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Neutrino oscillations (in vacuum)

|να⟩ = ∑
i

U*αi |νi⟩

|νi(t)⟩ = e−i(Eit−pi⋅x) |νi⟩

2-flavour case

Pα→β = |⟨νβ(L) |να(0)⟩ | 2 = sin2 θ sin2( Δm2L
4E )

Neutrinos cannot 
be massless!

Introduction and Motivation




Need for excited nucleon structure   (in neutrino oscillation) 

e.g. MiniBooNE

νμ n 𝒥−

μ−p

 flux is artificially produced and then detected after a travel length νμ L

Main challenges 
• Nuclear model to factorise neutrino-nuclei scattering into  

neutrino-nucleon scattering (known from EW theory);

•  in a range where excited nucleons are produced!Q2

dσ(νp)

dQ2
∝ |⟨N |𝒥− |N⟩ |2

 is the weak CC𝒥−

Required also knowledge of ,  and ⟨N* |𝒥− |N⟩ ⟨Δ |𝒥− |N⟩ ⟨Nπ |𝒥− |N⟩

We are the first to investigate  with LQCD⟨Nπ |𝒥− |N⟩
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1) Construct operator  with  s.t.              O1 𝒥P = ( 1
2 )

+

Ō1 |Ω⟩ = cN |N⟩ + cN* |N*⟩ + cNπ |Nπ⟩ + …

2) Compute three-point functions (momentum ) and employ spectral decompositionp′￼, p, q = p′￼− p

Accessing hadron structure through lattice QCD


⟨O1(p′￼, t) 𝒥(q, τ) Ō1(p,0)⟩ = ∑
n′￼,n

e−E′￼n(t−τ)e−Enτ

2En2En′￼

⟨Ω |O1(p′￼) |n′￼⟩ ⟨n′￼|𝒥(q) |n⟩ ⟨n | Ō1(p) |Ω⟩

3) Extract  at , where⟨N(p′￼) |𝒥(q) |N(p)⟩ t ≫ τ ≫ 0

Problem 

large ,  data is noisy w/ current statistics.


We use small  data
t τ

t, τ

⟨O1(p′￼, t) 𝒥(q, τ) Ō1(p,0)⟩ ∝
e−E′￼N(t−τ)e−ENτ

2EN2EN′￼

⟨N(p′￼) |𝒥(q) |N(p)⟩

Consequences  
Contamination from excited nucleons   

and multiparticle states  
(N*, …)

(Nπ, …)

(n, n′￼= N, N*, Nπ, …)



Improvement through the construction of better operators

gA = 1.16 ± 0.07

R0 =
⟨O1(0, t) 𝒜i(0, τ) Ō1(0,0)⟩

O1(0, t) Ō1(0,0)
∝ gA

p′￼ = q = p = 0𝒜i = q̄ γiγ5 q

Axial charge  gA

There is a clear sign of excited state contamination 

with local nucleon operators

 can be iteratively improved with smearing techniques (a technical and effective tool)O1

The effect of the smearing is evident

⟨N(0) |𝒜i(q = 0) |N(0)⟩ = gA

mπ ≈ 426 MeV, a ≈ 0.098 fm, L = 24a, T = 2Lat



The axial charge  from  and  gA ⟨N(p) |𝒜i(q = 0) |N(p)⟩ ⟨N(p) |𝒜4(q = 0) |N(p)⟩

Results with  are consistent with rest frame
𝒥 = 𝒜i

 can be extracted from  and  with gA 𝒜i = q̄γiγ5q 𝒜4 = q̄γ4γ5q p′￼ = p = ̂ei =
2π
L

̂ni

R̃Ai
=

⟨O1(p, t) 𝒜i(q = 0, τ) Ō1(p,0)⟩
O1(p, t) Ō1(p,0)

= gA + …

R̃A4
=

⟨O1(p, t) 𝒜4(q = 0, τ) Ō1(p,0)⟩
O1(p, t) Ō1(p,0) ( E

pi ) = gA + …

Results with  show 5%-20% discrepancy
𝒥 = 𝒜4

Observed also by PT collaboration 
χ

mπ ≈ 426 MeV, a ≈ 0.098 fm, L = 24a, T = 2L

[arXiv:1612.04388]



