

Based on [arXiv:2110.11908] and PRL (prepared for submission)

Speaker: Lorenzo Barca
lorenzo.barca@desy.de

Collaborators: Gunnar Bali, Sara Collins

NSTAR 2022, Santa Margherita Ligure,

October 17-21

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

Introduction and Motivation

Prediction of an undetected particle $\left(\bar{\nu}_{e}\right)$ in β-decay

Discovery
of $\nu_{e}{ }^{*}$

Prediction of neutrino oscillations

Discovery
of ν_{μ}

Nobel Prize
Clear observation of neutrino oscillations *
puzzle *
"Discovery"
of ν_{τ}

DONUT Experiment

A. McDonald SNO Experiment
T. Kajita SuperKamiokande

Homestake
Experiment *

Introduction and Motivation

Neutrino oscillations (in vacuum)

$$
\begin{gathered}
\left|\nu_{\alpha}\right\rangle=\sum_{i} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle \\
\left|\nu_{i}(t)\right\rangle=e^{-i\left(E_{i} t-\mathbf{p}_{i} \cdot \mathbf{x}\right)}\left|\nu_{i}\right\rangle \\
P_{\alpha \rightarrow \beta}=\left|\left\langle\nu_{\beta}(L) \mid \nu_{\alpha}(0)\right\rangle\right|^{2}=\sin ^{2} \theta \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) \\
\text { 2-flavour case }
\end{gathered}
$$

Need for excited nucleon structure (in neutrino oscillation)

Main challenges

- Nuclear model to factorise neutrino-nuclei scattering into neutrino-nucleon scattering (known from EW theory);
- Q^{2} in a range where excited nucleons are produced!
[arXiv:2203.09030]
Required also knowledge of $\left\langle N^{*}\right| \mathscr{F}^{-}|N\rangle,\langle\Delta| \mathscr{J}^{-}|N\rangle$ and $\langle N \pi| \mathscr{F}^{-}|N\rangle$
We are the first to investigate $\langle N \pi| \mathscr{E}^{-}|N\rangle$ with LQCD
ν_{μ} flux is artificially produced and then detected after a travel length L
$\left.\nu_{\mu} n \xrightarrow{\mathcal{G}^{-}} \mu^{-} p \quad \frac{d \sigma^{(\nu p)}}{d Q^{2}} \propto\left|\langle N| \mathscr{J}^{-}\right| N\right\rangle\left.\right|^{2}$
\mathcal{J}^{-}is the weak CC

neutrino process	abbreviation	reaction	fraction $(\%)$
CC quasielastic	CCQE	$\nu_{\mu}+n \rightarrow \mu^{-}+p$	39
NC elastic	NCE	$\nu_{\mu}+p(n) \rightarrow \nu_{\mu}+p(n)$	16
$\mathrm{CC} 1 \pi^{+}$production	$\mathrm{CC} 1 \pi^{+}$	$\nu_{\mu}+p(n) \rightarrow \mu^{-}+\pi^{+}+p(n)$	25
CC $1 \pi^{0}$ production	$\mathrm{CC} 1 \pi^{0}$	$\nu_{\mu}+n \rightarrow \mu^{-}+\pi^{0}+p$	4
NC $1 \pi^{ \pm}$production	$\mathrm{NC} 1 \pi^{ \pm}$	$\nu_{\mu}+p(n) \rightarrow \nu_{\mu}+\pi^{+}\left(\pi^{-}\right)+n(p)$	4
NC $1 \pi^{0}$ production	$\mathrm{NC} 1 \pi^{0}$	$\nu_{\mu}+p(n) \rightarrow \nu_{\mu}+\pi^{0}+p(n)$	8
multi pion production, DIS, etc.	other	$\nu_{\mu}+p(n) \rightarrow \mu^{-}+N \pi^{ \pm}+X$, etc.	4

[PRD.81.092005]

