Dynamical diquarks in baryon transitions

Khépani Raya Montaño

Bashir, Roberts, Segovia, etc..

NSTAR 2022.
Oct 17 - 21, 2022. Genova (Italy)

QCD: Basic Facts

$>$ QCD is characterized by two emergent phenomena:
confinement and dynamical generation of mass (DGM).

- Quarks and gluons not isolated in nature.
\rightarrow Formation of colorless bound states: "Hadrons"

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\sum_{j=u, d, s, \ldots} \bar{q}_{j}\left[\gamma_{\mu} D_{\mu}+m_{j}\right] q_{j}+\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}, \\
D_{\mu} & =\partial_{\mu}+i g \frac{1}{2} \lambda^{a} A_{\mu}^{a}, \\
G_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}+\partial_{\nu} A_{\mu}^{a}-\underline{g f^{a b}} A_{\mu}^{b} A_{\nu}^{c},
\end{aligned}
$$

\rightarrow 1-fm scale size of hadrons?

QCD: Basic Facts

> QCD is characterized by two emergent phenomena:
confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\sum_{j=u, d, s, \ldots} \bar{q}_{j}\left[\gamma_{\mu} D_{\mu}+m_{j}\right] q_{j}+\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}, \\
D_{\mu} & =\partial_{\mu}+i g \frac{1}{2} \lambda^{a} A_{\mu}^{a}, \\
G_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}+\partial_{\nu} A_{\mu}^{a}-\underline{g f^{a b c} A_{\mu}^{b} A_{\nu}^{c},}
\end{aligned}
$$

- Emergence of hadron masses (EHM) from QCD dynamics

Gluon and quark running masses

QCD: Basic Facts

$>$ QCD is characterized by two emergent phenomena:
confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\sum_{j=u, d, s, \ldots} \bar{q}_{j}\left[\gamma_{\mu} D_{\mu}+m_{j}\right] q_{j}+\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}, \\
D_{\mu} & =\partial_{\mu}+i g \frac{1}{2} \lambda^{a} A_{\mu}^{a}, \\
G_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}+\partial_{\nu} A_{\mu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\nu}^{c},
\end{aligned}
$$

- Emergence of hadron masses (EHM) from QCD dynamics

Gluon and quark running masses

The proton: Understanding QCD

- Now, just as we learned from the excited states of the hydrogen atom, we should learn from the excited states of the nucleon.
- In particular, the role of DCSB could be well understood by analyzing structural differences of hadrons and their parity partners.

Baryon Faddeev equation

Baryons: Faddeev equation

- A Poincaré-covariant Faddeev equation encodes all possible interactions/exchanges that could take place between the three dressed valence-quarks.
- By employing the symmetry-preserving rainbow-ladder truncation, this equation can be solved. (This implies, however, an outstanding challenge).

Eichmann:2016yit Qin:2019hgk

- Exists now a plethora of results/predictions on the meson and baryon mass spectrum.
($\mathrm{J}=1 / 2+$ and $3 / 2+$ baryons, first excitations, parity partners...)

Baryons: Faddeev equation

- Strong evidence anticipates the formation of dynamical quark-quark correlations (diquarks) within baryons, for instance:
\rightarrow The primary three-body force binding the quarks within the baryon vanishes when projected onto the color singlet channel.

Eichmann:2016yit

> i.e. a 3-gluon vertex attached to each quark once (and only once)
\rightarrow The dominant 3-gluon contribution is the one attaching twice to a quark
\rightarrow This produces a strengthening of quark-quark interactions

Baryons: Faddeev equation

- Strong evidence anticipates the formation of dynamical quark-quark correlations (diquarks) within baryons, for instance:
\rightarrow The primary three-body force binding the quarks within the baryon vanishes when projected onto the color singlet channel.
\rightarrow The attractive nature of quark-antiquark correlations in a color-singlet meson, is also attractive for $\overline{3}_{c}$ quark-quark correlations within a color singlet baryon.

