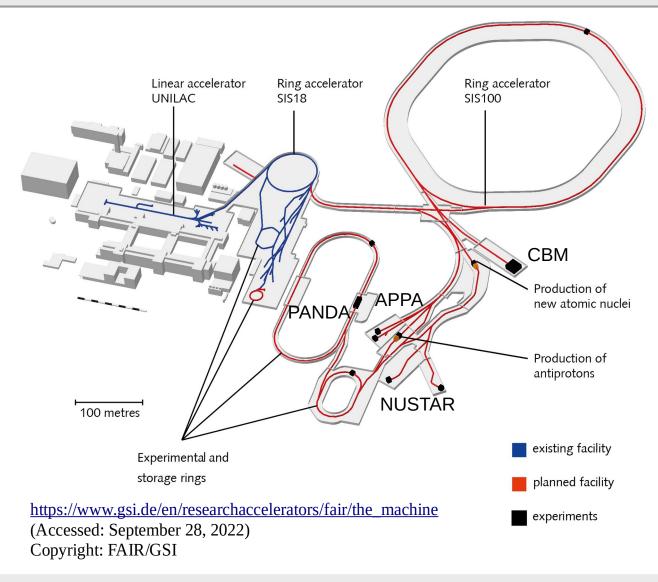
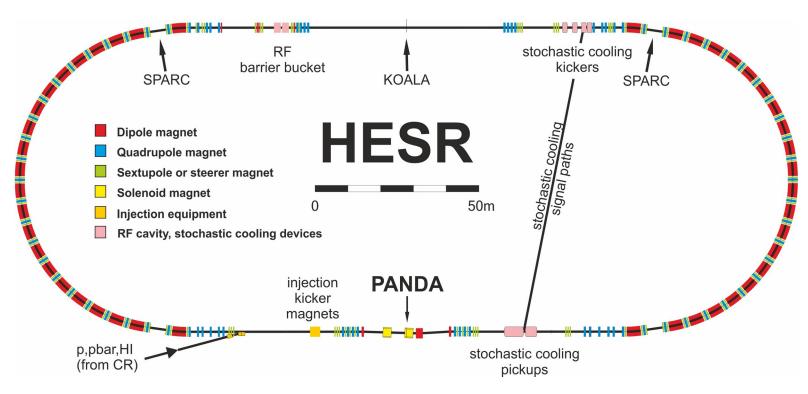

Outline

- Physics Motivation of PANDA
- PANDA at FAIR
- Baryon Structure
- Baryon Spectroscopy
- Strangeness Physics
- Summary


Physics Pillars of PANDA

Facility for Antiproton and Ion Research (FAIR)

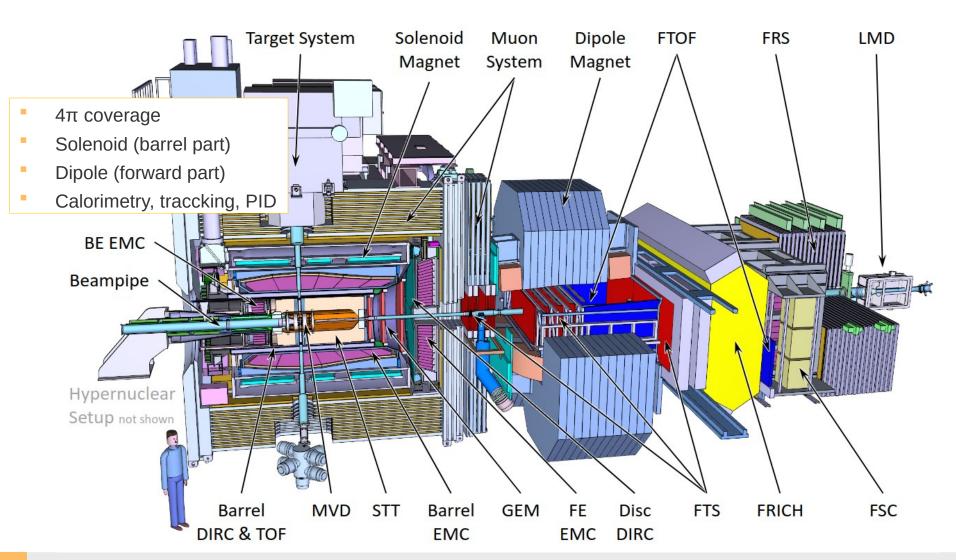
Facility for Antiproton and Ion Research (FAIR)



