Diquarks on the Lattice

Anthony Francis

In collaboration with P. de Forcrand, R. Lewis and K. Maltman

NSTAR22 - The 13th International Workshop on the Physics of Excited Nucleons (virtual contribution)

Margherita Ligure, Genova, Italy, 19.10.2022

based on: [2203.16583][2203.03230] JHEP 05 (2022) 062 [2106.09080] Heavy spectrum - a precision tool and challenge to theory

Many new and exotic hadrons observed, e.g. 62 at the LHC

4-/5-quark states not expected in quark models. Many predicted quark model states not found.

... many not explained in theory QCD often approximated in models ~> many extensions possible ~> many interpretations ~> often contradictory statements

model	building blocks
" plain"	$q_{(i,c)}, \bar{q}_{(i,c)}$
diquark	$[qq]_{(i,j,c)} \& q/\bar{q}$
triquark	$[qq\bar{q}]_{(i,j,k,c)}$ & q/\bar{q}
hydro-onium	$[Q\bar{Q}]_{(i,j)}, \ [q\bar{q}]_{(i,j)},$
molecular	$[qqq]_{(i,j,k)}$ $[Q\bar{q}]_{(i,j)}, [q\bar{Q}]_{(i,j)},$ $[qqQ]_{(i,j,k)},$

One goal: Non-perturbative insights into exotic hadrons in full QCD

Diquarks - attractive building blocks for ordinary and exotic hadrons

Diquarks - an attractive concept

"The concept of diquarks is almost as old as the quark model, and actually predates QCD [1]" ~ arXiv:2203.16583; [1] PR 155, 1601 (1967)

Successful for low-lying baryons and exotic hadrons.
 Well founded in QCD with many predictions.
 But, experimental evidence has been elusive.

• Light diquarks:

 \circ special "good" ($\bar{3}_F, \bar{3}_c, J^P = 0^+$) configuration

- $\circ~$ quarks on "good" diquarks attract each other
- o large mass splitting in good, bad and not-even-bad
- o non-vanishing size or compact?
- HQSS-limit: A diquark acts as an antiquark $[QQ] \leftrightarrow \overline{Q}$. \rightsquigarrow currently one motivation for T_{QQ} -type hadrons, next slide

In the following:

- $\circ~$ new work on diquarks as possible effective d.o.f's in QCD
- was motivated by our studies of doubly heavy tetraquarks

Phys.Rev.D 102 (2020) 114506 [2006.14294] Phys.Rev.D 99 (2019) 5, 054505 [1810.10550] Phys.Rev.Lett. 118 (2017) 14, 142001 [1607.05214]

The case for doubly heavy tetraquarks - Diquarks and $qq'\bar{Q}\bar{Q}'$

Revisit ideas for stable multiquarks based on diquarks

- $\circ~$ Effective q-q interaction in "good" diquarks
- $\circ\;\; \mathsf{HQS}\;(Q\sim b)\;\mathsf{relates}\;[ar{Q}ar{Q}]_3\leftrightarrow Q$
- Combine (HH)+(II) diquarks into tetraquarks: $\left[\{ ag' \} [\bar{Q}\bar{Q}'] = (qC\gamma_5 g')(\bar{Q}C\gamma_i \bar{Q}') \right]$
- PDG mesons/baryons provide constraints

→Ader et al. ('82); Manohar, Wise ('93); .

[→]Mathur et al.'19

Diquarks on the lattice - a gauge invariant probe

• A problem for the lattice is that diquarks are colored, i.e. not-gauge invariant. • Could fix a gauge, but then properties are gauge-dependent (masses, sizes,...)

 \rightsquigarrow lattice and Dyson-Schwinger, see e.g. [15-20] in 2106.09080

Alternative: Static spectator quark Q (m_Q → ∞) cancels in mass differences.
 Diquark properties exposed in a gauge-invariant way.

 \rightsquigarrow hep-lat/0510082, hep-lat/0509113, hep-lat/0609004, arxiv:1012.2353

$$C_{\Gamma}(t) \sim \exp\left[-t\left(m_{D_{\Gamma}}+m_{Q}+\mathcal{O}(m_{Q}^{-1})
ight)
ight]$$

 $\rightsquigarrow t \rightarrow$ large, $m_Q \rightarrow$ large

 $[\]leadsto$ picture of baryons from Hosaka, 2013

Diquarks on the lattice - a gauge invariant probe

• A problem for the lattice is that diquarks are colored, i.e. not-gauge invariant. • Could fix a gauge, but then properties are gauge-dependent (masses, sizes,...)