Accessing hadron structure through lattice QCD

1) Construct operator O_{1} with $\mathscr{J}^{P}=\left(\frac{1}{2}\right)^{+}$s.t. $\quad \overline{\mathrm{O}}_{1}|\Omega\rangle=c^{N}|N\rangle+c^{N^{*}}\left|N^{*}\right\rangle+c^{N \pi}|N \pi\rangle+\ldots$
2) Compute three-point functions (momentum $\mathbf{p}^{\prime}, \mathbf{p}, \mathbf{q}=\mathbf{p}^{\prime}-\mathbf{p}$) and employ spectral decomposition

$$
\left(n, n^{\prime}=N, N^{*}, N \pi, \ldots\right)
$$

$$
\left\langle\mathrm{O}_{1}\left(\mathbf{p}^{\prime}, t\right) \mathscr{J}(\mathbf{q}, \tau) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)\right\rangle=\sum_{n^{\prime}, n} \frac{e^{-E_{n}^{\prime}(t-\tau)} e^{-E_{n} \tau}}{2 E_{n} 2 E_{n^{\prime}}}\langle\Omega| \mathrm{O}_{1}\left(\mathbf{p}^{\prime}\right)\left|n^{\prime}\right\rangle\left\langle n^{\prime}\right| \mathscr{J}(\mathbf{q})|n\rangle\langle n| \overline{\mathrm{O}}_{1}(\mathbf{p})|\Omega\rangle
$$

3) Extract $\left\langle N\left(\mathbf{p}^{\prime}\right)\right| \mathcal{F}(\mathbf{q})|N(\mathbf{p})\rangle$ at $t \gg \tau \gg 0$, where $\left\langle\mathrm{O}_{1}\left(\mathbf{p}^{\prime}, t\right) \mathscr{J}(\mathbf{q}, \tau) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)\right\rangle \propto \frac{e^{-E_{N}^{\prime}(t-\tau)} e^{-E_{N} \tau}}{2 E_{N} 2 E_{N^{\prime}}}\left\langle N\left(\mathbf{p}^{\prime}\right)\right| \mathscr{J}(\mathbf{q})|N(\mathbf{p})\rangle$

Improvement through the construction of better operators

O_{1} can be iteratively improved with smearing techniques (a technical and effective tool)

$$
\langle N(\mathbf{0})| \mathscr{A}_{i}(\mathbf{q}=\mathbf{0})|N(\mathbf{0})\rangle=g_{A}
$$

Axial charge g_{A}

$$
\begin{aligned}
R_{0} & =\frac{\left\langle\mathrm{O}_{1}(\mathbf{0}, t) \mathscr{A}_{i}(\mathbf{0}, \tau) \overline{\mathrm{O}}_{1}(\mathbf{0}, 0)\right\rangle}{\mathrm{O}_{1}(\mathbf{0}, t) \overline{\mathrm{O}}_{1}(\mathbf{0}, 0)} \propto g_{A} \\
\mathscr{A}_{i} & =\bar{q} \gamma_{i} \gamma_{5} q \quad \mathbf{p}^{\prime}=\mathbf{q}=\mathbf{p}=\mathbf{0}
\end{aligned}
$$

There is a clear sign of excited state contamination with local nucleon operators

The effect of the smearing is evident

$$
g_{A}=1.16 \pm 0.07 \quad \text { at } \quad m_{\pi} \approx 426 \mathrm{MeV}, a \approx 0.098 \mathrm{fm}, L=24 a, T=2 L
$$

The axial charge g_{A} from $\langle N(\mathbf{p})| \mathscr{A}_{i}(\mathbf{q}=\mathbf{0})|N(\mathbf{p})\rangle$ and $\langle N(\mathbf{p})| \mathscr{A}_{4}(\mathbf{q}=\mathbf{0})|N(\mathbf{p})\rangle$

g_{A} can be extracted from $\mathscr{A}_{i}=\bar{q} \gamma_{i} \gamma_{5} q$ and $\mathscr{A}_{4}=\bar{q} \gamma_{4} \gamma_{5} q$ with $\mathbf{p}^{\prime}=\mathbf{p}=\hat{e}_{i}=\frac{2 \pi}{L} \hat{n}_{i}$