Dyamical Quark-diquark picture

Baryons: Quark-diquark picture

\rightarrow The attractive nature of quark-antiquark correlations in a color-singlet meson, is also attractive for $\overline{3}_{c}$ quark-quark correlations within a color singlet baryon.
\rightarrow Due to charge conjugation properties, a J^{j} diquark partners with an analogous J^{-p} meson.
\rightarrow We can thus establish a connection between the meson and diquark Bethe-Salpeter equations:

$$
\begin{aligned}
\Gamma_{q \bar{q}}(p ; P) & =-\int \frac{d^{4} q}{(2 \pi)^{4}} g^{2} D_{\mu \nu}(p-q) \frac{\lambda^{a}}{2} \gamma_{\mu} S(q+P) \Gamma_{q \bar{q}}(q ; P) S(q) \frac{\lambda^{a}}{2} \gamma_{\nu} \\
\Gamma_{q q}(p ; P) C^{\dagger} & =-\frac{1}{2} \int \frac{d^{4} q}{(2 \pi)^{4}} g^{2} D_{\mu \nu}(p-q) \frac{\lambda^{a}}{2} \gamma_{\mu} S(q+P) \Gamma_{q q}(q ; P) C^{\dagger} S(q) \frac{\lambda^{a}}{2} \gamma_{\nu}
\end{aligned}
$$

Less tightly 'bound'

- Computed 'masses' should be interpreted as correlation lengths:

$$
m_{[u d]_{0^{+}}}=0.7-0.8 \mathrm{GeV}, \quad m_{\{u u\}_{1+}}=0.9-1.1 \mathrm{GeV}
$$

\rightarrow Stressing the fact that the diquarks have a finite size:

$$
r_{[u d]_{0+}} \gtrsim r_{\pi}, \quad r_{\{u u\}_{1^{+}}} \gtrsim r_{\rho}
$$

Baryons: Quark-diquark picture

- When the comparison is possible, the dynamical quark-diquark picture turns out to be compatible with the three-body picture:

	N	Λ	Σ	Ξ	Δ	Σ^{*}	Ξ^{*}	Ω
Quark-diquark model [302]	$0.94^{(*)}$	1.13	1.14	1.32	$1.23^{(*)}$	1.38	1.52	1.67
Quark-diquark (RL) [305, 362]	0.94				1.28			
Three-quark (RL) [306, 316, 317]	0.94	1.07	1.07	1.24	1.22	1.33	1.47	1.65
Lattice [399]	$0.94^{(*)}$	$1.12(2)$	$1.17(3)$	$1.32(2)$	$1.30(3)$	$1.46(2)$	$1.56(2)$	$1.67(2)$
Experiment (PDG)	0.938	1.116	1.193	1.318	1.232	1.384	1.530	1.672

Non-pointlike diquarks:

- Color anti-triplet
- Fully interacting
- Origins related to EHM phenomena

Three-body picture (RL)

Dyamical Quark-diquark picture

Contact Interaction model: Some highlights

Contact Interaction

- The quark gap equation in a symmetry-preserving contact interaction model (SCI):

$$
S^{-1}(p)=i \gamma \cdot p+m+\frac{16 \pi}{3} \frac{\alpha_{\mathrm{IR}}}{m_{G}^{2}} \int \frac{d^{4} q}{(2 \pi)^{4}} \gamma_{\mu} S(q) \gamma_{\mu}
$$

$$
\text { Infrared strength } \alpha_{\mathrm{IR}}=0.93 \pi
$$ Compatible with modern computations.

- Recall the quark gap equation:

$$
\begin{aligned}
S_{f}^{-1}(p) & =Z_{2}\left(i \gamma \cdot p+m_{f}^{\mathrm{bm}}\right)+\Sigma_{f}(p), \\
\Sigma_{f}(p) & =\frac{4}{3} Z_{1} \int_{d q}^{\Lambda} g^{2} D_{\mu \nu}(p-q) \gamma_{\mu} S_{f}(q) \Gamma_{\nu}^{f}(p, q)
\end{aligned}
$$