 \rightsquigarrow lattice and Dyson-Schwinger, see e.g. [15-20] in 2106.09080

- Alternative: Static spectator quark Q $(m_Q \to \infty)$ cancels in mass differences.
 - o Diquark properties exposed in a gauge-invariant way.

~> hep-lat/0510082, hep-lat/0509113, hep-lat/0609004, arxiv:1012.2353

$$C_{\Gamma}(t) \sim \exp\left[-t\left(m_{D_{\Gamma}}+m_{Q}+\mathcal{O}(m_{Q}^{-1})
ight)
ight]$$

 $\rightsquigarrow t \rightarrow$ large, $m_Q \rightarrow$ large

• Lattice correlator: Diquark embedded in a static-light-light baryon

$$C_{\Gamma}(t) = \sum_{\vec{x}} \left\langle [D_{\Gamma}Q](\vec{x},t) \ [D_{\Gamma}Q]^{\dagger}(\vec{0},0) \right\rangle$$

$$\xrightarrow{\sim} \text{ static quark} = Q \text{ and } D_{\Gamma} = q^{c}C\Gamma q$$

$$\xrightarrow{\sim} \text{ flavor combinations } ud, \ \ell s, \ ss'$$

$$\xrightarrow{\sim} \text{ static-light mesons } [\bar{Q}\Gamma q]$$

Towards a clearer understanding and footing in QCD using lattice calcs

- spectrum: [diquark] mass differences are fundamental characteristics of QCD (Jaffe '05, arXiv:hep-ph/0409065)
- 2. spatial correlations: study attraction and special status of the "good" diquark
- 3. structure: estimate size and shape of the "good" diquark

Diquark spectroscopy

$$(1^+ - 0^+)_{qq'}$$
 splitting

We consider mass differences of qq'Q baryons:

$$C^{qq'Q}_{\Gamma}(t)-C^{qq'Q}_{\gamma_5}(t)$$

 $\rightsquigarrow Q$ drops out

 \rightsquigarrow measures diquark-diquark mass difference

Bad-good diquark splitting:

- $\circ~$ Special status of good diquark observed
- $\circ~{\rm Good}~0^+$ ud diquark lies lowest in the spectrum
- $\circ~$ Bad 1^+ ud diquark 100-200 MeV above
- $\circ~0^-$ and $1^ \mathit{ud}$ diquarks $\sim 0.5~GeV$ above
- $\circ~$ Pattern repeated in ℓs and ss'

 $\Delta m_{qq'Q}(m_{\pi})$ dependence:

- $\circ~$ Chiral limit: $\sim {\rm const}$
- \circ Heavy-quark limit: decreases $\sim 1/(m_{q_1}m_{q_2})$, with $m_\pi \sim (m_{q_1}+m_{q_2})$

$$\delta(1^+ - 0^+)_{q_1q_2} = A / \left[1 + (m_\pi/B)^{n \in 0,1,2}\right]$$

Lattice spectroscopy - diquark-quark differences

We consider mass differences of a qq'Q baryon and a light-static meson:

$$\begin{array}{|c|c|}\hline C_{\Gamma=\gamma_5}^{qq'Q}(t) - C_{\gamma_5}^{q'\bar{Q}}(t) \\ \hline & & \sim Q \text{ drops out} \\ & & \sim \text{ diquark-quark mass difference} \end{array}$$

 $\Delta m_{qq'Q}(m_{\pi})$ dependence:

 Chiral vs. heavy-quark limiting behaviours, as before

$$\delta(Q[q_1q_2]_{0^+} - \bar{Q}q_2) = C \left[1 + (m_{\pi}/D)^{n \in 0,1,2}\right]$$

Diquark-quark splitting:

- $\circ~$ Established mass differences between a good diquark and an <code>[anti]quark</code>
- $\circ~$ May prove useful in identifying favourable tetra-, pentaquark channels
- $\circ\,$ Omits possible distortions through additional light quarks, Pauli-blocking, spin-spin interactions $\ldots\,$

