Towards the determination of excited nucleon matrix elements with lattice QCD

Based on [arXiv:2110.11908] and PRL (prepared for submission)

Speaker: Lorenzo Barca

lorenzo.barca@desy.de

Collaborators: Gunnar Bali, Sara Collins

NSTAR 2022, Santa Margherita Ligure, October 17-21

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

Introduction and Motivation

Prediction of an undetected particle $(\bar{\nu}_{\rho})$ in β -decay

1930

W. Pauli

 (ν_e) neutrino flux originated from the sun (pp-chain) and flux detected on earth are in discrepancy.

1956

F. Reines and

C. Cowan *

Prediction of neutrino oscillations

1957

B. Pontecorvo (Z. Maki, M. Nakagawa,

S. Sakata)

1962

L. Lederman *

solar neutrino

puzzle *

Homestake Experiment *

Nobel Prize

Clear observation of neutrino oscillations *

"Discovery"

of $u_{ au}$

2000

DONUT

2015

A. McDonald * SNO Experiment

Introduction and Motivation

Neutrino oscillations (in vacuum)

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$|\nu_{i}(t)\rangle = e^{-i(E_{i}t - \mathbf{p}_{i} \cdot \mathbf{x})} |\nu_{i}\rangle$$

2-flavour case

Neutrinos cannot be massless!

$$P_{\alpha \to \beta} = |\langle \nu_{\beta}(L) | \nu_{\alpha}(0) \rangle|^2 = \sin^2 \theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Need for excited nucleon structure (in neutrino oscillation)

Main challenges

 Nuclear model to factorise neutrino-nuclei scattering into neutrino-nucleon scattering (known from EW theory);

ullet Q^2 in a range where excited nucleons are produced!

[arXiv:2203.09030]

Required also knowledge of $\langle N^* | \mathcal{J}^- | N \rangle$, $\langle \Delta | \mathcal{J}^- | N \rangle$ and $\langle N\pi | \mathcal{J}^- | N \rangle$

We are the first to investigate $\langle N\pi | \mathcal{F}^- | N \rangle$ with LQCD

 u_{μ} flux is artificially produced and then detected after a travel length L

$$\nu_{\mu} n \xrightarrow{\mathcal{J}^{-}} \mu^{-} p \qquad \frac{d\sigma^{(\nu p)}}{dQ^{2}} \propto |\langle N|\mathcal{J}^{-}|N\rangle|^{2}$$

 \mathcal{J}^- is the weak CC

neutrino process	abbreviation	reaction	fraction (%)
CC quasielastic	CCQE	$ u_{\mu}+n ightarrow\mu^{-}+p$	39
NC elastic	NCE	$ u_{\mu} + p(n) ightarrow u_{\mu} + p(n)$	16
$CC 1\pi^+$ production	$CC1\pi^+$	$ u_{\mu}+p(n) ightarrow\mu^{-}+\pi^{+}+p(n)$	25
$CC 1\pi^0$ production	$\mathrm{CC}1\pi^0$	$ u_{\mu}+n ightarrow\mu^{-}+\pi^{0}+p$	4
NC $1\pi^{\pm}$ production	$NC1\pi^{\pm}$	$ u_{\mu} + p(n) \rightarrow \nu_{\mu} + \pi^{+}(\pi^{-}) + n(p) $	4
NC $1\pi^0$ production	$\mathrm{NC}1\pi^0$	$ u_{\mu}+p(n) ightarrow u_{\mu}+\pi^{0}+p(n)$	8
multi pion production, DIS, etc.	other	$\nu_{\mu} + p(n) \to \mu^{-} + N\pi^{\pm} + X$, etc.	4

[PRD.81.092005]

Accessing hadron structure through lattice QCD

1) Construct operator
$$O_1$$
 with $\mathcal{J}^P = \left(\frac{1}{2}\right)^+$ s.t. $\bar{O}_1 |\Omega\rangle = c^N |N\rangle + c^{N^*} |N^*\rangle + c^{N\pi} |N\pi\rangle + \dots$

$$\bar{\mathbf{O}}_1 | \Omega \rangle = c^N | N \rangle + c^{N^*} | N^* \rangle + c^{N\pi} | N\pi \rangle + \dots$$