FAIR Construction site in May 2022

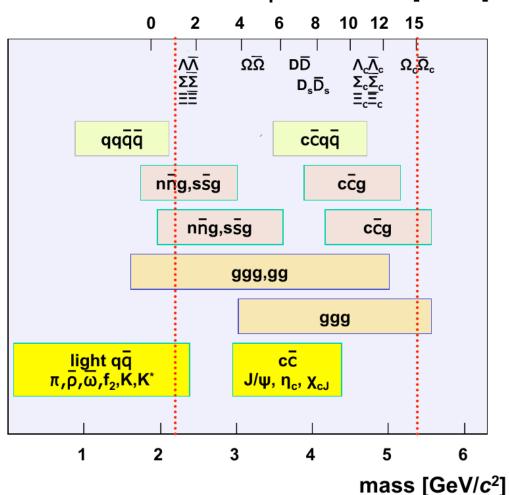
Copyright: D. Fehrenz/GSI/FAIR

High Energy Storage Ring (HESR)



- Circumference: 574 m
- 10¹¹ stored antiprotons
- $p_{beam} = 1.5 \text{ GeV/}c 15.0 \text{ GeV/}c$
- L = 1.10^{31} cm⁻²s⁻¹ 2.10^{32} cm⁻²s⁻¹
- dp/p = $2 \cdot 10^{-4}$ (stochastic cooling) $4 \cdot 10^{-5}$ (electron cooling)

AntiProton ANnihilations at DArmstadt (PANDA)



Physics with antiprotons

p̄ momentum [GeV/c]

- Large mass-scale coverage
- Can produce matter/antimatter close to threshold
- Direct formation of all conventional J^{PC} states
- Hadron spectroscopy
 - Abundant strangeness production
 - Exotic matter (large production rates, discovery potential)
 - Charmonium states
- Nucleon structure
 - Time-like form factors
- Hypernuclei

Electromagnetic Form Factors

- Fourier transform of G_E and G_M correspond to charge and magnetization densities
 - Quantifies deviation from point like particle
- Time-Like and Space-Like region can be connected via dispersion relations
- Hyperon EMFFs accessible in Time-Like region

$$G_E(q^2) = |G_E(q^2)|e^{i\Phi_E}$$
 Attains complex values in time-like region -> quantify with magnitude + phase