Diquark spectroscopy - comparing results

• We want to compare our results with phenomenology

 \rightsquigarrow more details in extra info slides

- $\circ\,$ Key resource: (Jaffe '05, arXiv:hep-ph/0409065), updated with PDG 2021 input
- $\circ~$ For pheno estimates combine charm and bottom hadron masses such that leading $\mathcal{O}(1/m_Q)~(Q=c,b)$ cancel
- The main spectroscopy results are summarised as:

All in [MeV]	$\delta E_{\text{lat}}(m_{\pi}^{\text{phys}})$	$\delta E_{\rm pheno}$	$\delta E_{\rm pheno}^{\rm bottom}$	$\delta E_{\rm pheno}^{\rm charm}$
$\delta(1^+-0^+)_{ud}$	198(4)	206(4)	206	210
$\delta(1^+ - 0^+)_{\ell s}$	145(5)	145(3)	145	148
$\delta(1^+ - 0^+)_{ss'}$	118(2)			
$\delta(Q[ud]_{0^+} - \overline{Q}u)$	319(1)	306(7)	306	313
$\delta(Q[\ell s]_{0^+}-ar{Q}s)$	385(9)	397(1)	397	398
$\delta(\textit{Q}[\ell s]_{0^+} - ar{\textit{Q}}\ell)$	450(6)			

 \leadsto use the bottom estimate for static

 \sim use charm-bottom difference as estimate for deviation from static

 $\Rightarrow \lesssim \mathcal{O}(7) \text{MeV}$ deviation

• Overall, very good agreement observed.

Diquark structure

Diquarks - spatial correlations

We access (good) diquark structure information through density-density correlations:

Main tool: Correlations between two light quarks' relative positions to the static quark. Note, when S and r_{ud} fixed, distance between static quark Q and light quarks q, q' is

- $\circ~$ Minimized for $\phi=\pi,$ possible disruption due to ${\it Q}$ is largest
- Maximized for $\phi = \pi/2$, possible disruption due to Q is smallest

Good diquark attraction

Setting $\phi = \pi/2$:

- $|\vec{x}_1| = |\vec{x}_2| = R$, use R, Θ : $\rho_2^{\perp}(R, \Theta) = \rho_2(r_{ud}, S, \pi/2)$
- Attraction visible through increase in ρ_2^{\perp} for small Θ at any fixed R

Two limiting cases for the two quarks: $\circ \cos(\Theta) = 1$ on top of each other $\circ \cos(\Theta) = -1$ opposite each other

"Lift" as qualitative criterion:

$$\frac{\rho_2^{\perp}(R,\Theta=0,\Gamma)}{\rho_2^{\perp}(R,\Theta=\pi/2,\gamma_5)}$$

Increase observed in good diquark only

Spatial correlation over Θ

Good diquark size

1 0e-04

• Distance between quarks: $r_{ud} = R_{\sqrt{2(1 - \cos(\Theta))}}$

→ different visualisation

- $\rho_2^{\perp}(R, r_{ud}) \sim \exp(-r_{ud}/r_0)$ \rightsquigarrow "characteristic size" r_0
- Need to control:
 - o interference from Q
 → we limit analysis to r_{ud} < R
 o periodicity effects
 - \rightarrow in practice we find $L = 5r_0$
- Further checks: $A(R, r_{ud} = 0) \sim \exp(-R/R_0)$

Data well described by (single) exponential Ansatz

 \circ all R shown simultaneously

2

 \circ combined fits over $\forall R$ with shared r_0

r_{ud}/a 10

8

Good diquark size:

- Agreement w/ prev. quenched and dynamical
- Refinement through our results
- $r_0 \simeq \mathcal{O}(0.6)$ fm weak m_{π} dependence $\rightarrow \sim r_{\text{meson, barvon, arXiv:1604.02891}}$

 $r_0(m_\pi)$ dependence:

- $\circ \ m_{q,q'} \uparrow \text{should produce more compact} \\ \text{object}$
- But, diquark attraction↓ works opposite
- Former effect dominates at large m_{π} ?
- But, in quenched diquarks definitely larger...