$$
\begin{aligned}
& \tilde{R}_{A_{i}}=\frac{\left\langle\mathrm{O}_{1}(\mathbf{p}, t) \mathscr{A}_{i}(\mathbf{q}=\mathbf{0}, \tau) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)\right\rangle}{\mathrm{O}_{1}(\mathbf{p}, t) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)}=g_{A}+\ldots \\
& \tilde{R}_{A_{4}}=\frac{\left\langle\mathrm{O}_{1}(\mathbf{p}, t) \mathscr{A}_{4}(\mathbf{q}=\mathbf{0}, \tau) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)\right\rangle}{\mathrm{O}_{1}(\mathbf{p}, t) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)}\left(\frac{E}{p_{i}}\right)=g_{A}+\ldots
\end{aligned}
$$

Results with $\mathscr{F}=\mathscr{A}_{i}$ are consistent with rest frame

Results with $\mathscr{F}=\mathscr{A}_{4}$ show 5\%-20\% discrepancy

$$
m_{\pi} \approx 426 \mathrm{MeV}, a \approx 0.098 \mathrm{fm}, L=24 a, T=2 L
$$

Excited state effects in the pseudoscalar channel $(\mathbf{q}=\mathbf{0})$

We investigate, for the first time, channels with $\mathscr{J}=\mathscr{P}$ and $\mathbf{p}^{\prime}=\mathbf{p}=\hat{e}_{i}=\frac{2 \pi}{L}$ $\overline{\mathrm{O}}_{1}|\Omega\rangle=c_{N}\left|N>+c_{N \pi}\right| N \pi>$

$$
\tilde{R}_{P}=\frac{\left\langle\mathrm{O}_{1}(\mathbf{p}, t) \mathscr{P}(\mathbf{q}=\mathbf{0}, \tau) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)\right\rangle}{\mathrm{O}_{1}(\mathbf{p}, t) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)} \frac{E}{p_{i}}=0+\ldots
$$

The signal is purely from excited states and in particular $N \pi$

$$
m_{\pi} \approx 426 \mathrm{MeV}, a \approx 0.098 \mathrm{fm}, L=24 a, T=2 L
$$

Excited state effects in the pseudoscalar channel ($\mathbf{q}=\mathbf{0}$)

We investigate, for the first time, channels with $\mathscr{J}=\mathscr{P}$ and $\mathbf{p}^{\prime}=\mathbf{p}=\hat{e}_{i}=\frac{2 \pi}{L}$

$$
\overline{\mathrm{O}}_{1}|\Omega\rangle=c_{N}\left|N>+c_{N \pi}\right| N \pi>
$$

$$
\tilde{R}_{P}=\frac{\left\langle\mathrm{O}_{1}(\mathbf{p}, t) \mathscr{P}(\mathbf{q}=\mathbf{0}, \tau) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)\right\rangle}{\mathrm{O}_{1}(\mathbf{p}, t) \overline{\mathrm{O}}_{1}(\mathbf{p}, 0)} \frac{E}{p_{i}}=0+\ldots
$$

The signal is purely from excited states and in particular $N \pi$ ChPT predicts that terms $\propto\langle N \pi| \mathscr{P}|N\rangle$ and $\langle N| \mathscr{P}|N \pi\rangle$ are large.

With LO-ChPT (EFT), the correction to the 3pt at tree-level is

$$
\delta_{\chi P T}^{\mathscr{P}}=A \frac{E^{\prime}}{E_{\pi}} e^{-\left(E^{\prime}-m_{\pi} / 2\right) t} \sinh \left(m_{\pi}(\tau-t / 2)\right)
$$

where $A \propto g_{A}, \mathbf{p}$
[JHEP05(2020)126]

$$
m_{\pi} \approx 426 \mathrm{MeV}, a \approx 0.098 \mathrm{fm}, L=24 a, T=2 L
$$