2) Compute three-point functions (momentum $\mathbf{p}', \mathbf{p}, \mathbf{q} = \mathbf{p}' - \mathbf{p}$) and employ spectral decomposition

$$(n, n' = N, N^*, N\pi, ...)$$

$$\langle \mathcal{O}_{1}(\mathbf{p}',t) \mathcal{J}(\mathbf{q},\tau) \bar{\mathcal{O}}_{1}(\mathbf{p},0) \rangle = \sum_{n',n} \frac{e^{-E'_{n}(t-\tau)}e^{-E_{n}\tau}}{2E_{n}2E_{n'}} \langle \Omega | \mathcal{O}_{1}(\mathbf{p}') | n' \rangle \langle n' | \mathcal{J}(\mathbf{q}) | n \rangle \langle n | \bar{\mathcal{O}}_{1}(\mathbf{p}) | \Omega \rangle$$

3) Extract $\langle N(\mathbf{p}') | \mathcal{J}(\mathbf{q}) | N(\mathbf{p}) \rangle$ at $t \gg \tau \gg 0$, where $\langle O_1(\mathbf{p}', t) \mathcal{J}(\mathbf{q}, \tau) \bar{O}_1(\mathbf{p}, 0) \rangle \propto \frac{e^{-E_N'(t-\tau)}e^{-E_N\tau}}{2E_N 2E_{N'}} \langle N(\mathbf{p}') | \mathcal{J}(\mathbf{q}) | N(\mathbf{p}) \rangle$

Problem

large t, τ data is noisy w/ current statistics. We use small t, τ data

Consequences

Contamination from excited nucleons $(N^*, ...)$ and multiparticle states $(N\pi, ...)$

Improvement through the construction of better operators

 O_1 can be iteratively improved with smearing techniques (a technical and effective tool)

$$\langle N(\mathbf{0}) | \mathcal{A}_i(\mathbf{q} = \mathbf{0}) | N(\mathbf{0}) \rangle = g_A$$

 $\tau - \frac{t}{2}$ [fm]

0.9

0.8

-0.3 -0.2

Axial charge g_A

$$R_0 = \frac{\langle \mathcal{O}_1(\mathbf{0}, t) \, \mathcal{A}_i(\mathbf{0}, \tau) \, \bar{\mathcal{O}}_1(\mathbf{0}, 0) \rangle}{\mathcal{O}_1(\mathbf{0}, t) \, \bar{\mathcal{O}}_1(\mathbf{0}, 0)} \propto g_A$$

$$\mathcal{A}_i = \bar{q} \ \gamma_i \gamma_5 \ q \qquad \mathbf{p}' = \mathbf{q} = \mathbf{p} = \mathbf{0}$$

There is a clear sign of excited state contamination with local nucleon operators

The effect of the smearing is evident

$$g_A = 1.16 \pm 0.07$$

$$m_{\pi} \approx 426 \text{ MeV}, \ a \approx 0.098 \text{ fm}, \ L = 24a, T = 2L$$

smeared

0.6

local

 $t = 0.7 \, fm$

The axial charge g_A from $\langle N(\mathbf{p}) | \mathcal{A}_i(\mathbf{q} = \mathbf{0}) | N(\mathbf{p}) \rangle$ and $\langle N(\mathbf{p}) | \mathcal{A}_4(\mathbf{q} = \mathbf{0}) | N(\mathbf{p}) \rangle$

 g_A can be extracted from $\mathscr{A}_i = \bar{q}\gamma_i\gamma_5q$ and $\mathscr{A}_4 = \bar{q}\gamma_4\gamma_5q$ with $\mathbf{p}' = \mathbf{p} = \hat{e}_i = \frac{2\pi}{L}\hat{n}_i$

$$\tilde{R}_{A_i} = \frac{\langle \mathcal{O}_1(\mathbf{p}, t) \, \mathcal{A}_i(\mathbf{q} = \mathbf{0}, \tau) \, \bar{\mathcal{O}}_1(\mathbf{p}, 0) \rangle}{\mathcal{O}_1(\mathbf{p}, t) \, \bar{\mathcal{O}}_1(\mathbf{p}, 0)} = g_A + \dots$$

$$\tilde{R}_{A_4} = \frac{\langle \mathcal{O}_1(\mathbf{p}, t) \, \mathcal{A}_4(\mathbf{q} = \mathbf{0}, \tau) \, \bar{\mathcal{O}}_1(\mathbf{p}, 0) \rangle}{\mathcal{O}_1(\mathbf{p}, t) \, \bar{\mathcal{O}}_1(\mathbf{p}, 0)} \left(\frac{E}{p_i}\right) = g_A + \dots$$