Shape of good diquarks - studying wavefunction "oblateness"

Tangential and radial spatial correlation decay

As opposed to before $R \neq fixed$: $\circ \phi = \pi$: radial correlation, $size \rightsquigarrow r_0^{\parallel}$ $\circ r_0^{\perp}/r_0^{\parallel}$ gives information on shape: = 1, spherical $\neq 1$, prolate/oblate $ize \rightsquigarrow r_0^{\perp}$

- Probe J = 0 nature of good diquark (spherical, S-wave expectation)
- Diquark polarisation through static quark?

• Goal: • r_0^{\perp} , r_0^{\parallel} at fixed *S*

Technical issue:

◦ (||) as before: R = S◦ (⊥) different: $R = \sqrt{(r^{\perp})^2 + S^2}$

Solution:

- \circ Introduce "nuisance" paremeter R_0
- $\circ~$ Adjusted in figure
- Parallel lines $\rightsquigarrow r_0^{\perp} = r_0^{\parallel}$
- $r_0^{\perp}/r_0^{\parallel}(m_{\pi})$ dependence:
 - $\circ~$ Ratio $\simeq 1$ for all m_π
 - $\,\circ\,$ Consistent w/ scalar, J= 0, shape
 - No diquark polarisation through Q observed

Summary - Diquarks on the lattice

Gauge invariant approach to diquarks in $n_f = 2 + 1$ lattice QCD

 $\circ~$ Lattice setup with short chiral extrapolations, continuum limit still required

Diquark spectroscopy

- Special status of "good" diquark confirmed, attraction of 198(4)MeV over "bad"
- $\circ~$ Chiral and flavor dependence modelled through simple Ansatz
- $\circ~$ Very good agreement with phenomenological estimates

Diquark structure

- $\circ q q$ attraction in good diquark induces compact spatial correlation
- \circ Good diquark size $r_0 \simeq \mathcal{O}(0.6)$ fm $\sim r_{
 m meson, \ baryon}$, weakly m_π dependent
- o Good diquark shape appears nearly spherical

Outlook

- $\circ\,$ Results provide clear, quantitative support for the good diquark picture
- $\circ~$ Hope to refine diquark model parameters
- $\circ~$ Insights for studies of exotic tetraquarks (esp. doubly heavy), heavy-baryons, etc.
- $\circ~$ Refinement towards diquarks in light baryons? Tetraquark diquark content? \ldots

Thank you for your attention.

Further material

A gauge invariant probe - lattice calculation details

• Lattice correlator: Diquark embedded in a static-light-light baryon

$$C_{\Gamma}(t) = \sum_{\vec{x}} \left\langle [D_{\Gamma}Q](\vec{x},t) \ [D_{\Gamma}Q]^{\dagger}(\vec{0},0) \right\rangle$$

→ static quark=Q and $D_{\Gamma} = q^{c}C\Gamma q$ → flavor combinations ud, ℓs , ss'→ static-light mesons $[\bar{Q}\Gamma q]$

setting up on the lattice - we recycle

 $one m_f = 2 + 1$ full QCD, $32^3 × 64$, a = 0.090 fm, $a^{-1} = 2.194$ GeV (PACS-CS gauges) $one m_π = 164, 299, 415, 575, 707$ MeV , $m_s ≃ m_s^{phys}$, propagators re-used from before

 $\circ~$ Quenched gauge a $\simeq 0.1 {\rm fm},~~m_\pi^{\rm valence}=909\,{\rm MeV}$, to match hep-lat/0509113

Diquark spectroscopy - phenomenological estimates

We want to compare our results with phenomenology

- $\circ\,$ Key resource: (Jaffe '05, arXiv:hep-ph/0409065), updated with PDG 2021 input
- $\circ~$ For pheno estimates use charm and bottom hadron masses where leading $\mathcal{O}(1/m_Q)~(Q=c,b)$ can be cancelled

Four estimates considered:

$$\circ \ \delta(1^{+} - 0^{+})_{ud} : \boxed{\frac{1}{3} \left(2M(\Sigma_{Q}^{*}) + M(\Sigma_{Q})\right) - M(\Lambda_{Q})}$$

$$\circ \ \delta(1^{+} - 0^{+})_{us} : \boxed{\frac{2}{3} \left(M(\Xi_{Q}^{*}) + M(\Sigma_{Q}) + M(\Omega_{Q})\right) - M(\Xi_{Q}) - M(\Xi_{Q}')}$$

$$\circ \ \delta(Q[ud]_{0^{+}} - \bar{Q}u) : \boxed{M(\Lambda_{Q}) - \frac{1}{4} \left(M(P_{Qu}) + 3M(V_{Qu})\right)}$$

$$\longrightarrow P_{Qu}, V_{Qu} \text{ are the ground-state, heavy-light mesons}$$

$$\circ \ \delta(Q[us]_{0^{+}} - \bar{Q}s) :$$

$$M(\Xi_Q) + M(\Xi'_Q) - \frac{1}{2}(M(\Sigma_Q) + M(\Omega_Q)) - \frac{1}{4}(M(P_{Qs}) + 3M(V_{Qs}))$$

