

• $\Xi^{-}(1320)/\Xi^{-}(1530)$ First time seen in electroproduction

CLAS12 cascade electroproduction: $ep \rightarrow eK^+K^+K^-(\Lambda/\Sigma)$, **ELECTRON** in **FD**

➤ Data driven background shape fix mixed events

FIU Ph.D Thesis by Dr. Achyut K (Oct 11,2022)

The event mixing background consistent with event-by-event weighting

 Λ/Σ^0 Cut=[1.07, 1.25]

CLAS12 cascade electroproduction: $ep \rightarrow eK^+K^+K^-(\Lambda/\Sigma)$, ELECTRON in FT

CLAS12 cascade electroproduction: $ep \rightarrow eK^+K^+K^-(\Lambda/\Sigma)$, $\Xi^{-*} \rightarrow K^-\Lambda/\Sigma$, cross section uppder limit

Background subtracted distributions

50	MM(eK ⁺ K	<u> </u>
	_ yield: 19.88	—
40 95% CL-UI	_ σ(nb): 0.18±0.04	
30	111	x2/Ndf: 1.67 Obs:34.16 ± 4.54 Bg:27.34 ± 2.39
20 —		μ:1.8230± 0.0000 σ:0.0470 ± 0.0000 Excess: 6.83 ± 5.52
		†
10	· · · · · · · · · · · · · · · · · · ·	
	<i>AllMm</i>	+ ++++
0 +/	1.8 2	2.2 2.4

Particle	<i>K</i> − Λ	$K^-\Sigma^0$	
Ξ (1690)	seen	seen	
<i>Ξ</i> (1820)	large (dominant)	small	
Ξ (1950)	seen	possibly seen	
Ξ (2030)	~ 0.2	~0.8	
Ξ (2120)	seen	N/A	

No statistically significant states seen so far Upper Limit Extraction ($\Xi^{*-}(1820)$): Mass/Width fixed from PDG/Simulation Two methods used

Naïve background+Gaussian fits
Maximum log-likelihood method
Both methods consistent with each other
Similar procedure performed as a function of eKK
missing mass

CLAS12 cascade electroproduction: $ep \rightarrow eK^+K^+K^-(\Lambda/\Sigma)$, $\Xi^{-*} \rightarrow K^-\Lambda/\Sigma$, cross section uppder limit : Q^2 – Range

CLAS12 cascade electroproduction: $ep \rightarrow eK^+K^+K^-(\Lambda/\Sigma)$, $\Xi^{-*} \rightarrow K^-\Lambda/\Sigma$, $\Xi^{*-}(1820)$ 95% CL Upper Limit Yield

Fit result	F18 FT-e out	F18 FT-e in	S19 FT-e in	F18 FD-e out	F18 FD-e in	S19 FD-e in
Excess Yield	17.19	18.96	46.78	6.83	7.76	9.48
Yield uncertainty	7.67	8.09	10.18	5.84	5.14	5.32
TS	6.27	6.85	30.89	1.58	2.85	4.49
√TS	2.50	2.62	5.56	1.26	1.69	2.12
p-value	0.0061	0.0044	0.0001	0.1045	0.0456	0.0170
95%-CL range of yield excess	(3.142, 33.897)	(4.080, 36.505)	(27.730, 68.487)	(-3.571, 19.884)	(-1.237, 19.424)	(0.480, 21.860)

- \triangleright p-value signifies how likely the data sample is consistent with the null hypothesis. A higher p-value implies that the data sample is highly consistent with the null hypothesis (H_0).
- > 95%-Cl upper limit **yield from** the **maximum likelihood ratio test method** is **compatible with** the number obtained from the **naïve fit method** (yield + 2* yield-uncertainty)

CLAS12: $ep \rightarrow e'K^+K^+K^-(\Lambda/\Sigma^0)$ Preliminary "Differential Cross Section"

Acceptance Corrected/Flux Normalized; Data/Simulation resolution matched; Arbitrary units ©