\rightarrow Namely, SCI kernel is essentially RL + constant gluon propagator

Contact Interaction

- Let us now consider the quark gap equation in a

Roberts:2010rn symmetry-preserving contact interaction model (SCI)

$$
S^{-1}(p)=i \gamma \cdot p+m+\frac{16 \pi}{3} \frac{\alpha_{\mathrm{IR}}}{m_{G}^{2}} \int \frac{d^{4} q}{(2 \pi)^{4}} \gamma_{\mu} S(q) \gamma_{\mu}
$$

- Constant gluon propagator:
\rightarrow Quark propagator, with constant mass function
\rightarrow Non renormalizable $\quad S_{f}(p)=Z_{f}\left(p^{2}\right)\left(i \gamma \cdot p+M_{f}\left(p^{2}\right)\right)^{-1} \Rightarrow S(p)^{-1}=i \gamma \cdot p+M$
\rightarrow Needs regularization scheme:

input: current masses				output: dressed masses			
m_{0}	m_{u}	m_{s}	m_{s} / m_{u}	M_{0}	M_{u}	M_{s}	M_{s} / M_{u}
0	0.007	0.17	24.3	0.36	0.37	0.53	1.43

$\tau_{i r}=1 / 0.24 \mathrm{GeV}^{-1}:$ Ensures the absence of quark production thresholds (confinement)
$\tau_{u v}=1 / 0.905 \mathrm{GeV}^{-1}:$ UV cutoff. Sets the scale of all dimensioned quantities.

Contact Interaction

- Let us now consider the quark gap equation in a symmetry-preserving contact interaction model (SCI)

$$
S^{-1}(p)=i \gamma \cdot p+m+\frac{16 \pi}{3} \frac{\alpha_{\mathrm{IR}}}{m_{G}^{2}} \int \frac{d^{4} q}{(2 \pi)^{4}} \gamma_{\mu} S(q) \gamma_{\mu}
$$

- The meson Bethe-Salpeter equation:

$$
\Gamma(k ; P)=-\frac{16 \pi}{3} \frac{\alpha_{\mathrm{IR}}}{m_{G}^{2}} \int \frac{d^{4} q}{(2 \pi)^{4}} \gamma_{\mu} \chi(q ; P) \gamma_{\mu}
$$

- The diquark Bethe-Salpeter equation:

$$
\Gamma_{q q}(k ; P)=-\frac{8 \pi}{3} \frac{\alpha_{\mathrm{IR}}}{m_{G}^{2}} \int \frac{d^{4} q}{(2 \pi)^{4}} \gamma_{\mu} \chi_{q q}(q ; P) \gamma_{\mu}
$$

\rightarrow Recall a J^{p} diquark partners with an analogous J^{-p} meson.

- Quark propagator, with constant mass function

$$
S(p)^{-1}=i \gamma \cdot p+M
$$

- The interaction produces momentum independent BSAs:
$\Gamma_{\pi}(P)=\gamma_{5}\left[i E_{\pi}(P)+\frac{\gamma \cdot P}{M} F_{\pi}(P)\right]$
$\Gamma_{\sigma}(P)=\mathbb{1} E_{\sigma}(P)$,
$\Gamma_{\rho}(P)=\gamma^{T} E_{\rho}(P)$,
$\Gamma_{a_{1}}(P)=\gamma_{5} \gamma^{T} E_{a_{1}}(P)$,
\rightarrow It is typical to reduce the RL strength in the scalar and axial-vector meson channels (and pseudoscalar and vector diquarks)

Contact Interaction

- The quark-photon vertex:

$$
\begin{aligned}
& \Gamma_{\mu}^{\gamma}(Q)=\frac{Q_{\mu} Q_{\nu}}{Q^{2}} \gamma_{\nu}+\Gamma_{\mu}^{\mathrm{T}}(Q) \\
& \Gamma_{\mu}^{\mathrm{T}}(Q)=P_{\mathrm{T}}\left(Q^{2}\right) \mathcal{P}_{\mu \nu}(Q) \gamma_{\nu} \\
&+\frac{\zeta}{2 M_{u}} \sigma_{\mu \nu} Q_{\nu} \exp \left(-\frac{Q^{2}}{4 M_{u}^{2}}\right) \\
& \text { introduces a vector meson pole in } \\
& \text { the timelike axis. }
\end{aligned}
$$

Fig. 9 Photon+quark vertex dressing function in Eq. (A.3). As in any symmetry preserving treatment of photon+quark interactions, $P_{\mathrm{T}}\left(Q^{2}\right)$ exhibits a pole at $Q^{2}=-m_{\rho}^{2}$. Moreover, $P_{\mathrm{T}}\left(Q^{2}=0\right)=1=P_{\mathrm{T}}\left(Q^{2} \rightarrow \infty\right)$.