$$R = rac{G_E(q^2)}{G_M(q^2)}$$
 - Obtain from angular distribution

$$\Delta\Phi(q^2) = \Phi_E(q^2) - \Phi_M(q^2)$$

- Obtain from polarization measurements

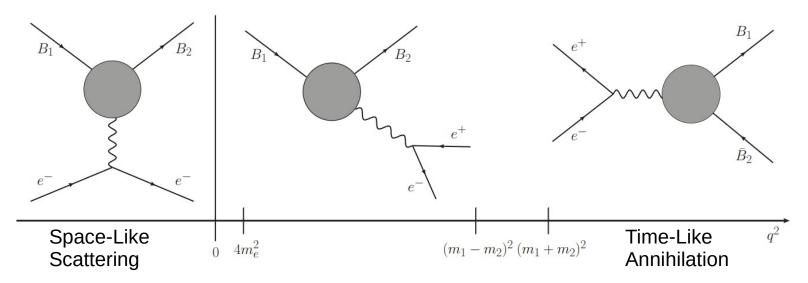
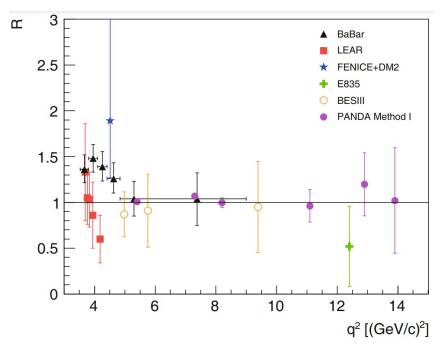
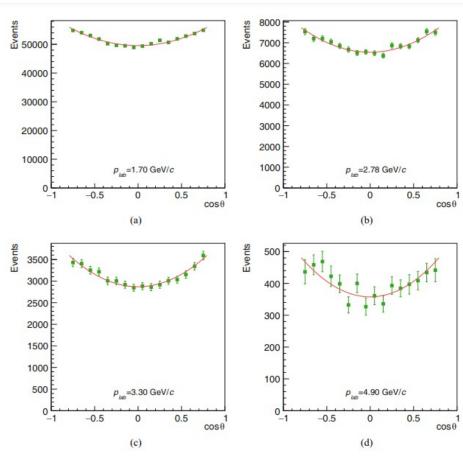
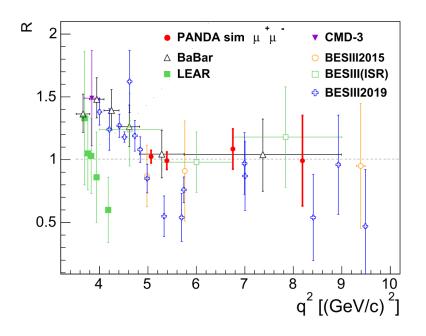
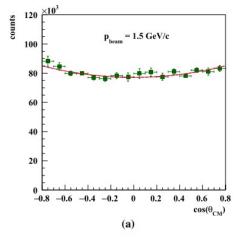



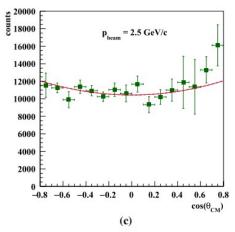
Figure from E. Perotti, PhD thesis, UU (2020)

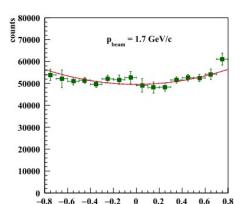

Electromagnetic Form Factors in pp → e⁺e⁻

- PANDA will be able to contribute with measurements at many different beam momenta
 - EMC and 4π coverage
- PANDA reaches high q²

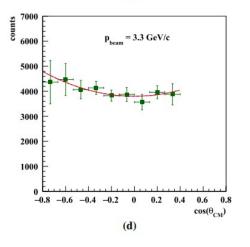


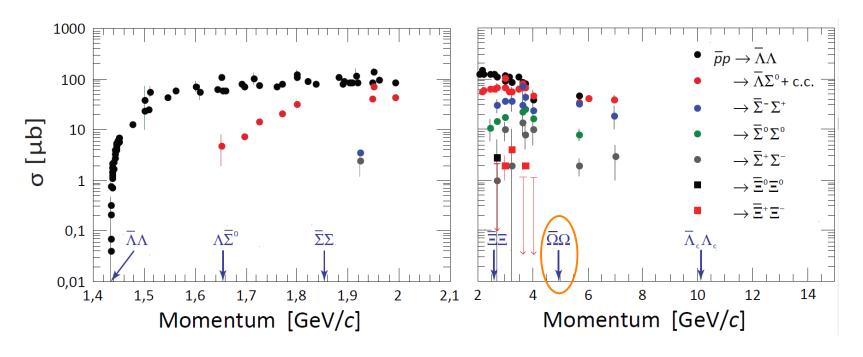



Electromagnetic Form Factors in pp → μ⁺μ⁻



- PANDA will be able to measure dimuons
- Not possible final state in e⁺e⁻ collisions
- Unique for PANDA




Eur. Phys. J. A (2021) 57:30

 $cos(\theta_{CM})$

Hyperon Data Base

- Much data for hyperons from PS185 at LEAR
- Sparse data bank for multi-strange hyperons
- Cross section $\overline{pp} \rightarrow \overline{\Omega}\Omega$ has never been measured
- Potential for PANDA to contribute