This channel is the clearest case of $N \pi$ state contamination

More general approach: Variational Method

Variational method
Construct a basis $\mathbb{B}_{n}=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{n}\right\}$ of operators with same quantum numbers $J^{P}=\left(\frac{1}{2}\right)^{+}$
Construct a matrix $\quad C(t)_{i j}=\left\langle\mathrm{O}_{i}(t) \overline{\mathrm{O}}_{j}(0)\right\rangle \quad$ where $\quad O_{k} \in \mathbb{B}_{n}$

$$
\mathrm{O}_{1} \propto(q q q) \quad \mathrm{O}_{2} \propto(q q q)(\bar{q} q)
$$

$$
\overline{\mathrm{O}}_{1}|\Omega\rangle=c_{1}^{N}|N\rangle+c_{1}^{N \pi}|N \pi\rangle
$$

Suppose we find $n=2$ operators that overlap with the physical states $|N\rangle$ and $|N \pi\rangle$:

$$
\overline{\mathrm{O}}_{2}|\Omega\rangle=c_{2}^{N}|N\rangle+c_{2}^{N \pi}|N \pi\rangle
$$

$$
C(t)=\left(\begin{array}{lll}
\left\langle\mathrm{O}_{1}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{1}(t)\right. \\
\left.\overline{\mathrm{O}}_{2}(0)\right\rangle \\
\left\langle\mathrm{O}_{2}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{2}(t)\right. \\
\left.\overline{\mathrm{O}}_{2}(0)\right\rangle
\end{array}\right)
$$

solve $C(t) v^{\alpha}\left(t, t_{0}\right)=C\left(t_{0}\right) \lambda^{\alpha}\left(t, t_{0}\right) v^{\alpha}\left(t, t_{0}\right)$

GEVP

(Amazing)
Properties

$$
\lambda^{\alpha}\left(t_{0}\right)=d^{\alpha}\left(t_{0}\right) e^{-E_{\alpha}\left(t-t_{0}\right)}
$$

$$
\sum_{i} v_{i}^{\alpha}\left(t_{0}\right) v_{j}^{\beta}\left(t_{0}\right) \propto \delta^{\alpha \beta}
$$

$$
\overline{\mathrm{O}}_{\alpha}=\sum_{i} v_{i}^{\alpha}\left(t_{0}\right) \overline{\mathrm{O}}_{i} \quad \text { s.t. } \quad \overline{\mathrm{O}}_{\alpha}|\Omega\rangle=c_{\alpha}|\alpha\rangle
$$

System is diagonalised! e.g. $\overline{\mathrm{O}}_{N}|\Omega\rangle=c_{N}|N\rangle$

GEVP results with $\mathbf{p}=(2 \pi / L) \hat{n}_{z}$

$$
C(t)=\left(\begin{array}{lll}
\left\langle\mathrm{O}_{1}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{1}(t)\right. \\
\left.\overline{\mathrm{O}}_{2}(0)\right\rangle \\
\left\langle\mathrm{O}_{2}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{2}(t) \overline{\mathrm{O}}_{2}(0)\right\rangle
\end{array}\right) \quad C(t) v^{\alpha}\left(t, t_{0}\right)=C\left(t_{0}\right) \lambda^{\alpha}\left(t, t_{0}\right) v^{\alpha}\left(t, t_{0}\right) \quad \begin{array}{ll}
1 & \propto e^{-E_{N}\left(t-t_{0}\right)} \equiv \lambda^{N} \\
& \lambda^{2} \propto e^{-E_{N \pi}\left(t-t_{0}\right)} \equiv \lambda^{N \pi}
\end{array}
$$

We extract the (effective) energies from the eigenvalues:

$$
E_{\alpha}^{\mathrm{eff}}=\log \left(\lambda^{\alpha}(t-a) / \lambda^{\alpha}(t)\right)
$$

(Dashed lines are non-interacting energy levels)

$v^{\alpha}\left(t, t_{0}\right)$ normalised s.t. $\left(v^{\alpha}\left(t, t_{0}\right), C\left(t_{0}\right) v^{\beta}\left(t, t_{0}\right)\right)=\delta^{\alpha \beta}$