Contact Interaction

- The Faddeev equation, in the SCI dynamical quark-diquark picture:

\rightarrow Quarks inside baryons correlate into non-point-like diquarks.
\rightarrow Breakup and reformation occurs via quark exchange.
- In the interaction kernel, the exchanged quark is represented in the static approximation:

$$
S(k) \rightarrow \frac{g_{8}^{2}}{M_{u}} \quad g_{8}=1.18
$$

- The kernel penalizes the contribution of diquarks whose parity is opposite to that of the baryon, using a multiplicative factor gDB $=0.2$

Contact Interaction

- The Faddeev equation, in the dynamical quark-diquark picture:

\rightarrow Quarks inside baryons correlate into non-point-like diquarks.
\rightarrow Breakup and reformation occurs via quark exchange.
- The Faddeev amplitude for the nucleon and its parity partner:

$$
\begin{aligned}
\psi^{ \pm} u(P) & =\Gamma_{0^{+}}^{1} \Delta^{0^{+}}(K) \mathcal{S}^{ \pm}(P) u(P) \quad \text { Scalar }\left(0^{+}\right) \\
& +\sum_{f=1,2} \Gamma_{1^{+} \mu}^{f} \Delta_{\mu \nu}^{1^{+}}(K) \mathcal{A}_{\nu}^{ \pm f}(P) u(P)-\text { Axial vector }\left(1^{+}\right) \\
& +\Gamma_{0^{-}}^{1}(K) \Delta^{0^{-}}(K) \mathcal{P}^{ \pm}(P) u(P)-\text { Pseudoscalar (0-) } \\
& +\Gamma_{1^{-}-\mu}^{1} \Delta_{\mu \nu}^{1^{-}}(K) \mathcal{V}_{\nu}^{ \pm}(P) u(P), \quad-\text { Vector }\left(1^{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{S}^{ \pm} & =\mathcal{s}^{ \pm} \mathbf{I}_{\mathrm{D}} \mathcal{G}^{ \pm}, \quad i \mathcal{P}^{ \pm}=p^{ \pm} \gamma_{5} \mathcal{G}^{ \pm}, \\
i \mathcal{A}_{\mu}^{ \pm f} & =\left(a_{1}^{ \pm f} \gamma_{5} \gamma_{\mu}-i a_{2}^{ \pm f} \gamma_{5} \hat{P}_{\mu}\right) \mathcal{G}^{ \pm}, \\
i \mathcal{V}_{\mu}^{ \pm} & =\left(v_{1}^{ \pm} \gamma_{\mu}-i v_{2}^{ \pm} \mathbf{I}_{\mathrm{D}} \hat{P}_{\mu}\right) \gamma_{5} \mathcal{G}^{ \pm} .
\end{aligned}
$$

\rightarrow We then arrive at an eigenvalue equation for:

$$
\left(s^{ \pm}, a_{1}^{ \pm f}, a_{2}^{ \pm f}, p^{ \pm}, v_{1}^{ \pm}, v_{2}^{ \pm}\right)
$$

$\mathrm{N}(940)$ and $\mathrm{N}(1535)$

- The produced masses and diquark content:
$m_{N(940)}=1.14, \quad m_{N(1535)}=1.73, \quad$ (in GeV)

baryon	s	a_{1}^{1}	a_{2}^{1}	p	v_{1}	v_{2}
$N(940) \frac{1}{2}^{+}$	0.88	0.38	-0.06	0.02	0.02	0.00
$N(1535) \frac{1^{-}}{2}$	0.66	0.20	0.14	0.68	0.11	0.09
	gDB=0.2					