T. Johansson, Proceedings of 8th Int. Conf. on Low Energy Antiproton Physics 95 (2003)

Hyperon Production at PANDA

Eur. Phys. J. A (2021) 57:184

P _{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹ [s ⁻¹]	S/B	Events/Day
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64.0	16.0	44	114	3.8.106
1.77	$\overline{p}p\to\overline{\Sigma}{}^0\Lambda$	10.9	5.3	2.4	> 11 **	207 000
6.0	$\overline{p}p\to\overline{\Sigma}{}^0\Lambda$	20	6.1	5.0	21	432 000
4.6	$\overline{p}b \rightarrow \overline{\Xi}^+ \overline{\Xi}^-$	~ 1	8.2	0.3	274	26 000
7.0	$\overline{p}b \rightarrow \overline{\Xi}^+ \overline{\Xi}^-$	~ 0.3	7.9	0.1	65	8 600

**90% C.L.

- Start setup and luminosity assumed
- Large production rates already at early phases of PANDA
- Antiproton-proton collisions allow antihyperon-hyperon pairs to be created without additional particles
- Can also be done at BESIII, JLAB, JPARC, HADES, MAMI, ELSA ...
 - PANDA has advantage in cross section compared to e.g. e⁺e⁻ collisons

Excited Baryon Spectrum

- Need more multi-strange excited baryon data for spin and parity assignments
- Focus on excited Ξ states
- \bullet Ω also needs investigations

J^P	(D, L_N^P)	S		Octet members			
$1/2^{+}$	$(56,0_0^+)$	1/2	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2)$	1/2	N(1440)	$\Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1/2^{-}$	$(70,1_1^-)$	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$
					$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-)$	1/2	N(1520)	A(1690)	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1_1^-)$	3/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
	17.10.27.10. * .10.				$\Sigma(1620)^{\dagger}$	0.000	
$3/2^{-}$	$(70,1_1^-)$	3/2	N(1700)	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1_1^-)$	3/2	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0_2^+)$	1/2	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2)$	1/2	N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^+_2)$	1/2	N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70,3_3^-)$	1/2	N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3_3^-)$	3/2	N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56,4_4^+)$	1/2	N(2220)	$\Lambda(2350)$	$\Sigma(?)$	$\Xi(?)$	
				Decuplet	members		
$3/2^{+}$	$(56,0_0^+)$	3/2	$\Delta(1232)$	$\Sigma(1385)$		$\Omega(1672)$	
0/0+	(rant)	010	4/4000)	E/acont	-(0)	0/01	

	Decuplet members							
$56,0_0^+)$ 3	$/2 \Delta(1232)$	$\Sigma(1385)$	$\Xi(1530)$	Ω(1672)				
$56,0^+_2)$ 3	$/2 \Delta(1600)$	$\Sigma(1690)^{\dagger}$	$\Xi(?)$	$\Omega(?)$				
$70,1_1^-)$ 1	$/2 \Delta(1620)$	$\Sigma(1750)^{\dagger}$	$\Xi(?)$	$\Omega(?)$				
$70,1_1^-)$ 1	$/2 \Delta(1700)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$				
$56,2^{+}_{2})$ 3	$/2 \Delta(1905)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$				
$56,2^{+}_{2})$ 3	$/2 \Delta(1950)$	$\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$				
56,44+) 3	$/2 \Delta(2420)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$				
	$56,0_{2}^{+})$ 3, $70,1_{1}^{-})$ 1, $70,1_{1}^{-})$ 1, $56,2_{2}^{+})$ 3, $56,2_{2}^{+})$ 3,	$\begin{array}{ccccc} 56,0_2^+) & 3/2 & \varDelta(1600) \\ 70,1_1^-) & 1/2 & \varDelta(1620) \\ 70,1_1^-) & 1/2 & \varDelta(1700) \\ 56,2_2^+) & 3/2 & \varDelta(1905) \\ 56,2_2^+) & 3/2 & \varDelta(1950) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