Results with $\mathcal{J}=\mathcal{A}_i$ are consistent with rest frame

Results with $\mathcal{J}=\mathcal{A}_4$ show 5%-20% discrepancy

Observed also by χ PT collaboration [arXiv:1612.04388]

 $m_{\pi} \approx 426 \text{ MeV}, \ a \approx 0.098 \text{ fm}, \ L = 24a, T = 2L$

Excited state effects in the pseudoscalar channel $(\mathbf{q} = \mathbf{0})$

We investigate, for the first time, channels with $\mathscr{J}=\mathscr{P}$ and $\mathbf{p}'=\mathbf{p}=\hat{e}_i=\frac{2\pi}{L}$ $\bar{\mathbf{O}}_1|\Omega\rangle=c_N|N\rangle+c_{N\pi}|N\pi\rangle$

$$\tilde{R}_{P} = \frac{\langle \mathcal{O}_{1}(\mathbf{p}, t) \, \mathcal{P}(\mathbf{q} = \mathbf{0}, \tau) \, \bar{\mathcal{O}}_{1}(\mathbf{p}, 0) \rangle}{\mathcal{O}_{1}(\mathbf{p}, t) \, \bar{\mathcal{O}}_{1}(\mathbf{p}, 0)} \, \frac{E}{p_{i}} = \mathbf{0} + \dots$$

The signal is purely from excited states and in particular $N\pi$

 $m_{\pi} \approx 426 \text{ MeV}, \ a \approx 0.098 \text{ fm}, \ L = 24a, T = 2L$

This channel is the clearest case of $N\pi$ state contamination

Excited state effects in the pseudoscalar channel $(\mathbf{q} = \mathbf{0})$

We investigate, for the first time, channels with $\mathcal{J}=\mathcal{P}$ and $\mathbf{p}'=\mathbf{p}=\hat{e}_i=\frac{2\pi}{L}$ $\bar{\mathbf{O}}_1|\Omega\rangle=c_N|N>+c_{N\pi}|N\pi>$

$$\tilde{R}_{P} = \frac{\langle \mathcal{O}_{1}(\mathbf{p}, t) \, \mathcal{P}(\mathbf{q} = \mathbf{0}, \tau) \, \bar{\mathcal{O}}_{1}(\mathbf{p}, 0) \rangle}{\mathcal{O}_{1}(\mathbf{p}, t) \, \bar{\mathcal{O}}_{1}(\mathbf{p}, 0)} \, \frac{E}{p_{i}} = \mathbf{0} + \dots$$

The signal is purely from excited states and in particular $N\pi$

ChPT predicts that terms $\propto \langle N\pi | \mathcal{P} | N \rangle$ and $\langle N | \mathcal{P} | N\pi \rangle$ are large. [PRD.100.054507] [PRD.99.054506]

With LO-ChPT (EFT), the correction to the 3pt at tree-level is

$$\delta_{\chi PT}^{\mathscr{P}} = A \frac{E'}{E_{\pi}} e^{-(E'-m_{\pi}/2)t} \sinh\left(m_{\pi}(\tau - t/2)\right)$$

where $A \propto g_A$, **p**

[JHEP05(2020)126]

 $m_{\pi} \approx 426 \text{ MeV}, \ a \approx 0.098 \text{ fm}, \ L = 24a, T = 2L$

This channel is the clearest case of $N\pi$ state contamination

More general approach: Variational Method

Variational method

Construct a basis $\mathbb{B}_n = \left\{ \mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_n \right\}$ of operators with same quantum numbers $J^P = \left(\frac{1}{2} \right)^{\frac{1}{2}}$