If one varies $g_{\mathrm{DB}} \rightarrow g_{\mathrm{DB}}(1 \pm 0.5)$, then $m_{N(1535)}$
$=(1.67,1.82) \mathrm{GeV}$ and

$N(1535) \frac{1}{2}^{-}$	s	a_{1}^{1}	a_{2}^{1}	p	v_{1}	v_{2}
$g_{\mathrm{DB}} 1.5$	0.76	0.27	0.18	0.49	0.12	0.08
$g_{\mathrm{DB}} 1.0$	0.66	0.20	0.14	0.68	0.11	0.09
$g_{\mathrm{DB}} 0.5$	0.35	0.04	0.00	0.92	-0.05	0.18

- As expected, the nucleon is mostly composed by scalar diquarks, while also exhibiting a sizeable axial-vector diquark component.
- With the preferred value of gDB, the nucleon parity partner exhibits an even distribution of scalarpseudoscalar diquark contributions.
- The latter is in agreement with more sophisticated predictions, but should be confirmed in beyond RL calculations.

Nucleon TFFs: The approach

Nucleon transition form factors

- Let us consider the electromagnetic transition:

- In our approach, the EM vertex can be written:

$$
\begin{aligned}
& \Gamma_{\mu}^{B A}\left(P_{f}, P_{i}\right) \\
& =\sum_{I=S 1, S 2, S 3} \int_{l} \Lambda_{+}^{B}\left(P_{f}\right) \Lambda_{\mu}^{I}\left(l ; P_{f}, P_{i}\right) \Lambda_{+}^{A}\left(P_{i}\right), \\
& =: \int_{l} \Lambda_{+}^{B}\left(P_{f}\right)\left[\sum_{r} \mathcal{Q}_{\mu}^{(j)}+\sum_{s, t} \mathcal{D}_{\mu}^{(s, t)}\right] \Lambda_{+}^{A}\left(P_{i}\right) \\
& \quad \text { S1 diagrams }
\end{aligned}
$$

Photon strikes diquark, in an elastic scattering event (S2)

Photon strikes diquark, and a transition between different diquarks occurs (S3)

Nucleon transition form factors

- Let us consider the electromagnetic transition:

- In the quark-diquark picture, within the SCI model, the electromagnetic vertex can be splitted into 3 categories:

Photon strikes quark (S1)

\rightarrow Therefore, to evaluate the full electromagnetic vertex, we need, in principle to calculate 20 intermediate contributions:

- 4 from the photon strikes quark case (1 for each spectator diquark)
- 4x4=16 from the photon strikes diquark cases.

Photon strikes diquark, in an elastic scattering event (S2)

Photon strikes diquark, and a transition between different diquarks occurs (S3)

Diquark transitions

- The collection of "Photon strikes diquark" contributions require the evaluation of several triangle diagrams for different initial and final diquarks:

$$
\begin{align*}
\Lambda_{\lambda(\mu \nu)}\left(p_{i}, p_{f}\right) & \equiv \sum_{j=1}^{N_{T}} T_{\lambda(\mu \nu)}^{(j)}\left(p_{f}, p_{i}\right) F_{j}\left(\left(p_{f}-p_{i}\right)^{2}\right) \tag{E1}\\
& =\int \frac{d^{4} q}{(2 \pi)^{4}} \chi_{\lambda}(Q, q) \Gamma_{(\mu)}^{H_{i}}\left(p_{i}\right) S(q) \bar{\Gamma}_{(\nu)}^{H_{f}}\left(-p_{f}\right)
\end{align*}
$$

- For example, some of relevance for the $\mathbf{N} \rightarrow \mathbf{N}(1535)$ transition:

$\mathbf{N} \rightarrow \mathbf{N}(1535)$: Setting the stage

- The transition $\gamma^{(*)} \boldsymbol{p} \rightarrow \boldsymbol{N}(\mathbf{1 5 3 5}) \frac{1}{2}^{-}$is characterized by the EM vertex:

$$
\begin{aligned}
\Gamma_{\mu}^{*}\left(P_{f}, P_{i}\right) & =i e \Lambda_{+}^{-}\left(P_{f}\right)\left[\gamma_{\mu}^{T} F_{1}^{*}\left(Q^{2}\right)\right. \\
& \left.+\frac{1}{m_{+}+m_{-}} \sigma_{\mu \nu} Q_{\nu} F_{2}^{*}\left(Q^{2}\right)\right] \Lambda_{+}^{+}\left(P_{i}\right)
\end{aligned}
$$