Prog. Theor. Exp. Phys.2020, 083C01 (2020) and 2021 update

PWA of Excited Cascades

- PWA with PArtial Wave Interactive ANalysis: PAWIAN [*]
- $\Xi(1690)^{-}$ and $\Xi(1820)^{-}$
- $p_{beam} = 4.6 \text{ GeV/}c$
- 600 000 events generated
- Full simulation and reconstruction chain applied
- 30 000 events in fit
- Maximum likelihood fit (MINUIT2) applied event-by-event
- Measure of significance : ΔAIC and ΔBIC
 - Should be minimized
- Fit identifies generated spin-parity
 - Well suited to use at PANDA!

Eur. Phys. J. A (2021) 57: 184								
/ ^ <								
	_ = *⁻		A n					
	/		* p					
$\overline{\overline{p}}$								
$\overline{\Lambda}$								
π ⁺								
$\Delta AIC \equiv (1690)^{-}$								
$1/2^{+}$	$1/2^{-}$	$3/2^{+}$	$3/2^{-}$					
0.0	2,550.6	2,310.6	2,706.8					
316.7	0.0	328.2	2,332.2					
973.9	$5,\!228.0$	0.0	584.6					
345.6	3,118.6	833.1	0.0					
	$oxed{ 1/2^+ }$	1/2 ⁺ 1/2 ⁻ 0.0 2,550.6 316.7 0.0 973.9 5,228.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

$\Delta(AIC+BIC) \equiv (1820)^{-1}$

	$\mathrm{Fit} \rightarrow$	$1/2^{+}$	$1/2^{-}$	$3/2^{+}$	$3/2^{-}$
Gen. \downarrow		107			
$1/2^{+}$		0.0	139.9	158.7	208.1
$\frac{1/2^{-}}{3/2^{+}}$		96.8	0.0	211.1	887.4
		7473.3	7604.5	0.0	198.4
$3/2^{-}$		7617.6	6900.8	490.2	0.0

[*] https://www.ep1.ruhr-uni-bochum.de/forschung/partialwellenanalyse/

Strangeness Creation

- What is the role of spin in strangeness creation?
- Quark-gluon or meson degrees of freedom can be used to describe strangeness creation
- Relevant degrees of freedom in intermediate energy range?

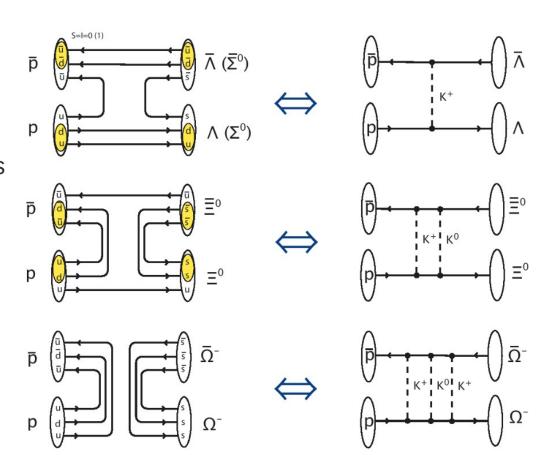
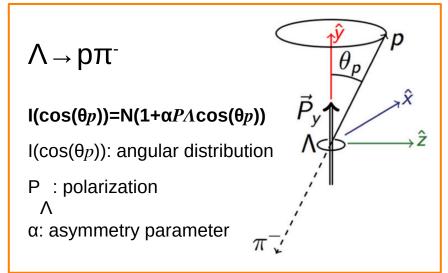



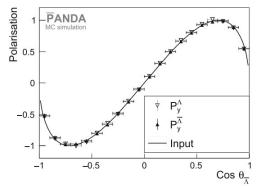
Figure from T. Johansson, Proceedings of 8th Int. Conf. on Low Energy Antiproton Physics 95 (2003)