GEVP ratio in the pseudoscalar channel $(\mathbf{q}=\mathbf{0})$

$$
\tilde{R}_{\mathscr{P}}=\frac{\left\langle\mathrm{O}_{N}\left(\mathbf{p}^{\prime}, t\right) \mathscr{P}(\mathbf{q}=\mathbf{0}, \tau) \overline{\mathrm{O}}_{N}(\mathbf{p}, 0)\right\rangle}{\mathrm{O}_{v(\mathbf{n}}(t) \overline{\mathrm{O}}_{v}(\mathbf{n} 0)} \frac{E}{n:}=0+\ldots \quad \text { we replace } \mathrm{O}_{1} \text { with } \mathrm{O}_{N} \text { to get the GEVP ratio }
$$

$$
\mathrm{O}_{N}=\sum_{i} v_{i}^{N}\left(t_{0}\right) \mathrm{O}_{i}
$$

GEVP ratio in the axial temporal channel $(\mathbf{q}=\mathbf{0})$

$\tilde{R}_{\mathscr{A}_{4}}=\frac{\left\langle\mathrm{O}_{N}\left(\mathbf{p}^{\prime}, t\right) \mathscr{A}_{4}(\mathbf{q}=\mathbf{0}, \tau) \overline{\mathrm{O}}_{N}(\mathbf{p}, 0)\right\rangle}{\mathrm{O}_{N}(\mathbf{p}, t) \overline{\mathrm{O}}_{N}(\mathbf{p}, 0)} \frac{-E}{p_{i}}=g_{A}+\ldots \quad$ we replace O_{1} with O_{N} to get the GEVP ratio

$$
\mathrm{O}_{N}=\sum_{i} v_{i}^{N}\left(t_{0}\right) \mathrm{O}_{i}
$$

GEVP ratio at $Q^{2}=0.297 \mathrm{GeV}^{2}$ in the pseudoscalar channel

Phenomenologically more interesting are nucleon form factors $G_{A}, G_{P}, G_{\tilde{P}}$ at $Q^{2} \neq 0$. Unfortunately, a traditional fit to lattice data gives unreliable FF.

ChPT studies* show that $N \pi$ contribution can be quite large!

$$
R_{\mathscr{P}} \text { is constructed with } \mathscr{J}=\mathscr{P}
$$

The GEVP improves significantly the ratios, as they approach the green band (nucleon ground state)

There is still a trace of contamination left at the sink $\tau=t$ (rightmost part)

GEVP ratio at $Q^{2}=0.297 \mathrm{GeV}^{2}$ in the axial temporal channel

The most dramatic channel is with $\mathscr{F}=\mathscr{A}_{4}$. Excited states at source and sink have different signs
 $R_{\mathscr{A}_{4}}$ is constructed with $\mathscr{J}=\mathscr{A}_{4}$

The GEVP improves significantly the ratios, as they approach the green band (nucleon ground state)

There is still a trace of contamination left at the sink $\tau=t$ (rightmost part)
$G_{A}, G_{P}, G_{\tilde{P}}$ satisfy PCAC with a simple fit.

$$
m_{N} G_{A}\left(Q^{2}\right)=m_{\ell} G_{P}\left(Q^{2}\right)+\frac{Q^{2}}{4 m_{N}} G_{\tilde{P}}\left(Q^{2}\right)
$$

GEVP-projected operators $(\mathbf{p}=\mathbf{0})$

We use eigenvectors to project operators:
$\left\langle\mathrm{O}_{2}(t) \overline{\mathrm{O}}_{2}(0)\right\rangle \approx c_{2}^{N \pi} e^{-E_{N / t} t}+c_{2}^{N} e^{-E_{N} t}$
at $t \gg 0$ the dominant term is the nucleon

$$
\begin{aligned}
& \text { After GEVP-projection: } \mathrm{O}_{N \pi}=\sum_{i} v_{i}^{N \pi} \mathrm{O}_{i}=v_{1}^{N \pi} \mathrm{O}_{N}+v_{2}^{N \pi} \mathrm{O}_{N \pi} \square\left\langle\mathrm{O}_{N \pi}(t) \overline{\mathrm{O}}_{N \pi}(0)\right\rangle \approx c_{N \pi} e^{-E_{N \pi} t} \\
& E^{\mathrm{eff}}=\log \left(\frac{\langle\mathrm{O}(t-a) \overline{\mathrm{O}}(0)\rangle}{\langle\mathrm{O}(t) \overline{\mathrm{O}}(0)\rangle}\right)
\end{aligned}
$$