Excited state effects in the pseudoscalar channel (q = 0)

We investigate, for the first time, channels with  and 𝒥 = 𝒫 p′￼ = p = ̂ei =
2π
L

R̃P =
⟨O1(p, t) 𝒫(q = 0, τ) Ō1(p,0)⟩

O1(p, t) Ō1(p,0)
E
pi

= 0 + …

The signal is purely from excited states and in particular           Nπ

Ō1 |Ω⟩ = cN |N > + cNπ |Nπ >

This channel is the clearest case of 

 state contaminationNπmπ ≈ 426 MeV, a ≈ 0.098 fm, L = 24a, T = 2L



Excited state effects in the pseudoscalar channel (q = 0)

We investigate, for the first time, channels with  and 𝒥 = 𝒫 p′￼ = p = ̂ei =
2π
L

R̃P =
⟨O1(p, t) 𝒫(q = 0, τ) Ō1(p,0)⟩

O1(p, t) Ō1(p,0)
E
pi

= 0 + …

The signal is purely from excited states and in particular           Nπ

Ō1 |Ω⟩ = cN |N > + cNπ |Nπ >

With LO-ChPT (EFT), the correction to the 3pt at tree-level is


δ𝒫
χPT = A

E′￼

Eπ
e−(E′￼−mπ/2)t sinh (mπ(τ − t/2))

where A ∝ gA, p
This channel is the clearest case of 


 state contaminationNπmπ ≈ 426 MeV, a ≈ 0.098 fm, L = 24a, T = 2L

[JHEP05(2020)126]

ChPT predicts that terms  and  

are large.

∝ ⟨Nπ |𝒫 |N⟩ ⟨N |𝒫 |Nπ⟩
[PRD.100.054507] [PRD.99.054506]



Variational method

More general approach: Variational Method

Construct a matrix C(t)ij = ⟨Oi(t) Ōj(0)⟩ Ok ∈ 𝔹nwhere

C(t) = (⟨O1(t) Ō1(0)⟩ ⟨O1(t) Ō2(0)⟩
⟨O2(t) Ō1(0)⟩ ⟨O2(t) Ō2(0)⟩)

Suppose we find  operators that overlap with the physical states  and  n = 2 |N⟩ |Nπ⟩ :

solve    C(t)vα(t, t0) = C(t0) λα(t, t0)vα(t, t0)

λα(t0) = dα(t0) e−Eα(t−t0)

,  are Generalised Eigenvectors and Eigenvaluesvα(t0) λα(t0)

(Amazing) 
Properties

∑
i

vα
i (t0) vβ

j (t0) ∝ δαβ

      s.t.      Ōα = ∑
i

vα
i (t0) Ōi Ōα |Ω⟩ = cα |α⟩

Ō2 |Ω⟩ = cN
2 |N⟩ + cNπ

2 |Nπ⟩

Ō1 |Ω⟩ = cN
1 |N⟩ + cNπ

1 |Nπ⟩

System is diagonalised! e.g.  ŌN |Ω⟩ = cN |N⟩

Construct a basis  of operators with same quantum numbers 𝔹n = {O1, O2, . . . , On} JP = ( 1
2 )

+

GEVP

O2 ∝ (qqq)(q̄q)O1 ∝ (qqq)



GEVP results with p = (2π/L) ̂nz
λ1 ∝ e−EN(t−t0) ≡ λN

λ2 ∝ e−ENπ(t−t0) ≡ λNπ

(Dashed lines are non-interacting energy levels)

   C(t)vα(t, t0) = C(t0) λα(t, t0)vα(t, t0)

We extract the (effective) energies from the eigenvalues:

 normalised s.t. vα(t, t0) (vα(t, t0), C(t0)vβ(t, t0)) = δαβ

Eeff
α = log (λα(t − a) / λα(t))