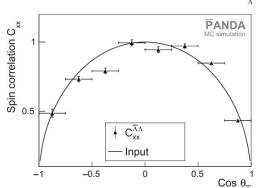
Spin Observables

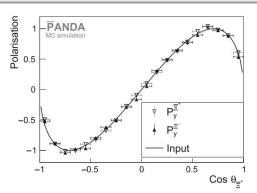
- Rich set of spin observables obtainable for hyperon decays
- Theoretical predictions [*] relate sign and value of some observables to the production model
- Hyperon spin observables can shed light on relevant degrees of freedom!
- Polarization accessible via weak, parity-violating decay of hyperons

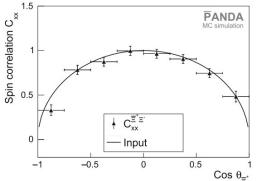
CP symmetry implies $\alpha = -\overline{\alpha}$

$$A = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$
 Measure of CP violation in decay

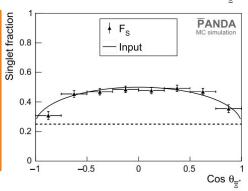

[*] Nucl. Phys. A 655 (1999) 1.


Polarization and Spin Correlations of Λ and Ξ



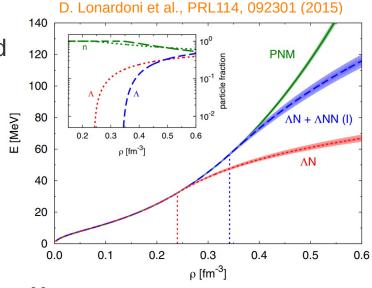

- Polarization, spin correlations were reconstructed
- Spin correlations, C_{xx} , C_{yy} and C_{zz} used for calculating the singlet fraction, F_s
- $10^6 \land$ and Ξ events generated
- Results obtained after a full event selection
- Events after selection:
 - $-1.572 \cdot 10^{5} \Lambda$
 - $7.23 \cdot 10^4 \equiv (4.6 \text{ GeV/c})$
 - $6.76 \cdot 10^4 \equiv (7 \text{ GeV/c})$
- Polarization, spin correlation and singlet fraction can be reconstructed at PANDA

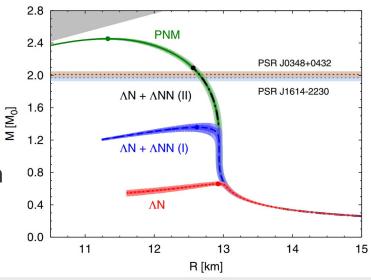
Eur. Phys. J. A (2021) 57:154



$$F_S = \frac{1}{4} \left(1 + C_{xx}^{\bar{Y}Y} - C_{yy}^{\bar{Y}Y} + C_{zz}^{\bar{Y}Y} \right)$$

 $F_s = 1$: singlet state (anti-parallel spin)


 $F_s = 0$: triplet state (parallel spin)



Hyperon Puzzle in Neutron Stars

- Hyperons energetically favorable to be created in neutron star cores
 - Reduction of Fermi pressure
 - Softer EOS
 - Allowed masses lower than those observed!
- Could solve the puzzle:
 - Three-body hyperon interactions
 - Strong repulsion in YN and YNN forces
- Stronger constraints on the hyperon-neutron force are necessary
- PANDA is well suited to perform interaction studies

CP Violation in Double Strange Systems

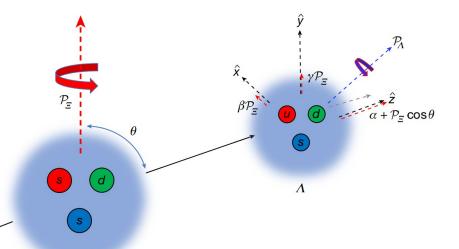
- Recent measurement at BESIII
- $e^+e^- \rightarrow J/\psi \rightarrow \overline{\Xi}^+\Xi^-$ reaction
- Spin-entangeled CP eigenstates instead of polarized Ξ^{-}
- 73 244 events after event selection
- $\xi_{\rm p}$ $\xi_{\rm S}$ = $(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$
- PANDA could reach same sensitivity in 3 days

