

Results of Hadron Spectroscopy at LHCb

NSTAR2022

Elisabetta Spadaro Norella University & INFN Milano

on behalf of the LHCb experiment

Oct 20th, 2022

1

Spectroscopy at LHC

QCD and spectroscopy

Both can be used to test Lattice QCD calculations at low energies

LHCb detector

The major player in spectroscopy thanks to its unique dedicated design

- high vertex resolution
- high invariant mass resolution
- RICH detectors for PID
- highly performant trigger

Luminosity: Run 1 and Run 2: 9 fb⁻¹

Muon chambers, hardware trigger with ~90% efficiency

Tracking: momentum

resolution of $\sigma_p / p \sim 0.5 - 1\%$

Calorimeters, hadron trigger with ~50% efficiency

RICH detectors for particle ID. pid(K-π)~95%

<u>JINST 3 (2008) S08005</u> IJMP A 30, 1530022 (2015)

VELO: vertex detector IP resolution: ~25 μm

Outline

Conventional spectroscopy

Observation of excited Ξ_b^{0} , Ξ_c^{0} and Ξ_{cc}^{++} baryons Search for Ξ_{cc}^{+} , Ξ_{bc}^{0} , Ξ_{bc}^{+} , Ω_{bc}^{0}

see also talk by Roberta Cardinale

Exotic spectroscopy

 $\chi_{c1}(3872)$ state: dipion mass spectrum

Tetraquarks:

- doubly charmed tetraquark T_{cc}
- charm-strange tetraquarks $T_{cs0}(2600)^{0/++}$

Pentaquark with strangeness

Spectroscopy study techniques

Conventional spectroscopy

Excited Ξ_{c} states

NEW LHCb-PAPER-2022-028, in preparation

Excited Ξ_{c} states (1)

Search for excited Ξ_c states in $B^- \to \Lambda_c^+ \overline{\Lambda_c^-} K^-$ decays, decaying to $\Lambda_c^+ K^-$

 $\Xi_c(2930)^0$ state observed by Belle^[1] is resolved into 2 peaks:

- $\Xi_c(2923)^0$ with $\Gamma \sim 5$ MeV
- Ξ_c(2939)⁰ with Γ~11 MeV

Evidence at ~ 3.7σ of:

- new state $\Xi_c(2880)^0$
- new decay mode of $\Xi_c(2790)^0$

Observation of new excited $\Xi_{\rm h}$

Few excited Ξ_{h} states observed so far:

- $\Xi_{b}(6227)^{0}/\Xi_{b}(6227)^{-}$ by LHCb [1,2] $\Xi_{b}(6100)^{-}$ by CMS [3]

New searches in $\Lambda^0_{\ \mu} K^- \pi^+$ final state ⇒ 2 states observed: $\Xi_{\rm h}(6327)^0$, $\Xi_{\rm h}(6333)^0$ $m[\Xi_{b}(6327)^{0}] = 6327.28^{+0.23}_{-0.21}$ MeV, $m[\Xi_b(6333)^0] = 6332.69^{+0.17}_{-0.18}$ MeV, $\Gamma[\Xi_{b}(6327)^{0}] = 0.93^{+0.74}_{-0.60}$ MeV, $\Gamma[\Xi_b(6333)^0] = 0.25^{+0.58}_{-0.25}$ MeV, (RBW)

- Widths consistent with mass reso
- 1D doublet, J^{P} = 3/2⁺ and J^{P} = 5/2⁺

[1] Phys. Rev. Lett. 121, 072002 (2018). [2] Phys. Rev. D 103, 012004 (2021). [3] Phys. Rev. Lett. 126, 252003 (2021).

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{'+} \pi^{+}$

JHEP 2205 (2022) 038

Search in $\Xi_c^+\pi^-\pi^+$ final state

Search for Ξ_{cc}^{+} states

 \rightarrow No peaks are seen and UL are set on R

R: production cross-section multiplied by BR and normalised to $\Xi_c{}^{++}\to \Xi_c{}^+\pi^+$

Results combined with $\Lambda_c^+ K^- \pi^+$ results [1]

Search for
$$\Xi_{bc}^{0}$$
, Ω_{bc}^{0} , Ξ_{bc}^{+}

Chin. Phys. C 45 093002, arXiv:2204.09541v1

Search for peaks in the $\Lambda_c^+\pi^-$ / $\Xi_c^+\pi^-$ and $J/\psi \Xi_c^+$ final states

- No obvious peaks
- UL are set at 95% CL

R: production cross-section multiplied by BR and normalised with Λ_b^{0}/Ξ_b^{0} (decays to $\Lambda_c^{+}\pi^{-}/\Xi_c^{+}\pi^{-}$) and $B_c^{+}\rightarrow J/\psi D_s^{+}$

Exotic spectroscopy

First exotic candidates

Nature of $\chi_{c1}(3872)$ state

Many experiments contribute to it:

- Spin assignment: J^{PC} = 1^{++ [1]}
- Mass is consistent with m(D⁰) + m(D^{*0})
- Width is surprisingly narrow

Its nature is still under debate!