Spin $1 / 2$ initial and final states, but with opposite parity

Contributions from:

Photon hits quark

Spectator diquarks: $0^{+}, 0^{-}, 1^{+}, 1^{-}$

Photon hits diquark

Ini/Fin	0^{+}	0^{-}	1^{+}	1^{-}
0^{+}	$0^{+} \rightarrow 0^{+}$	$0^{+} \rightarrow 0^{-}$	$0^{+} \rightarrow 1^{+}$	$0^{+} \rightarrow 1^{-}$
0^{-}	$0^{-} \rightarrow 0^{+}$	$0^{-} \rightarrow 0^{-}$	$0^{-} \rightarrow 1^{+}$	$0^{-} \rightarrow 1^{-}$
1^{+}	$1^{+} \rightarrow 0^{+}$	$1^{+} \rightarrow 0^{-}$	$1^{+} \rightarrow 1^{+}$	$1^{+} \rightarrow 1^{-}$
1^{-}	$1^{-} \rightarrow 0^{+}$	$1^{-} \rightarrow 0^{-}$	$1^{-} \rightarrow 1^{+}$	$1^{-} \rightarrow 1^{-}$

\rightarrow To evaluate the full electromagnetic vertex, we need, in principle to calculate 20 intermediate contributions:

$N \rightarrow \mathbf{N}(1535)$: Setting the stage

- The transition $\gamma^{(*)} \boldsymbol{p} \rightarrow \boldsymbol{N}(\mathbf{1 5 3 5}) \frac{1}{2}^{-}$is characterized by the EM vertex:

$$
\begin{aligned}
\Gamma_{\mu}^{*}\left(P_{f}, P_{i}\right) & =i e \Lambda_{+}^{-}\left(P_{f}\right)\left[\gamma_{\mu}^{T} F_{1}^{*}\left(Q^{2}\right)\right. \\
& \left.+\frac{1}{m_{+}+m_{-}} \sigma_{\mu \nu} Q_{\nu} F_{2}^{*}\left(Q^{2}\right)\right] \Lambda_{+}^{+}\left(P_{i}\right)
\end{aligned}
$$

Spin $1 / 2$ initial and final states, but with opposite parity

Contributions from:

Photon hits quark

Photon hits diquark

Ini/Fin	0^{+}	0^{-}	1^{+}	1^{-}
0^{+}	$0^{+} \rightarrow 0^{+}$	$0^{+} \rightarrow 0^{-}$	$0^{+} \rightarrow 1^{+}$	$0^{+} \rightarrow 1^{-}$
1^{+}	$1^{+} \rightarrow 0^{+}$	$1^{+} \rightarrow 0^{-}$	$1^{+} \rightarrow 1^{+}$	$1^{+} \rightarrow 1^{-}$

- In this case, we can anticipate the number of relevant intermediate transitions:
$>$ The $0^{-}, 1^{-}$diquark contributions to the nucleon wavefunction are completely negligible.

$$
m_{N(940)}=1.14, \quad m_{N(1535)}=1.73,
$$

baryon	s	a_{1}^{1}	a_{2}^{1}	p	v_{1}	v_{2}
$N(940) \frac{1}{2}^{+}$	0.88	0.38	-0.06	0.02	0.02	0.00
$N(1535) \frac{1}{2}^{-}$	0.66	0.20	0.14	0.68	0.11	0.09

$N \rightarrow \mathbf{N}(1535)$: Setting the stage

- The transition $\gamma^{(*)} \boldsymbol{p} \rightarrow \boldsymbol{N}(\mathbf{1 5 3 5}) \frac{1}{2}^{-}$is characterized by the EM vertex:

$$
\begin{aligned}
\Gamma_{\mu}^{*}\left(P_{f}, P_{i}\right) & =i e \Lambda_{+}^{-}\left(P_{f}\right)\left[\gamma_{\mu}^{T} F_{1}^{*}\left(Q^{2}\right)\right. \\
& \left.+\frac{1}{m_{+}+m_{-}} \sigma_{\mu \nu} Q_{\nu} F_{2}^{*}\left(Q^{2}\right)\right] \Lambda_{+}^{+}\left(P_{i}\right)
\end{aligned}
$$