The correlation functions with O_{2} don't exhibit a plateau here because of the mixing with N states

New step will be the computation of

$$
\left\langle(N \pi)\left(\mathbf{p}^{\prime}\right)\right| \mathcal{J}(\mathbf{q})|N(\mathbf{p})\rangle
$$

through

$$
\left\langle\mathrm{O}_{N \pi}\left(\mathbf{p}^{\prime}, t\right) \mathcal{J}(\mathbf{q}, \tau) \overline{\mathrm{O}}_{N}(\mathbf{p}, 0)\right\rangle
$$

[^0]
Conclusions

Hadron structure

\& Structure of the nucleons and excited nucleons is relevant for neutrino oscillation experiments
Variational method gives promising results for the nucleon ground state matrix elements
Studies of $\langle N \pi| \mathscr{J}|N\rangle$ are undergoing [PRD.92.074509] (M. Hansen \& R. Briceño)
Need to clarify the remaining contamination: $N \pi \pi$ in S-wave?
First step needed in order to study $\left\langle N^{*}\right| \mathscr{J}|N\rangle$ and $\left\langle\Delta^{+}\right| \mathscr{J}|N\rangle$

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

BACKUP SLIDES

J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (20I2)

neutrino process	abbreviation	reaction	fraction (\%)
CC quasielastic	CCQE	$\nu_{\mu}+n \rightarrow \mu^{-}+p$	39
NC elastic	NCE	$\nu_{\mu}+p(n) \rightarrow \nu_{\mu}+p(n)$	16
$\mathrm{CC} 1 \pi^{+}$production	$\mathrm{CC} 1 \pi^{+}$	$\nu_{\mu}+p(n) \rightarrow \mu^{-}+\pi^{+}+p(n)$	25
$\mathrm{CC} 1 \pi^{0}$ production	$\mathrm{CC} 1 \pi^{0}$	$\nu_{\mu}+n \rightarrow \mu^{-}+\pi^{0}+p$	4
NC $1 \pi^{ \pm}$production	$\mathrm{NC} 1 \pi^{ \pm}$	$\nu_{\mu}+p(n) \rightarrow \nu_{\mu}+\pi^{+}\left(\pi^{-}\right)+n(p)$	4
NC $1 \pi^{0}$ production	$\mathrm{NC} 1 \pi^{0}$	$\nu_{\mu}+p(n) \rightarrow \nu_{\mu}+\pi^{0}+p(n)$	8
multi pion production, DIS, etc.	other	$\nu_{\mu}+p(n) \rightarrow \mu^{-}+N^{ \pm}+X$, etc.	4

[PRD.81.092005]

GEVP results with $\mathbf{p}=\mathbf{0}$

$$
C(t)=\left(\begin{array}{llll}
\left\langle\mathrm{O}_{1}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{1}(t)\right. & \left.\overline{\mathrm{O}}_{2}(0)\right\rangle \\
\left\langle\mathrm{O}_{2}(t)\right. & \left.\mathrm{O}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{2}(t)\right. & \left.\overline{\mathrm{O}}_{2}(0)\right\rangle
\end{array}\right)
$$

$$
C(t) v^{\alpha}\left(t, t_{0}\right)=C\left(t_{0}\right) \lambda^{\alpha}\left(t, t_{0}\right) v^{\alpha}\left(t, t_{0}\right) \quad l l l e^{-E_{N}\left(t-t_{0}\right)} \equiv \lambda^{N}, \quad \lambda^{2} \propto e^{-E_{N \pi}\left(t-t_{0}\right)} \equiv \lambda^{N \pi}
$$