SUMMARY

- First look at CLAS12 RGA data on cascades promising
 - $-ep \to eK^{+}K^{+}(\Xi^{-*})$
 - $-ep \rightarrow eK^+K^+K^-(\Lambda/\Sigma), \Xi^{-*} \rightarrow K^-\Lambda/\Sigma$; Both channels consistent with each other and expectation
 - Ground states seen first time in electroproduction
- Current statistics limited (central detector data not used)
 - Major tracking efficiency and resolution improvement underway
 - Order of magnitude more statistics soon
- Higher mass states do not have statistically significant signals
 - Preliminary Cross section upper limit (not shown) consistent with earlier results
 - Preliminary Reaction differential cross section derived
- Other reactions will be investigated with improved RGA data set
 - $-\ ep \rightarrow eK^+K^+\ (\Xi^{-*}), \Xi^{-*} \rightarrow K^-\Lambda, \Lambda \rightarrow p\pi^-$
 - $-ep \rightarrow eK^+K^+\pi^-(\Xi^0)$
 - $-ep \rightarrow eK^+K^+K^{-0}(\Omega^-), \Omega^- \rightarrow K^-\Lambda$
 - Others (S=-1 hyperons, etc)
- Probing production mechanisms
 - Polarization measurement possible if statistics allows
 - Q² dependency of cross section measurements
- Acknolwdgement: CLAS Collaboration/Nstar2022 Organanizers/Supported by DOE grant 800004726

Backup Slides

Quality Control of Simulation

 \triangleright The shape of Q^2 distribution from MC Events and Ξ^{*-} data sample were matched by weighting generated events if needed.

➤ Histograms normalized to one to compare the overall shape

Similar comparisons were performed for all the data sets to ensure simulation best mimics data distributions

Knowledge of E*-(1820) Experimental Mass Resolution

 Ξ^{-} (1320) width in MM(eK⁺K⁺) from MC (smeared))

- \triangleright Ξ^{*-} (1820) Mass resolution inferred from MC by applying proper momentum smearing to MC for data vs MC matching
- Compared observed \mathcal{E}^- (1320) signal width in the MM(e K^+ K^+) distribution to derive MC smearing factor for FD and
- The smearing factor for FD and FT derived with two independent processes by running MC simulation for \mathcal{E}^{-} (1320) exclusive reaction:

$$ep \to e'K^+K^+ \mathcal{E}^-$$
(1320) $\to e'K^+K^+ \pi^-\Lambda$

 \triangleright Used 0.3% $\triangle p/p(K^{\pm})$ to derive $\triangle p/p$ for FT-e

Knowledge of Ξ^{*-} (1820) Experimental Mass resolution

Expt. Mass resolution with MC smearing

- Senerated $ep \rightarrow e'K^+K^+\Xi^{*-} \rightarrow e'K^+K^+(\Lambda/\Sigma^0)$ with intrinsic $\Xi^{*-}(1820)$ mass (1823 MeV) / resolution (24 MeV) from PDG
- Applied momentum smearing to reconstructed momenta
- \triangleright Fitted MM($e'K^+K^+$) distribution to get the Expt. Resolution

Sources of Systematic Uncertainties

Systematics	F18 FD-e outbending (δ_i)	F18 FT-e outbending (δ_i)
Momentum smearing factor $(\Xi^{*-}(1820))$ resolution choice)	4.4%	2.9%
BG. Fit function choice	4.5%	5.8%
Bin shift study	0.9%	1.3%
BG. Template choice (Ev. Mixing vs. Signal excluding Technique)	26%	16%

Why Central Detector Data has not been used yet

- \triangleright Correction derived using $e'p\pi^+\pi^-$ events with e', p and, π^- detected in FD and π^+ detected in CD (Details back up slide)
- \triangleright Treating π^+ in CD as missing particle and used missing particle four-momentum to calibrate π^+ in CD
- \triangleright Used same correction for K^+ in CD. Results were not so encouraging -> Decided to work on the FD only