Study of decay processes can help understand its nature, ie. decay to $\pi^+\pi^- J/\psi$

 $\Rightarrow \rho^{0}(770)$ contamination seemed to describe the phsp [2]

 [1] PRL. 110 (2013) 222001, PRD 92 (2015) 011102(R)
 [2] JHEP 01(2017)117

Is it all $\chi_{c1} \rightarrow \rho^0 J/\psi$?

LHCb-PAPER-2021-045, arXiv:2204.12597v1

50

400

500

600

 $\frac{g_{\chi_{c1}(3872)\to\rho^0 J/\psi}}{g_{\chi_{c1}(3872)\to\omega J/\psi}}=\ 0.29\pm0.04.$

 $\frac{g_{\psi(2S)\to\pi^0 J/\psi}}{g_{\psi(2S)\to\eta J/\psi}} = 0.045 \pm 0.001$

\Rightarrow hint of exotic nature!

700

 $m_{\pi^+\pi^-}$ [MeV]

Manifestly exotic

Other pentaquark evidences

Sci.Bull. 66 (2021) 1278-1287 PLB 772 (2017) 265-273 PRL <u>122, 191804</u> (2019) PRL 128, 062001 (2022)

Elisabetta Spadaro Norella - Università degli Studi di Milano

New Tetraquarks

Observation of doubly charm tetraquark

Nature Physics (2022); Nature Communications 13, 3351 (2022)

First observation of same-sign double charmed tetraquark, T_{cc}⁺(3875)

⇒ exotic quark content ccūd

Mass close to D^{*+}D⁰ threshold and very narrow $\delta m_{\rm BW} = -273 \pm 61({\rm stat}) \pm 5({\rm syst})^{+11}_{-14}({\rm model}) \text{ keV}$ $\Gamma = 410 \pm 65({\rm stat}) \pm 43({\rm syst})^{+18}_{-38}({\rm model}) \text{ keV}$

Consistent with isoscalar JP=1+

Tetraquark candidates in B→DDh

 $T^{a}_{c\bar{s}0}(2900)^{++} \rightarrow D^{+}_{s}\pi^{+} \text{ in } B^{+} \rightarrow \overline{D}^{-}D^{+}_{s}\pi^{+}$ $T^{a}_{c\bar{s}0}(2900)^{0} \rightarrow D^{+}_{s}\pi^{-} \text{ in } B^{0} \rightarrow \overline{D}^{0} D^{+}_{s}\pi^{-}$ $\bullet \text{ Quark contents: } [c\bar{s}u\bar{d}], [c\bar{s}\bar{u}d]$

LHCb-PAPER-2022-026

 $\boldsymbol{X(3960)} \rightarrow D_s^+ D_s^- \text{ in } B^+ \rightarrow D_s^+ D_s^- K^+$

• Quark content: [*ccss*]?

LHCb-PAPER-2022-018

Dalitz plot of $B^{0/+} \rightarrow D^{0/-}D_s^{+}\pi^{-/+}$ decays

LHCb-PAPER-2022-026

 $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$

 $B^+ \to D^- D^+_s \pi^+$

Clear vertical band at $M^2(D\pi) \sim 6 \text{ GeV}^2$: $D_2^*(2460)$

Horizontal band at $M^2(D_s\pi) \sim 8.5 \text{ GeV}^2$ \Rightarrow tetraguark candidates?

Summary of new tetraquark states

 $T^a_{c\bar{s}0}(2900)^{0/++}$

First tetraquark candidates composed of $c\bar{s}u\bar{d}$ and $c\bar{s}\bar{u}d$

- first doubly charged tetraquark
- isospin triplets
- flavour partners of $T_{cs0}(2900)$ observed in $B^+ \rightarrow D^+ D^- K^+$ [1]?

X(3960)

Same state as $\chi_{c0}(3930)$?

Exotic $c\bar{c}s\bar{s}$ or conventional state?