C(t) = (⟨O1(t) Ō1(0)⟩ ⟨O1(t) Ō2(0)⟩
⟨O2(t) Ō1(0)⟩ ⟨O2(t) Ō2(0)⟩)



GEVP ratio in the pseudoscalar channel    (q = 0)

R̃𝒫 =
⟨ON(p′￼, t) 𝒫(q = 0, τ) ŌN(p,0)⟩

ON(p, t) ŌN(p,0)
E
pi

= 0 + … we replace  with  to get the GEVP ratioO1 ON

ON = ∑
i

vN
i (t0) Oi



R̃𝒜4
=

⟨ON(p′￼, t) 𝒜4(q = 0, τ) ŌN(p,0)⟩
ON(p, t) ŌN(p,0)

−E
pi

= gA + … we replace  with  to get the GEVP ratioO1 ON

ON = ∑
i

vN
i (t0) Oi

GEVP ratio in the axial temporal channel    (q = 0)



GEVP ratio at  in the pseudoscalar channelQ2 = 0.297 GeV2

Phenomenologically more interesting are nucleon form factors  at . 

Unfortunately, a traditional fit to lattice data gives unreliable FF.

GA, GP, GP̃ Q2 ≠ 0 ChPT studies* show that   
contribution can be quite large!  

Nπ

*[PRD.100.054507, PRD.99.054506]

The GEVP improves significantly the ratios,  
as they approach the green band  
(nucleon ground state)

There is still a trace of contamination left 

at the sink  (rightmost part)τ = t

τ[fm]

 is constructed with R𝒫 𝒥 = 𝒫



The most dramatic channel is with . Excited states at source and sink have different signs
𝒥 = 𝒜4

The GEVP improves significantly the ratios,  
as they approach the green band  
(nucleon ground state)

There is still a trace of contamination left 

at the sink  (rightmost part)τ = t

 is constructed with R𝒜4
𝒥 = 𝒜4

 satisfy PCAC with a simple fit.GA, GP, GP̃

GEVP ratio at  in the axial temporal channelQ2 = 0.297 GeV2

mNGA(Q2) = mℓGP(Q2) +
Q2

4mN
GP̃(Q2)



GEVP-projected operators ( )p = 0

(Dashed lines are non-interacting energy levels)

⟨ONπ(t) ŌNπ(0)⟩ ≈ cNπe−ENπt

We use eigenvectors to project operators: ⟨O2(t) Ō2(0)⟩ ≈ cNπ
2 e−ENπt + cN

2 e−ENt at  the dominant term is the nucleont ≫ 0

After GEVP-projection: ONπ = ∑
i

vNπ
i Oi = vNπ

1 ON + vNπ
2 ONπ

The correlation functions with  don’t exhibit a

plateau here because of the mixing with  states

O2
N

New step will be the computation of 

  

through

 

⟨(Nπ)(p′￼) | 𝒥(q) |N(p)⟩

⟨ONπ(p′￼, t) 𝒥(q, τ) ŌN(p,0)⟩

Eeff = log ( ⟨O(t − a) Ō(0)⟩
⟨O(t) Ō(0)⟩ )



Conclusions

 Studies of  are undergoing⟨Nπ |𝒥 |N⟩

Hadron structure

 Need to clarify the remaining contamination:  in S-wave?Nππ

 First step needed in order to study  and ⟨N* |𝒥 |N⟩ ⟨Δ+ |𝒥 |N⟩

 Variational method gives promising results for the nucleon ground state matrix elements

This project has received funding from 
the European Union’s Horizon 2020 
research and innovation programme 
under the Marie Skłodowska-Curie 
grant agreement No. 813942

 Structure of the nucleons and excited nucleons is relevant for neutrino oscillation experiments

[PRD.92.074509] (M. Hansen & R. Briceño)

Thank you!
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GEVP results with p = 0
λ1 ∝ e−EN(t−t0) ≡ λN

λ2 ∝ e−ENπ(t−t0) ≡ λNπ

(Dashed lines are non-interacting energy levels)