Spin $1 / 2$ initial and final states, but with opposite parity

Contributions from:
Photon hits quark

Photon hits diquark

Ini/Fin	0^{+}	0^{-}	1^{+}	1^{-}
0^{+}	$0^{+} \rightarrow 0^{+}$		$0^{+} \rightarrow 1^{+}$	$0^{+} \rightarrow 1^{-}$
1^{+}	$1^{+} \rightarrow 0^{+}$	$1^{+} \rightarrow 0^{-}$	$1^{+} \rightarrow 1^{+}$	$1^{+} \rightarrow 1^{-}$

- In this case, we can anticipate the number of relevant intermediate transitions:
$>$ The $0^{-}, 1^{-}$diquark contributions to the nucleon wavefunction are completely negligible.
$>$ The $\mathbf{0}^{+} \rightarrow \mathbf{0}$ diquark transition is trivially zero.

$N \rightarrow \mathbf{N}(1535)$: Setting the stage

- The transition $\gamma^{(*)} \boldsymbol{p} \rightarrow \boldsymbol{N}(\mathbf{1 5 3 5}) \frac{1}{2}^{-}$is characterized by the EM vertex:

$$
\begin{aligned}
\Gamma_{\mu}^{*}\left(P_{f}, P_{i}\right) & =i e \Lambda_{+}^{-}\left(P_{f}\right)\left[\gamma_{\mu}^{T} F_{1}^{*}\left(Q^{2}\right)\right. \\
& \left.+\frac{1}{m_{+}+m_{-}} \sigma_{\mu \nu} Q_{\nu} F_{2}^{*}\left(Q^{2}\right)\right] \Lambda_{+}^{+}\left(P_{i}\right)
\end{aligned}
$$

Spin $1 / 2$ initial and final states,
but with opposite parity

Contributions from:

Photon hits quark

Photon hits diquark

Ini/Fin	0^{+}	0^{-}	1^{+}	1^{-}
0^{+}	$0^{+} \rightarrow 0^{+}$		$0^{+} \rightarrow 1^{+}$	$0^{+} \rightarrow 1^{-}$
1^{+}	$1^{+} \rightarrow 0^{+}$	$1^{+} \rightarrow 0^{-}$	$1^{+} \rightarrow 1^{+}$	$1^{+} \rightarrow 1^{-}$

- In this case, we can anticipate the number of relevant intermediate transitions:
$>$ The $0^{-}, 1^{-}$diquark contributions to the nucleon wavefunction are completely negligible.
$>$ The $0^{+} \rightarrow 0^{-}$diquark transition is trivially zero.
$>$ In the isospin symmetric limit, $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, the total contribution of the spectator 1^{+}diquark vanishes.
\rightarrow We are thus left with a total of 8 intermediate transitions.

SCI Results:

$\gamma^{(*)} \boldsymbol{p} \rightarrow \boldsymbol{N}(\mathbf{1 5 3 5}) \frac{1}{2}^{-}$transition

$\mathrm{N} \rightarrow \mathrm{N}(1535):$ Numerical results

- Transition form factors and helicity amplitudes:

Raya:2021pyr $\quad \mathrm{X} \quad x=Q^{2} / \bar{m}^{2}, \bar{m}=\left(m_{+}+m_{-}\right) / 2$:

- The form factor $F_{1}{ }^{*}$ is insensitive to the quark AMM
\rightarrow Conversely, F_{2} * is rather sensitive to it.
- $F_{1}{ }^{*}$ displays a fair agreement with CLAS data
- $F_{2}{ }^{*}$ becomes too hard as x increases, but it agrees in magnitude with data for $\zeta=1 / 3$
- The transverse helicity amplitude \mathbf{A} is sensitive to the AMM, but still in agreement with the experiment.
\rightarrow The longitudinal one, S, is the exact opposite.