Construct a matrix
$$C(t)_{ij} = \langle \mathcal{O}_i(t) \ \bar{\mathcal{O}}_j(0) \rangle$$
 where $O_k \in \mathbb{B}_n$

$$O_1 \propto (qqq)$$

 $O_2 \propto (qqq)(\bar{q}q)$

Suppose we find n=2 operators that overlap with the physical states $|N\rangle$ and $|N\pi\rangle$:

$$\bar{\mathbf{O}}_1 | \Omega \rangle = c_1^N | N \rangle + c_1^{N\pi} | N\pi \rangle$$

$$\bar{\mathcal{O}}_2 |\Omega\rangle = c_2^N |N\rangle + c_2^{N\pi} |N\pi\rangle$$

$$C(t) = \begin{pmatrix} \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_2(0) \rangle \\ \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_2(0) \rangle \end{pmatrix}$$

solve $C(t)v^{\alpha}(t,t_0) = C(t_0) \lambda^{\alpha}(t,t_0)v^{\alpha}(t,t_0)$

GEVP

 $v^{\alpha}(t_0)$, $\lambda^{\alpha}(t_0)$ are Generalised Eigenvectors and Eigenvalues

(Amazing) **Properties**

$$\lambda^{\alpha}(t_0) = d^{\alpha}(t_0) e^{-E_{\alpha}(t-t_0)}$$

$$\sum_{i} v_i^{\alpha}(t_0) \ v_j^{\beta}(t_0) \propto \delta^{\alpha\beta}$$

$$\bar{\mathbf{O}}_{\alpha} = \sum_{i} v_{i}^{\alpha}(t_{0}) \; \bar{\mathbf{O}}_{i} \quad \text{s.t.} \quad \bar{\mathbf{O}}_{\alpha} | \Omega \rangle = c_{\alpha} | \alpha \rangle$$

System is diagonalised! e.g. $\bar{O}_N | \Omega \rangle = c_N | N \rangle$

GEVP results with $\mathbf{p} = (2\pi/L) \hat{n}_z$

$$C(t) = \begin{pmatrix} \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_2(0) \rangle \\ \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_2(0) \rangle \end{pmatrix}$$

$$C(t)v^{\alpha}(t,t_0) = C(t_0) \lambda^{\alpha}(t,t_0)v^{\alpha}(t,t_0)$$

$$\lambda^1 \propto e^{-E_N(t-t_0)} \equiv \lambda^N$$

$$\lambda^2 \propto e^{-E_{N\pi}(t-t_0)} \equiv \lambda^{N\pi}$$

We extract the (effective) energies from the eigenvalues:

$$E_{\alpha}^{\text{eff}} = \log \left(\lambda^{\alpha}(t - a) / \lambda^{\alpha}(t) \right)$$

 $v^{\alpha}(t,t_0)$ normalised s.t. $(v^{\alpha}(t,t_0),C(t_0)v^{\beta}(t,t_0))=\delta^{\alpha\beta}$

GEVP ratio in the pseudoscalar channel (q = 0)

$$\tilde{R}_{\mathcal{P}} = \frac{\langle \mathcal{O}_{N}(\mathbf{p}',t) \, \mathcal{P}(\mathbf{q} = \mathbf{0},\tau) \, \bar{\mathcal{O}}_{N}(\mathbf{p},0) \rangle}{\mathcal{O}_{N}(\mathbf{p},t) \, \bar{\mathcal{O}}_{N}(\mathbf{p},0)} \, \frac{E}{p_{i}} = 0 + \dots$$

we replace O_1 with O_N to get the GEVP ratio

$$O_N = \sum_i v_i^N(t_0) O_i$$

GEVP ratio in the axial temporal channel (q = 0)

$$\tilde{R}_{\mathcal{A}_4} = \frac{\langle \mathcal{O}_N(\mathbf{p}',t) \, \mathcal{A}_4(\mathbf{q}=\mathbf{0},\tau) \, \bar{\mathcal{O}}_N(\mathbf{p},0) \rangle}{\mathcal{O}_N(\mathbf{p},t) \, \bar{\mathcal{O}}_N(\mathbf{p},0)} \, \frac{-E}{p_i} = g_A + \dots \qquad \text{we replace } \mathcal{O}_1 \text{ with } \mathcal{O}_N \text{ to get the GEVP ratio}$$

$$O_N = \sum_i v_i^N(t_0) O_i$$

GEVP ratio at $Q^2 = 0.297 \, \, \mathrm{GeV}^2$ in the pseudoscalar channel

Phenomenologically more interesting are nucleon form factors G_A , G_P , $G_{\tilde{P}}$ at $Q^2 \neq 0$. Unfortunately, a traditional fit to lattice data gives unreliable FF.