 $\rightsquigarrow P_{\mathit{Qs}}, V_{\mathit{Qs}}$ are the ground-state, heavy-strange mesons

Δ -Nucleon mass difference

Measured the mass difference of $\Delta - N$

- Prediction: $\delta(\Delta N) = 3/2 \times \delta(1^+ 0^+)_{ud}$
- $\circ~$ Same Ansatz as before
- \circ Prediction holds well, even at fairly large m_{π}

A tunable system - opportunity together with pheno

 \circ E.g. scans in $m_{b'}$ map out the heavy quark mass dependence.

 \circ Away from physical masses the binding mechanism can be probed.

 \rightarrow Mass dependence can be confronted with model predictions.

 \rightarrow System can be tuned continuously from the bound to the resonant or non-interacting regimes.

 \rightarrow Requires robust control of finite volume spectrum.

Review of doubly heavy tetraquarks in lattice QCD

Confirm and predict doubly heavy tetraquarks non-perturbatively

Tetraquarks as ground states? What would their binding mechanism/properties be?

HQS-GDQ picture, consequences for $qq'\bar{Q}'\bar{Q}$ tetraquarks:

- $\circ J^P = 1^+$ ground state tetraquark below meson-meson threshold
- $\,\circ\,$ Deeper binding with heavier quarks in the $\bar{Q}'\,\bar{Q}$ diquark
- $\circ~$ Deeper binding for lighter quarks in the qq' diquark

Ideal for lattice: Diquark dynamics and HQS could enable $J^P = 1^+$ ground state doubly heavy tetraquarks with flavor content $qq'\bar{Q}\bar{Q}'$.

Goal: $\Delta E = E_{\text{tetra}} - E_{\text{meson-meson}}$, e.g. in $bb\bar{u}\bar{d}$, $bb\bar{\ell}\bar{s}$ and others \Rightarrow Verify, quantify predictions of binding mechanism in mind.

Lattice point of view

Hidden flavor qQq̄'Q̄ are tetraquark candidates as excitations of QQ̄'.
 → technical difficulty for lattice calculations, need to resolve many f.vol states.
 → qq'Q̄Q̄', i.e. ground state candidates would be better to handle.

In the following

- $\circ~$ Tetraquarks with two heavy (c, b) and two light ($\ell,s)$ quarks.
- $\circ~{\sf Lattice}$ evidence for $bb\bar u\bar d$, $bb\bar\ell\bar s$.
- $\circ~$ Recent updates on systematics.
- $\circ~$ Survey of candidates status.

Lattice tetraquarks - 4 main approaches

 Static quarks (m_Q = ∞) Fitted potentials used to predict bound states and resonances. Allows for potential formulation. Ansatz fitted to lattice data. Plug into Schrödinger Eq. for E_n. 	 3. Finite volume energy levels Lattice energies equated to (un)observed states. Operator matrix (GEVP) gives λ_i ∝ E_i ⇒ Finite volume states. > Binding? Get ΔE = E₀ - E_{thresh}. > Mechanism? Vary quark masses. ~→ AF et al. ('17,'18, '20), Hughes et al. ('17), Junnarkar et al. ('18), Leskovec et al. ('19), Mohanta et al. ('20)
 2. HAL QCD method Lattice potentials studied for scattering properties. Expansion of energy dependent potential (systematics?). Method under debate, best motivated for heavy systems. 	 4. Scattering analysis Lattice energies studied in terms of scattering phase shifts. ○ Excited state energies via GEVP. ○ Analyse fvol spectrum ⇒ Resonant, bound, virtual bound, free. ~>Hadron Spectrum Coll. ('18,'20)

Lattice tetraquarks - 4 step recipe

The main tool is to adopt a variational approach

Lattice GEVP gives access to finite volume energy states (masses, overlaps).