$\mathrm{N} \rightarrow \mathrm{N}(1535):$ Numerical results

- Transition form factors and helicity amplitudes:

- Both form factors and helicity amplitudes are quite sensitive to the value gDB, i.e., to both the mass and diquark content of the nucleon parity partner.
- In fact, harder form factors and helicity amplitudes are produced by the heaviest $\mathrm{N}(1535)$.
\rightarrow This corresponds to the case in which the 0^{-} diquark overwhelms the rest.
- The best agreement with data is obtained when the 0^{+}and 0 - diquark content is balanced.

If one varies $g_{\mathrm{DB}} \rightarrow g_{\mathrm{DB}}(1 \pm 0.5)$, then $m_{N(1535)}$ $=(1.67,1.82) \mathrm{GeV}$ and

$N(1535) \frac{1}{2}^{-}$	s	a_{1}^{1}	a_{2}^{1}	p	v_{1}	v_{2}
$g_{\mathrm{DB}} 1.5$	0.76	0.27	0.18	0.49	0.12	0.08
$g_{\mathrm{DB}} 1.0$	0.66	0.20	0.14	0.68	0.11	0.09
$g_{\mathrm{DB}} 0.5$	0.35	0.04	0.00	0.92	-0.05	0.18

$\mathbf{N} \rightarrow \mathbf{N (1 5 3 5) : ~ N u m e r i c a l ~ r e s u l t s ~}$

- Dissection of the form factors: $\boldsymbol{F}_{1}{ }^{*}$.

Red: Photon strikes quark $\quad Q^{+} Q^{+}$
Blue: Photon strikes diquark, initial and final $D^{+} D^{+}$ one have same parity
Purple: Photon strikes diquark, initial and $D^{-} D^{+}$ final one have opposed parity
, The parity-flip contributions are practically negligible
ح There is a destructive interference between the other two contributions, $Q^{+} Q^{+} \quad D^{+} D^{+}$

- In particular, the strength of $Q^{+} Q^{+}$, seems to be modulated by $D^{+} D^{+}$

$\mathrm{N} \rightarrow \mathrm{N}(1535):$ Numerical results

- Dissection of the form factors: $\boldsymbol{F}_{2}{ }^{*}$.

Red: Photon strikes quark $Q^{+} Q^{+}$
Blue: Photon strikes diquark, initial and final $D^{+} D^{+}$ one have same parity
Purple: Photon strikes diquark, initial and $D^{-} D^{+}$ final one have opposed parity

Summary

1 just need the main ideas

Summary

, Theoretical evidence suggests the existence of dynamical diquark correlations:

- The 3-body Faddeev equation kernel self-arranges in blocks with spin-flavor structure of diquarks.
- The 2-body BSE reveal strong correlations in quark-quark scattering channels.
\rightarrow Consequently, the existence of non-point-like diquarks within baryons should be connected with EHM phenomena.
> Some experimental observables could yield to unambiguous signals of the presence of dynamical diquark correlations:
\rightarrow Nucleon transition form factors and structure functions, spectroscopy of exotic hadrons, etc.

Summary

, Theoretical evidence suggests the existence of dynamical diquark correlations:
\rightarrow The formation of non-point-like diquarks within baryons should be connected with EHM phenomena.
, Some experimental observables could yield to unambiguous signals of their existence.

, The case of the $\mathbf{N} \rightarrow \mathbf{N}(1535)$ electromagnetic transition is relevant because the structural differences between a hadron and its parity partner owe largely to DCSB.
> Our symmetry-preserving contact interaction computation revealed that such observable is highly sensitive to the baryon wavefunction and mass.
\rightarrow... which also happens to be interconnected
, Overall, the SCI exhibits a fair agreement with existing data. Then we anticipate sensible outcomes within more sophisticated approaches to QCD.

$\mathrm{N} \rightarrow \mathrm{N}(1535):$ Numerical results

- Transition form factors and helicity amplitudes:

$$
x=Q^{2} / \bar{m}^{2}, \bar{m}=\left(m_{+}+m_{-}\right) / 2
$$