ChPT studies* show that $N\pi$ contribution can be quite large!

 $R_{\mathcal{P}}$ is constructed with $\mathscr{J}=\mathscr{P}$

The GEVP improves significantly the ratios, as they approach the green band (nucleon ground state)

There is still a trace of contamination left at the sink $\tau = t$ (rightmost part)

GEVP ratio at $Q^2 = 0.297 \text{ GeV}^2$ in the axial temporal channel

The most dramatic channel is with $\mathcal{J}=\mathcal{A}_4$. Excited states at source and sink have different signs

$$R_{\mathcal{A}_4}$$
 is constructed with $\mathcal{J}=\mathcal{A}_4$

The GEVP improves significantly the ratios, as they approach the green band (nucleon ground state)

There is still a trace of contamination left at the sink $\tau = t$ (rightmost part)

 $G_A, G_P, G_{\tilde{P}}$ satisfy PCAC with a simple fit.

$$m_N G_A(Q^2) = m_{\ell} G_P(Q^2) + \frac{Q^2}{4m_N} G_{\tilde{P}}(Q^2)$$

GEVP-projected operators (p = 0)

We use eigenvectors to project operators:

$$\langle O_2(t) \ \bar{O}_2(0) \rangle \approx c_2^{N\pi} e^{-E_{N\pi}t} + c_2^N e^{-E_N t}$$

at $t \gg 0$ the dominant term is the nucleon

 $\langle \mathbf{O}_{N\pi}(t) \ \bar{\mathbf{O}}_{N\pi}(0) \rangle \approx c_{N\pi} e^{-E_{N\pi}t}$

After GEVP-projection:
$$O_{N\pi} = \sum_i v_i^{N\pi} \ O_i = v_1^{N\pi} \ O_N + v_2^{N\pi} \ O_{N\pi}$$

$$E^{\text{eff}} = \log \left(\frac{\langle O(t - a) \ \bar{O}(0) \rangle}{\langle O(t) \ \bar{O}(0) \rangle} \right)$$

The correlation functions with O_2 don't exhibit a plateau here because of the mixing with N states

New step will be the computation of

$$\langle (N\pi)(\mathbf{p}') \mid \mathcal{J}(\mathbf{q}) \mid N(\mathbf{p}) \rangle$$

through

$$\langle \mathcal{O}_{N\pi}(\mathbf{p}',t) \mathcal{J}(\mathbf{q},\tau) \bar{\mathcal{O}}_{N}(\mathbf{p},0) \rangle$$

Conclusions

Hadron structure

- Structure of the nucleons and excited nucleons is relevant for neutrino oscillation experiments
- x Variational method gives promising results for the nucleon ground state matrix elements
- ightharpoonup Studies of $\langle N\pi \,|\, \mathcal{J} \,|\, N \rangle$ are undergoing [PRD.92.074509] (M. Hansen & R. Briceño)
- Provide the Need to clarify the remaining contamination: $N\pi\pi$ in S-wave?
- First step needed in order to study $\langle N^* \, | \, \mathcal{J} \, | \, N \rangle$ and $\langle \Delta^+ \, | \, \mathcal{J} \, | \, N \rangle$

EuroPLEX 01 10 101 011 01010 101 010 101 010 001 011010 H2020

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

BACKUP SLIDES

Quasi-elastic scattering (QE)

Resonance production (RES)

Deep Inelastic scattering (DIS)

