DATA-DRIVEN POLE DETERMINATION OF (OVERLAPPING) RESONANCES

NSTAR 2022

S. Margherita Ligure

OCTOBER 17 - OCTOBER 21 2022

DANIELE BINOSI ECT* - FONDAZIONE BRUNO KESSLER

EUROPEAN CENTRE FOR THEORETICAL STUDIES

$$I(E) = \rho(E) \left| f(E) \right|^2$$

Analytic continuation can access the unphysical Riemann sheet where resonant poles are found

$$I(E) = \rho(E) \left| f(E) \right|^2$$

Analytic continuation can access the unphysical Riemann sheet where resonant poles are found

$$I(E) = \rho(E) \left| f(E) \right|^2$$

Analytic continuation can access the unphysical Riemann sheet where resonant poles are found

$$I(E) = \rho(E) \left| f(E) \right|^2$$

Analytic continuation can access the unphysical Riemann sheet where resonant poles are found

$$I(E) = \rho(E) \left| f(E) \right|^2$$

Analytic continuation can access the unphysical Riemann sheet where resonant poles are found

$$I(E) = \rho(E) \left| f(E) \right|^2$$

Analytic continuation can access the unphysical Riemann sheet where resonant poles are found

one of the original intensity

Propagate uncertainties through resampling

$$I(E) = \rho(E) \left| f(E) \right|^2$$

$$I(E) = \rho(E) \left| f(E) \right|^2$$

SPM

VALIDATION

$$\begin{array}{l}
\mathsf{D}_{N} = \{(E_{i}, I_{i} = I(E_{i})), \ i = 1, \dots, N \\
\mathsf{D}_{M} \subseteq \mathsf{D}_{N} \\
C_{M}(E) = \frac{P(E)}{Q(E)} \\
C_{M}(E_{i}) = I_{i} \forall \ E_{i} \in \mathsf{D}_{M}
\end{array}$$

SPM

VALIDATION

A. Rodas et al., JPAC, arXiv:2110.00027 [hep-ph]

	This work	JPAC	Bonn-Gatchina	Ropertz et al.
$f_0(1500)$	$(1449 \pm 24) - i(100 \pm 32)/2$	$(1450 \pm 10) - i(106 \pm 16)/2$	$(1370 \pm 40) - i(390 \pm 40)/2$	$(1465 \pm 18) - i(101 \pm 20)$
			$(1483 \pm 15) - i(116 \pm 12)/2$	
$f_0(1710)$	$(1763 \pm 23) - i(104 \pm 34)/2$	$(1769 \pm 8) - i(156 \pm 12)/2$	$(1765 \pm 15) - i(180 \pm 20)/2$	/
$f_0(2020)$	$(1983 \pm 31) - i(143 \pm 54)/2$	$(2038 \pm 48) - i(312 \pm 82)/2$	$(1925\pm25)-i(320\pm35)/2$	$(1901 \pm 41) - i(401 \pm 76)$
			$(2075 \pm 20) - i(260 \pm 25)/2$	

arXiv:2110.00027 [hep-ph]

p-ph] Phys. Lett. B 816 (2021), 136227 Eur. Phys. J. C78 (2018) no.12, 1000