$$A_{\text{CP}}^{\Xi} \approx -\tan(\delta_{\text{P}} - \delta_{\text{S}})\tan(\xi_{\text{P}} - \xi_{\text{S}})$$

$$A_{\text{CP}}^{\Xi} \approx -\tan(\delta_{\text{P}} - \delta_{\text{S}})\tan(\xi_{\text{P}} - \xi_{\text{S}})$$
$$(\xi_{\text{P}} - \xi_{\text{S}})_{\text{LO}} = \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}} \approx \frac{\sqrt{1 - \langle \alpha \rangle^2}}{\langle \alpha \rangle} \Delta \phi_{\text{CP}}$$

Explore content > About the journal > Publish with us ~

nature > articles > article

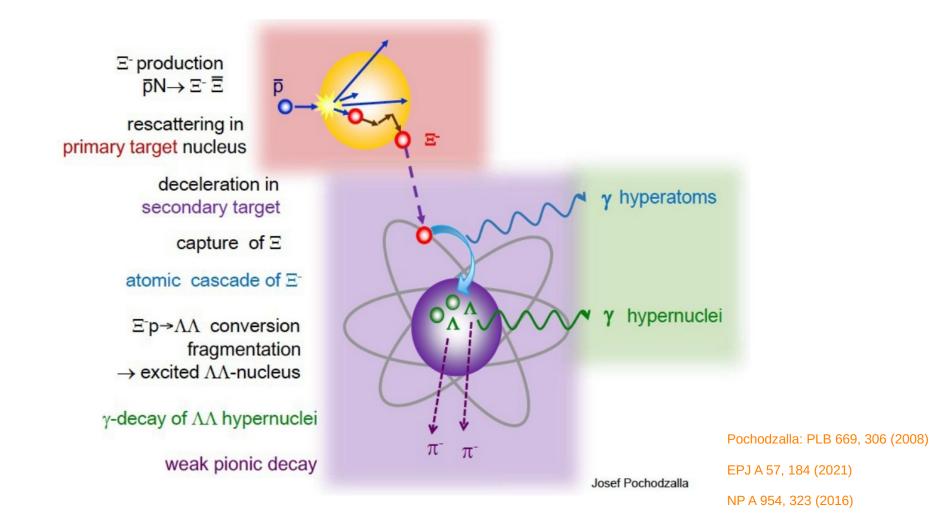

Article Open Access | Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

Nature 606, 64-69 (2022) | Cite this article

 Ξ^{-}



 π^{-}

 (\bar{u})

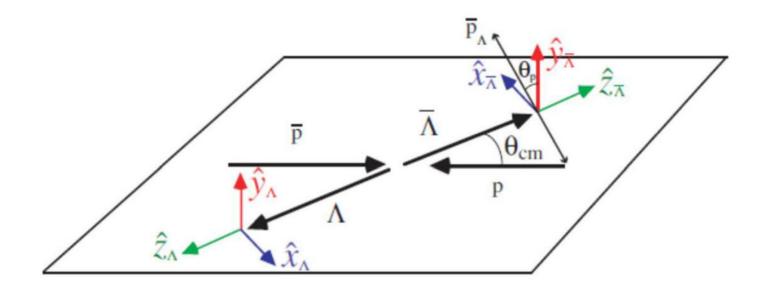
Hypernuclear Physics and Hyperon Interaction Studies at PANDA

Summary

PANDA

- Broad physics program
- Complementary to experiments at running and future facilities
- Antiproton beam unique
- Physics program covers nuclear, hadron and particle physics
- Precision spectrometry
- Studies show potential of PANDA
- Only part of rich physics program presented

Summary



PANDA

- Broad physics program
- Complementary to experiments at running and future facilities
- Antiproton beam unique
- Physics program covers nuclear, hadron and particle physics
- Precision spectrometry
- Studies show potential of PANDA
- Only part of rich physics program presented

Thank you for your attention! Questions?