- not compatible with predicted mass
- conventional charmonium predominantly decay to D^(*)D^(*), while:

 $\Gamma(X o D^+ D^-) < \Gamma(X o D^+_s D^-_s)$

⇒ more precise measurements are needed

Phys. Rev. D, 2005, 72: 054026, PRD, 2009, 79: 094004
 JHEP 06 (2021) 035, Sci. Bull., 2021, 66: 1413

Pentaquarks

Model with only K^*

Amplitude contributions:

- NR(*p*Λ)
- K^{*+}__{2,3,4}

 \rightarrow peaks out of phsp, no obvious contribution in $\bar{p}\Lambda$ distribution

Resonance	Mass (MeV)	Natural width (MeV)	$\mathbf{J}^{\mathbf{P}}$
$K_4^*(2045)^+$	2045 ± 9	198 ± 30	4^+
$K_2^{*}(2250)^+$	2247 ± 17	180 ± 30	2-
$K_{3}^{*}(2320)^{+}$	2324 ± 24	150 ± 30	3^{+}
5.		PDG 2	020

Model with K* cannot describe data

Goodness-of-fit test $\chi^2/ndf=123/33$

LHCb-PAPER-2022-031, arxiv:2210.10346

Pentaquark with strangeness in $J/\psi\Lambda$

LHCb-PAPER-2022-031, arxiv:2210.10346

Amplitude contributions:

- NR($\bar{p}\Lambda$), NR($\bar{p}J/\psi$), P $_{\psi s}^{\Lambda}(J/\psi\Lambda)$

Mass and width (RBW) measured:

 $m(P_{\psi s}^{\Lambda})$ 4338.2 ± 0.7 MeV $\Gamma(P_{\psi s}^{\Lambda})$ 7.0 ± 1.2 MeV

with significance >10 σ

 \Rightarrow Spin-parity:

 $J = \frac{1}{2}$ determined

P = -1 favored, $\frac{1}{2}$ rejected @90% CL

Discussion on the new J/ $\psi\Lambda$ state

LHCb-PAPER-2022-031, arxiv:2210.10346

First pentaquark candidate $P_{\psi s}^{\Lambda}(4338)$ with strange quark content $c\bar{c}uds$,

 $M_{P_{cs}} = 4338.2 \pm 0.7 \pm 0.4 \,\text{MeV}$ $\Gamma_{P_{cs}} = 7.0 \pm 1.2 \pm 1.3 \,\text{MeV}$

⇒ first pentaquark with spin-parity determined at 90%CL \rightarrow J^P=½⁻

For theoretical interpretation

- In narrow and close to $\Xi_c^+ D^-$ threshold
- not compatible with state outside the phsp
- pentaquark with strangeness due to SU(3) symmetry

Conclusion & Prospects

Spectroscopy of heavy hadrons

- excited *b* and *c* hadrons
- bc searches already started

Exotic contributions

- New tetraquark: T_{cc}⁺, T_{cs0} (2900)^{0,++}
- First pentaquark with strangeness

We are looking for collaborators for LHCb Upgrade 2 \rightarrow pleased to have you onboard!

Upcoming Run 3 data:

- higher integrated luminosity
- new detector with fully software-based trigger

 \Rightarrow Boosting data to a new level!

x2 by Run3, x7 by Run4 (+ improvements of analysis skills)

Conclusion & Prospects

More investigation of the observed states:

- Confirm P_c and P_{cs} states
- Measure quantum numbers

Many new states to explore:

- Observation of Ξ_{cc}^{+} , Ω_{cc}^{+} ?
- Access to *bc* tetraquarks and pentaquarks and *bb* spectroscopy
- Search for exotic flavour multiplets

Thank you for listening!

Backup slides

New naming scheme

LHCb-PUB-2022-013, arxiv2206.15233

No PDG rule for

- exotic mesons with s, c, b quantum numbers
- no extension for pentaquark states

Idea of the proposal

- T for tetra, P for penta
- Superscript: based on existing symbols, to indicate isospin, parity and G-parity
- Subscript: heavy quark content

Impact on existing states

Ν

finimal quark	Current name	$I(G) I^{P(C)}$	Proposed name	
content	Ourrent name	1, j , j	i roposed name	
$c\bar{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, \ J^{PC} = 1^{++}$	$\chi_{c1}(3872)$	
$c \bar{c} u \bar{d}$	$Z_c(3900)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(3900)^+$	
$c \bar{c} u \bar{d}$	$Z_c(4100)^+$	$I^{G} = 1^{-}$	$T_{\psi}(4100)^+$	
$c \bar{c} u \bar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(4430)^+$	
$c\bar{c}u\bar{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$	$T^{\dot{\theta}}_{\psi s1}(4000)^+$	
$c\bar{c}u\bar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, \ J^P = 1^?$	$T_{\psi s1}(4220)^+$	
$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^{+}, \ J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$	
$csar{u}ar{d}$	$X_0(2900)$	$J^P = 0^+$	$T_{cs0}(2900)^0$	
$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$	
$ccar{u}ar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$	
$bar{b}uar{d}$	$Z_b(10610)^+$	$I^G = 1^+, \ J^P = 1^+$	$T_{\gamma_1}^b(10610)^+$	
$c\bar{c}uud$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$	
$c\bar{c}uds$	$P_{cs}(4459)^0$	$I = \tilde{0}$	$P_{\psi s}^{\Lambda}(4459)^{0}$	

 P_{ψ}^{N} contributions in $\bar{p}J/\psi$?