J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

neutrino process	abbreviation	reaction	fraction (%)
CC quasielastic	CCQE	$\nu_{\mu} + n \rightarrow \mu^{-} + p$	39
NC elastic	NCE	$ u_{\mu}+p(n) ightarrow u_{\mu}+p(n)$	16
CC $1\pi^+$ production	$\text{CC}1\pi^+$	$ u_{\mu}+p(n) ightarrow\mu^{-}+\pi^{+}+p(n)$	25
$CC 1\pi^0$ production	$\mathrm{CC}1\pi^0$	$ u_{\mu}+n ightarrow\mu^{-}+\pi^{0}+p$	4
NC $1\pi^{\pm}$ production	$\mathrm{NC}1\pi^{\pm}$	$ u_{\mu} + p(n) \rightarrow \nu_{\mu} + \pi^{+}(\pi^{-}) + n(p) $	4
NC $1\pi^0$ production	$ ext{NC}1\pi^0$	$ u_{\mu}+p(n) ightarrow u_{\mu}+\pi^{0}+p(n)$	8
multi pion production, DIS, etc.	other	$\nu_{\mu} + p(n) \to \mu^{-} + N\pi^{\pm} + X$, etc.	4

[PRD.81.092005]

[RMP.84.1307]

[arXiv:2203.09030]

GEVP results with p = 0

$$C(t) = \begin{pmatrix} \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_2(0) \rangle \\ \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_2(0) \rangle \end{pmatrix}$$

 $C(t)v^{\alpha}(t,t_{0}) = C(t_{0}) \lambda^{\alpha}(t,t_{0})v^{\alpha}(t,t_{0})$

$$\lambda^1 \propto e^{-E_N(t-t_0)} \equiv \lambda^N$$

$$\lambda^2 \propto e^{-E_{N\pi}(t-t_0)} \equiv \lambda^{N\pi}$$

We extract the (effective) energies from the eigenvalues:

$$E_{\alpha}^{\text{eff}} = \log \left(\lambda^{\alpha}(t - a) / \lambda^{\alpha}(t) \right)$$

$$v^1 \equiv v^N, \ v^2 \equiv v^{N\pi}$$

 $v^{\alpha}(t,t_0)$ normalised s.t. $(v^{\alpha}(t,t_0),C(t_0)v^{\beta}(t,t_0))=\delta^{\alpha\beta}$

(Dashed lines are non-interacting energy levels)

GEVP results with $\mathbf{p} = (2\pi/L) \hat{e}_i$

$$C(t) = \begin{pmatrix} \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_2(0) \rangle \\ \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_2(0) \rangle \end{pmatrix}$$

$$C(t)v^{\alpha}(t,t_{0}) = C(t_{0}) \lambda^{\alpha}(t,t_{0})v^{\alpha}(t,t_{0})$$

$$\lambda^1 \propto e^{-E_N(t-t_0)} \equiv \lambda^N$$

$$\lambda^2 \propto e^{-E_{N\pi}(t-t_0)} \equiv \lambda^{N\pi}$$

We extract the (effective) energies from the eigenvalues:

$$E_{\alpha}^{\text{eff}} = \log \left(\lambda^{\alpha}(t - a) / \lambda^{\alpha}(t) \right)$$

$$v^1 \equiv v^N, \ v^2 \equiv v^{N\pi}$$

 $v^{\alpha}(t,t_0)$ normalised s.t. $(v^{\alpha}(t,t_0),C(t_0)v^{\beta}(t,t_0))=\delta^{\alpha\beta}$

(Dashed lines are non-interacting energy levels)

Extraction of form factors

$$C_{2pt}(\mathbf{p},t) = \langle \mathbf{O}_N(\mathbf{p},t) \ \bar{\mathbf{O}}_N(\mathbf{p},0) \rangle \qquad C_{3pt}^{\mathcal{J}}(\mathbf{p}',t;\mathbf{q},\tau) = \langle \mathbf{O}_N(\mathbf{p}',t) \ \mathcal{J}(\mathbf{q},\tau) \ \bar{\mathbf{O}}_N(\mathbf{p},0) \rangle$$

$$R_{\mathcal{J}}(\mathbf{p}',t;\mathbf{q},\tau) = \frac{C_{3pt}^{\mathcal{J}}(\mathbf{p}',t;\mathbf{q},\tau)}{C_{2pt}(\mathbf{p}',t)} \sqrt{\frac{C_{2pt}(\mathbf{p}',\tau) C_{2pt}(\mathbf{p}',t) C_{2pt}(\mathbf{p},t-\tau)}{C_{2pt}(\mathbf{p},\tau) C_{2pt}(\mathbf{p},t) C_{2pt}(\mathbf{p}',t) C_{2pt}(\mathbf{p}',t-\tau)}}$$