Beware: Operator overlaps do not necessarily connect to the naively expected structures. Be careful when equating lattice correlators with trial-wave functions.

Step I: Set up a basis of operators, here $J^P = 1^+$

Diquark-Antidiquark:

$$D = \left((q_a)^T (C\gamma_5) q'_b \right) \times \left[\bar{Q}_a (C\gamma_i) (\bar{Q'}_b)^T - a \leftrightarrow b \right]$$

Dimeson:

$$M = (\bar{b}_a \gamma_5 u_a) (\bar{b}_b \gamma_i d_b) - (\bar{b}_a \gamma_5 d_a) (\bar{b}_b \gamma_i u_b)$$

Step II: Solve the GEVP and fit the energies

$$\begin{aligned} F(t) &= \begin{pmatrix} G_{DD}(t) & G_{DM}(t) \\ G_{MD}(t) & G_{MM}(t) \end{pmatrix}, \quad F(t)\nu = \lambda(t)F(t_0)\nu , \\ G_{\mathcal{O}_1\mathcal{O}_2} &= \frac{C_{\mathcal{O}_1\mathcal{O}_2}(t)}{C_{PP}(t)C_{VV}(t)} , \ \lambda(t) = Ae^{-\Delta E(t-t_0)} . \\ &\simeq \Delta E = E_{\text{lotra}} - E_{\text{hresch}} \text{ in case of binding correlator } (C_{\mathcal{O}_1\mathcal{O}_2}(t))/(C_{PP}(t)C_{VV}(t)). \end{aligned}$$

Most use these operators, but a larger basis has been worked out.

 \Rightarrow Need to be used by more groups.

→ HadronSpectrum Coll. ('17)

Step III: Finite volume corrections

Large energy shifts are possible due to the finite lattice volume.

With a single volume available:

- \circ In a bound state corrections are $\sim \exp(binding momentum)$
 - \rightsquigarrow strong supp. m_{had} =heavy
- In a scattering state expect large deviation around threshold

With multiple volumes available:

- \circ Track mass dependence \leadsto decide bound/scatt. state
- Power law corrections might be too small to resolve

Step IV: Finite volume / Scattering analysis

Limitation: Small GEVP without f.vol analysis ok for deeply bound states. Insufficient to tell apart free, resonant or virtual bd. states.

Extension: Connect energies to scattering phase shifts via finite volume quantisation conditions (Lüscher-formalism).

 $\circ\,$ connect (many) f.vol states to scattering parameters (sketch: BW)

 $\circ\,$ resonance: extra state(s) appear, lowest state close to threshold

What we know: A review of recent lattice studies

What we know: Deeply bound $J^P = 1^+ bb\bar{u}\bar{d}$ and $bb\bar{\ell}\bar{s}$ tetraquarks

· Colquhoun, AF, Hudspith, Lewis, Maltman ('17, '18, '20)

Overview -possible doubly heavy tetraquark candidates

observed (>1 group) no deep binding observed (1 group) not confirmed (>1 grou	ıp)
channel	deeply bound
$J^P = 1^+$	bbūd bcūd bbls bcls bsūd csūd bbūc bbsc ccūd ccls bbbb
$J^{P} = 0^{+}$	bbūū ccūū bbūd bcūd bbls bcls bbsīs ccīs bsūd csūd bbūc bbsīc bbūc ccūd bbbīb

Surveying candidates

Deeply bound states
Focus: strong interaction stable
('17), Junnarkar et al. ('18), Leskovec et al. ('19), Mohanta et al. ('20)
States above threshold, resonances?
$ \begin{array}{l} \rightarrow bb\bar{u}\bar{d} \mbox{ in } J^P = 1^+ \mbox{ /w static quarks find a} \\ \mbox{ resonance just above threshold. } & \sim_{\rm Bicudo \mbox{ et al. ('19)}} \\ \rightarrow \mbox{ No results from other approaches. } \\ \rightarrow \mbox{ What about } cs\bar{u}\bar{d} \mbox{ ?} \end{array} $

Shallow binding?

 $\circ cc\bar{u}\bar{d}$ now observed by LHCb, robust lattice post-diction?

 \rightarrow Work to remove current limitations.