   C(t)vα(t, t0) = C(t0) λα(t, t0)vα(t, t0)

Eeff
α = log (λα(t − a) / λα(t))We extract the (effective) energies from the eigenvalues:

 normalised s.t. vα(t, t0) (vα(t, t0), C(t0)vβ(t, t0)) = δαβ

C(t) = (⟨O1(t) Ō1(0)⟩ ⟨O1(t) Ō2(0)⟩
⟨O2(t) Ō1(0)⟩ ⟨O2(t) Ō2(0)⟩)

v1 ≡ vN, v2 ≡ vNπ



GEVP results with p = (2π/L) ̂ei
λ1 ∝ e−EN(t−t0) ≡ λN

λ2 ∝ e−ENπ(t−t0) ≡ λNπ

(Dashed lines are non-interacting energy levels)

   C(t)vα(t, t0) = C(t0) λα(t, t0)vα(t, t0)

Eeff
α = log (λα(t − a) / λα(t))We extract the (effective) energies from the eigenvalues:

 normalised s.t. vα(t, t0) (vα(t, t0), C(t0)vβ(t, t0)) = δαβ

C(t) = (⟨O1(t) Ō1(0)⟩ ⟨O1(t) Ō2(0)⟩
⟨O2(t) Ō1(0)⟩ ⟨O2(t) Ō2(0)⟩)

v1 ≡ vN, v2 ≡ vNπ



Extraction of form factors

R𝒥(p′￼, t; q, τ) =
C𝒥

3pt(p′￼, t; q, τ)

C2pt(p′￼, t)
C2pt(p′￼, τ) C2pt(p′￼, t) C2pt(p, t − τ)
C2pt(p, τ) C2pt(p, t) C2pt(p′￼, t − τ)

C2pt(p, t) = ⟨ON(p, t) ŌN(p,0)⟩ C𝒥
3pt(p′￼, t; q, τ) = ⟨ON(p′￼, t) 𝒥(q, τ) ŌN(p,0)⟩

∝ tr [ℙ (−iγμp′￼μ + mN) FF[𝒥] (−iγμpμ + mN)]]

⟨N(p′￼) |𝒥(q) |N(p)⟩ = up′￼FF[𝒥]up

⟨N(p′￼) |𝒜μ(q) |N(p)⟩ = up′￼[γμγ5GA(Q2) +
qμ

2mN
γ5GP̃(Q2)]up

⟨N(p′￼) |𝒱μ(q) |N(p)⟩ = up′￼[γμF1(Q2) + i
σμνqμ

2mN
F2(Q2)]up

⟨N(p′￼) |𝒫(q) |N(p)⟩ = up′￼
γ5GP(Q2) up



Operators with  and  (neutron channel)JP = (1/2)+ I = 1/2, Iz = − 1/2

C(t) = (⟨O1(t) Ō1(0)⟩ ⟨O1(t) Ō2(0)⟩
⟨O2(t) Ō1(0)⟩ ⟨O2(t) Ō2(0)⟩) O1(x) = ϵabc (da

α(x) Cγ5 ub
β(x)) dc

γ (x)

O2(x, y) = (q(x)q(x)q(x)) (q̄(y)q(y))
 must be projected to represent  and    O2 JP = (1/2)+ Iz = − 1/2

Isospin projection with Clebsch-Gordan O2(x, y) =
1

3
Op(x) Oπ−(y) −

2

3
On(x) Oπ0(y)

Helicity projection with (Lattice) Group Theory

O2,↑(P = 0) = ON↓(− ̂ex)Oπ( ̂ex) − ON↓( ̂ex)Oπ(− ̂ex) − iON↓(− ̂ey)Oπ( ̂ey) + iON↓( ̂ey)Oπ(− ̂ey) + ON↑(− ̂ez)Oπ( ̂ez) − ON↑( ̂ez)Oπ(− ̂ez)

O(1)
2 (P = ̂ei) = ON(0)Oπ( ̂ei) O(2)

2 (P = ̂ei) = ON( ̂ei)Oπ(0)

̂ei =
2π
L

̂ni