$$\langle N(\mathbf{p}') | \mathcal{J}(\mathbf{q}) | N(\mathbf{p}) \rangle = u_{\mathbf{p}'} FF[\mathcal{J}] u_{\mathbf{p}}$$

$$\propto \operatorname{tr}\left[\mathbb{P}\left(-i\gamma_{\mu}p_{\mu}'+m_{N}\right)FF[\mathcal{J}]\left(-i\gamma_{\mu}p_{\mu}+m_{N}\right)\right]$$

$$\langle N(\mathbf{p}') | \mathcal{A}_{\mu}(\mathbf{q}) | N(\mathbf{p}) \rangle = u_{\mathbf{p}'} \left[\gamma_{\mu} \gamma_5 G_A(Q^2) + \frac{q_{\mu}}{2m_N} \gamma_5 G_{\tilde{p}}(Q^2) \right] u_{\mathbf{p}}$$

$$\langle N(\mathbf{p}') | \mathcal{Y}_{\mu}(\mathbf{q}) | N(\mathbf{p}) \rangle = u_{\mathbf{p}'} \left[\gamma_{\mu} F_1(Q^2) + i \frac{\sigma_{\mu\nu} q_{\mu}}{2m_N} F_2(Q^2) \right] u_{\mathbf{p}}$$

$$\langle N(\mathbf{p}') | \mathcal{Y}_{\mu}(\mathbf{q}) | N(\mathbf{p}) \rangle = u_{\mathbf{p}'} \left[\gamma_{\mu} F_1(Q^2) + i \frac{\sigma_{\mu\nu} q_{\mu}}{2m_N} F_2(Q^2) \right] u_{\mathbf{p}}$$

Operators with $J^P=(1/2)^+$ and $I=1/2,\ I_z=-1/2$ (neutron channel)

$$C(t) = \begin{pmatrix} \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_1(t) \ \bar{\mathcal{O}}_2(0) \rangle \\ \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_1(0) \rangle & \langle \mathcal{O}_2(t) \ \bar{\mathcal{O}}_2(0) \rangle \end{pmatrix} \qquad \mathcal{O}_1(x) = \epsilon^{abc} \left(d_{\alpha}^a(x) \ C\gamma_5 \ u_{\beta}^b(x) \right) d_{\gamma}^c(x) \\ \mathcal{O}_2(x, y) = \left(q(x)q(x)q(x) \right) \left(\bar{q}(y)q(y) \right)$$

 O_2 must be projected to represent $J^P = (1/2)^+$ and $I_z = -1/2$

Isospin projection with Clebsch-Gordan

$$O_2(x, y) = \frac{1}{\sqrt{3}} O_p(x) O_{\pi^-}(y) - \frac{2}{\sqrt{3}} O_n(x) O_{\pi^0}(y)$$

Helicity projection with (Lattice) Group Theory

$$O_{2,\uparrow}(\mathbf{P}=\mathbf{0}) = O_{N\downarrow}(-\hat{e}_x)O_{\pi}(\hat{e}_x) - O_{N\downarrow}(\hat{e}_x)O_{\pi}(-\hat{e}_x) - iO_{N\downarrow}(-\hat{e}_y)O_{\pi}(\hat{e}_y) + iO_{N\downarrow}(\hat{e}_y)O_{\pi}(-\hat{e}_y) + O_{N\uparrow}(-\hat{e}_z)O_{\pi}(\hat{e}_z) - O_{N\uparrow}(\hat{e}_z)O_{\pi}(-\hat{e}_z)$$

$$O_2^{(1)}(\mathbf{P} = \hat{e}_i) = O_N(\mathbf{0})O_{\pi}(\hat{e}_i)$$
 $O_2^{(2)}(\mathbf{P} = \hat{e}_i) = O_N(\hat{e}_i)O_{\pi}(\mathbf{0})$

$$\hat{e}_i = \frac{2\pi}{L} \hat{n}_i$$