Amplitude contributions:

- NR(*p*Λ)
- $\frac{\mathsf{NR}(\bar{pJ}/\psi)}{\mathsf{P}_{\mathsf{ws}}^{\mathsf{A}}(J/\psi\Lambda)} \rightarrow \mathsf{BW}(\mathsf{P}_{\psi}) \mathsf{J}^{\mathsf{P}} = \mathscr{V}_{2}^{\mathsf{A}}$

Compatible $P_{\psi s}^{\Lambda}$ results

$m(P_{\psi s}^{\Lambda})$	4338.8 ± 1.1 MeV
$\Gamma(P_{\psi s}^{\Lambda})$	8.4 ± 1.6 <i>MeV</i>
$m(P_{\psi}^N)$	4152.3 ± 2.0 MeV
$\Gamma(P_{\psi}^{N})$	41.8 ± 6.0 MeV

-logL decreases by 80 wrt nominal model

Model with NR polynomial is preferred,
not very sensitive to \bar{pJ}/ψ structures with
current statistics

Molecular interpretations for P_{cs}

- Vicinity to the relevant baryon-meson threshold:
 0.8 MeV above \(\mathcal{E}_c^+D^-\) threshold
- Spin-parity: states in S-wave as the hadronic molecules
- Narrow width: 7 MeV is unnaturally small given the Q-value of the decay (~126 MeV).
 - Decay requires the charm and anti-charm quarks getting close, but the distance between is Ξ_c^+ and $D^- >> 1 \text{fm} \Rightarrow$ suppression mechanism

Prediction of states at $\Xi_c^{'D}$ thresholds

New pentaquark: $P_c(4337)$

 $\ln B^{\theta}_{(s)} \rightarrow J/\psi p\bar{p}$ decays: ~800 events

4D amplitude analysis in $\Phi = (m_{pp}, \cos\theta_{\mu}, \cos\theta_{\nu}, \phi)$

Evidence for a structure in $J/\psi p$ and $J/\psi \bar{p}$

 $M_{P_c} = 4337^{+7}_{-4}({
m stat}) \pm 2({
m sys}){
m MeV},$ $\Gamma_{P_c} = 29^{+26}_{-12}(\text{stat}) \pm 14(\text{sys}) \text{ MeV}$

No evidence for **P_(4312)** nor for **f**₁(2220) glueball^[1] Candidates/(0.01 GeV 🔶 Data LHCb Total fit 9 fb⁻¹ NR decay $P_c^+ + P_c^-$ Background $\frac{4.3}{m(J/\psi p)_{high}} \begin{bmatrix} 4.4 \\ \text{GeV} \end{bmatrix}$ 4.2

Peculiar that:

- $P_c(4312)$ only in Λ_b decays $P_c(4337)$ only in B_s decays

^[1]Eur. Phys. J. C75 (2015), no. 3 101

χ_{c1} production in pp @ LHCb

PRL 126 (2021) 092001, JHEP 01 (2022) 131

 \Im Differential cross section ratio of $\chi_{c1}(3872)$ relative to $\psi(2S)$

- Both in prompt pp collisions and from b-hadron decays
- Measured as a function of track multiplicity, $p_{\scriptscriptstyle T}$ and y

Separate a compact tetraquark (r<1 fm) from a large-sized molecular state (r~10 fm)

Prompt ratio is suppressed as multiplicity increases (5σ)

- \rightarrow compact tetraquark model favored
- → Dominated by comover breakup^[1]: small radius = decrease of xsection ratio

^[1]PRD 103 (2021) 7, EPJC 81 (2021) 669

What happens in HI collisions?

LHCb-CONF-2022-001

Production of $\chi_{c1}(3872)$ in pPb collisions to help understand the dynamics

• Formation of QGP could enhance the $\chi_{c1}(3872)$ production through the **quark coalescence mechanism**

- $\psi(2S)$ is suppressed in pPb and Pbp
- χ_{c1}(3872) production may also be enhanced as in PbPb collisions

Increasing trend:

at high density quark coalescence can become the dominant mechanism affecting χ_{c1} production

But still large uncertainties

Molecule, tetraquark or a mixture?