We extract the (effective) energies from the eigenvalues:

$$
E_{\alpha}^{\mathrm{eff}}=\log \left(\lambda^{\alpha}(t-a) / \lambda^{\alpha}(t)\right)
$$

$$
v^{1} \equiv v^{N}, v^{2} \equiv v^{N \pi}
$$

(Dashed lines are non-interacting energy levels)

$$
v^{\alpha}\left(t, t_{0}\right) \text { normalised s.t. }\left(v^{\alpha}\left(t, t_{0}\right), C\left(t_{0}\right) v^{\beta}\left(t, t_{0}\right)\right)=\delta^{\alpha \beta}
$$

GEVP results with $\mathbf{p}=(2 \pi / L) \hat{e}_{i}$

$$
C(t)=\left(\begin{array}{lll}
\left\langle\mathrm{O}_{1}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{1}(t) \overline{\mathrm{O}}_{2}(0)\right\rangle \\
\left\langle\mathrm{O}_{2}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{2}(t) \overline{\mathrm{O}}_{2}(0)\right\rangle
\end{array}\right) \quad C(t) v^{\alpha}\left(t, t_{0}\right)=C\left(t_{0}\right) \lambda^{\alpha}\left(t, t_{0}\right) v^{\alpha}\left(t, t_{0}\right) \quad \lambda^{1} \propto e^{-E_{N}\left(t-t_{0}\right)} \equiv \lambda^{N}
$$

We extract the (effective) energies from the eigenvalues:

$$
E_{\alpha}^{\mathrm{eff}}=\log \left(\lambda^{\alpha}(t-a) / \lambda^{\alpha}(t)\right)
$$

$$
v^{1} \equiv v^{N}, v^{2} \equiv v^{N \pi}
$$

(Dashed lines are non-interacting energy levels)

$v^{\alpha}\left(t, t_{0}\right)$ normalised s.t. $\left(v^{\alpha}\left(t, t_{0}\right), C\left(t_{0}\right) v^{\beta}\left(t, t_{0}\right)\right)=\delta^{\alpha \beta}$

Extraction of form factors

$$
\begin{aligned}
& C_{2 p t}(\mathbf{p}, t)=\left\langle\mathrm{O}_{N}(\mathbf{p}, t) \overline{\mathrm{O}}_{N}(\mathbf{p}, 0)\right\rangle \quad C_{3 p t}^{\mathcal{F}}\left(\mathbf{p}^{\prime}, t ; \mathbf{q}, \tau\right)=\left\langle\mathrm{O}_{N}\left(\mathbf{p}^{\prime}, t\right) \quad \mathscr{J}(\mathbf{q}, \tau) \overline{\mathrm{O}}_{N}(\mathbf{p}, 0)\right\rangle \\
& R_{\mathcal{F}}\left(\mathbf{p}^{\prime}, t ; \mathbf{q}, \tau\right)=\frac{C_{3 p t}^{\mathcal{F}}\left(\mathbf{p}^{\prime}, t ; \mathbf{q}, \tau\right)}{C_{2 p t}\left(\mathbf{p}^{\prime}, t\right)} \sqrt{\frac{C_{2 p t}\left(\mathbf{p}^{\prime}, \tau\right) C_{2 p t}\left(\mathbf{p}^{\prime}, t\right) C_{2 p t}(\mathbf{p}, t-\tau)}{C_{2 p t}(\mathbf{p}, \tau) C_{2 p t}(\mathbf{p}, t) C_{2 p t}\left(\mathbf{p}^{\prime}, t-\tau\right)}} \quad\left\langle N\left(\mathbf{p}^{\prime}\right)\right| \mathcal{F}(\mathbf{q})|N(\mathbf{p})\rangle=u_{\mathbf{p}^{\prime} F F[\mathscr{F}] u_{\mathbf{p}}} \\
& \left.\propto \operatorname{tr}\left[\mathbb{P}\left(-i \gamma_{\mu} p_{\mu}^{\prime}+m_{N}\right) F F[\mathscr{\mathcal { L }}]\left(-i \gamma_{\mu} p_{\mu}+m_{N}\right)\right]\right] \\
& \left\langle N\left(\mathbf{p}^{\prime}\right)\right| \mathscr{A}_{\mu}(\mathbf{q})|N(\mathbf{p})\rangle=u_{\mathbf{p}^{\prime}}\left[\gamma_{\mu} \gamma_{5} G_{A}\left(Q^{2}\right)+\frac{q_{\mu}}{2 m_{N}} \gamma_{5} G_{\tilde{P}}\left(Q^{2}\right)\right] u_{\mathbf{p}} \\
& \left\langle N\left(\mathbf{p}^{\prime}\right)\right| \mathscr{V}_{\mu}(\mathbf{q})|N(\mathbf{p})\rangle=u_{\mathbf{p}^{\prime}}\left[\gamma_{\mu} F_{1}\left(Q^{2}\right)+i \frac{\sigma_{\mu \nu} q_{\mu}}{2 m_{N}} F_{2}\left(Q^{2}\right)\right] u_{\mathbf{p}}
\end{aligned}
$$

Operators with $J^{P}=(1 / 2)^{+}$and $I=1 / 2, I_{z}=-1 / 2$ (neutron channel)

$$
\begin{aligned}
& C(t)=\left(\begin{array}{lll}
\left\langle\mathrm{O}_{1}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{1}(t)\right. \\
\left.\overline{\mathrm{O}}_{2}(0)\right\rangle \\
\left\langle\mathrm{O}_{2}(t)\right. & \left.\overline{\mathrm{O}}_{1}(0)\right\rangle & \left\langle\mathrm{O}_{2}(t) \overline{\mathrm{O}}_{2}(0)\right\rangle
\end{array}\right) \quad \mathrm{O}_{1}(x)=\epsilon^{a b c}\left(d_{\alpha}^{a}(x) C \gamma_{5} u_{\beta}^{b}(x)\right) d_{\gamma}^{c}(x) \\
& \mathrm{O}_{2}(x, y)=(q(x) q(x) q(x))(\bar{q}(y) q(y))
\end{aligned}
$$

O_{2} must be projected to represent $J^{P}=(1 / 2)^{+}$and $I_{z}=-1 / 2$

Isospin projection with Clebsch-Gordan

$$
\mathrm{O}_{2}(x, y)=\frac{1}{\sqrt{3}} \mathrm{O}_{p}(x) \mathrm{O}_{\pi^{-}}(y)-\frac{2}{\sqrt{3}} \mathrm{O}_{n}(x) \mathrm{O}_{\pi^{0}}(y)
$$

Helicity projection with (Lattice) Group Theory

$$
\begin{aligned}
& \mathrm{O}_{2, \uparrow}(\mathbf{P}=\mathbf{0})=\mathrm{O}_{N \downarrow}\left(-\hat{e}_{x}\right) \mathrm{O}_{\pi}\left(\hat{e}_{x}\right)-\mathrm{O}_{N \downarrow}\left(\hat{e}_{x}\right) \mathrm{O}_{\pi}\left(-\hat{e}_{x}\right)-i \mathrm{O}_{N \downarrow}\left(-\hat{e}_{y}\right) \mathrm{O}_{\pi}\left(\hat{e}_{y}\right)+i \mathrm{O}_{N \downarrow}\left(\hat{e}_{y}\right) \mathrm{O}_{\pi}\left(-\hat{e}_{y}\right)+\mathrm{O}_{N \uparrow}\left(-\hat{e}_{z}\right) \mathrm{O}_{\pi}\left(\hat{e}_{z}\right)-\mathrm{O}_{N \uparrow}\left(\hat{e}_{z}\right) \mathrm{O}_{\pi}\left(-\hat{e}_{z}\right) \\
& \mathrm{O}_{2}^{(1)}\left(\mathbf{P}=\hat{e}_{i}\right)=\mathrm{O}_{N}(\mathbf{0}) \mathrm{O}_{\pi}\left(\hat{e}_{i}\right) \quad \mathrm{O}_{2}^{(2)}\left(\mathbf{P}=\hat{e}_{i}\right)=\mathrm{O}_{N}\left(\hat{e}_{i}\right) \mathrm{O}_{\pi}(\mathbf{0}) \\
&
\end{aligned}
$$

[^0]: (Dashed lines are non-interacting energy levels)

