New insights into the quark model from lattice QCD

Derek Leinweber

In collaboration with: Curtis Abell, Liam Hockley, Waseem Kamleh, Yan Li, Zhan-Wei Liu, Finn Stokes, Tony Thomas, Jia-Jun Wu

THE UNIVERSITY of ADELAIDE

The spectrum of a simple quark model: N and Λ baryons
$\mathrm{N}(1 / 2+) \longrightarrow 2 \mathrm{~h} \omega$
${ }^{\sim} 2.0 \mathrm{GeV}$

~1 GeV Quark Model

The challenge of experiment

$$
\begin{aligned}
& \mathrm{N}(1 / 2+) \quad 2 \mathrm{~h} \omega \\
& \sim 2.0 \mathrm{GeV}
\end{aligned}
$$

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.
- It's time to reconsider our early notions about the quark-model and its excitation spectrum.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- Δ Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- Δ Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^{*}(1535)$ and $N^{*}(1650)$ Resonances: novel two quark-model basis-state analysis.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- Δ Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^{*}(1535)$ and $N^{*}(1650)$ Resonances: novel two quark-model basis-state analysis.
- $\Lambda(1405)$ Resonance: evidence of a molecular $\bar{K} N$ component

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- Δ Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^{*}(1535)$ and $N^{*}(1650)$ Resonances: novel two quark-model basis-state analysis.
- $\Lambda(1405)$ Resonance: evidence of a molecular $\bar{K} N$ component
- Roper $N(1440)$ Resonance:
- Lattice QCD results constrain the HEFT description of experimental data.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- Δ Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^{*}(1535)$ and $N^{*}(1650)$ Resonances: novel two quark-model basis-state analysis.
- $\Lambda(1405)$ Resonance: evidence of a molecular $\bar{K} N$ component
- Roper $N(1440)$ Resonance:
- Lattice QCD results constrain the HEFT description of experimental data.
- Conclusions

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
- HEFT reproduces the finite-volume expansion of chiral perturbation theory.

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
- HEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
- Predictions of the finite-volume spectrum are made.

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
- HEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
- Predictions of the finite-volume spectrum are made.
- The eigenvectors of the Hamiltonian provide insight into the composition of the energy eigenstates.
- Insight is similar to that provided by correlation-matrix eigenvectors in Lattice QCD.

Infinite Volume Model

- The rest-frame Hamiltonian has the form $H=H_{0}+H_{I}$, with

$$
H_{0}=\sum_{B_{0}}\left|B_{0}\right\rangle m_{B_{0}}\left\langle B_{0}\right|+\sum_{\alpha} \int d^{3} k|\alpha(\boldsymbol{k})\rangle \omega_{\alpha}(\boldsymbol{k})\langle\alpha(\boldsymbol{k})|,
$$

Infinite Volume Model

- The rest-frame Hamiltonian has the form $H=H_{0}+H_{I}$, with

$$
H_{0}=\sum_{B_{0}}\left|B_{0}\right\rangle m_{B_{0}}\left\langle B_{0}\right|+\sum_{\alpha} \int d^{3} k|\alpha(\boldsymbol{k})\rangle \omega_{\alpha}(\boldsymbol{k})\langle\alpha(\boldsymbol{k})|,
$$

- $\left|B_{0}\right\rangle$ denotes a quark-model-like basis state with bare mass $m_{B_{0}}$.

Infinite Volume Model

- The rest-frame Hamiltonian has the form $H=H_{0}+H_{I}$, with

$$
H_{0}=\sum_{B_{0}}\left|B_{0}\right\rangle m_{B_{0}}\left\langle B_{0}\right|+\sum_{\alpha} \int d^{3} k|\alpha(\boldsymbol{k})\rangle \omega_{\alpha}(\boldsymbol{k})\langle\alpha(\boldsymbol{k})|,
$$

- $\left|B_{0}\right\rangle$ denotes a quark-model-like basis state with bare mass $m_{B_{0}}$.
- $|\alpha(\boldsymbol{k})\rangle$ designates a two-particle non-interacting basis-state channel with energy

$$
\omega_{\alpha}(\boldsymbol{k})=\omega_{\alpha_{M}}(\boldsymbol{k})+\omega_{\alpha_{B}}(\boldsymbol{k})=\sqrt{\boldsymbol{k}^{2}+m_{\alpha_{M}}^{2}}+\sqrt{\boldsymbol{k}^{2}+m_{\alpha_{B}}^{2}},
$$

for $M=$ Meson, $B=$ Baryon.

Infinite Volume Model

- The interaction Hamiltonian includes two parts, $H_{I}=g+v$.
- $1 \rightarrow 2$ particle vertex

$$
g=\sum_{\alpha, B_{0}} \int d^{3} k\left\{|\alpha(\boldsymbol{k})\rangle G_{\alpha, B_{0}}^{\dagger}(k)\left\langle B_{0}\right|+h . c .\right\},
$$

Infinite Volume Model

- The interaction Hamiltonian includes two parts, $H_{I}=g+v$.
- $1 \rightarrow 2$ particle vertex

$$
g=\sum_{\alpha, B_{0}} \int d^{3} k\left\{|\alpha(\boldsymbol{k})\rangle G_{\alpha, B_{0}}^{\dagger}(k)\left\langle B_{0}\right|+h . c .\right\},
$$

- $2 \rightarrow 2$ particle vertex

$$
v=\sum_{\alpha, \beta} \int d^{3} k d^{3} k^{\prime}|\alpha(\boldsymbol{k})\rangle V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)\left\langle\beta\left(\boldsymbol{k}^{\prime}\right)\right| .
$$

S-wave vertex interactions

- S-wave vertex interactions between the one baryon and two-particle meson-baryon channels for e.g. $N^{*}(1535)$ or $\Lambda^{*}(1405)$ cases take the form

$$
G_{\alpha, B_{0}}(k)=g_{B_{0} \alpha} \frac{\sqrt{3}}{2 \pi f_{\pi}} \sqrt{\omega_{\alpha_{M}}(k)} u(k, \Lambda),
$$

with regulator

$$
u(k, \Lambda)=\left(1+\frac{k^{2}}{\Lambda^{2}}\right)^{-2}, \quad \text { and fixed } \Lambda \sim 0.8 \rightarrow 1.0 \mathrm{GeV}
$$

P-wave and higher vertex interactions

- P-wave and higher vertex interactions for the $\Delta(1232)$ or $N^{*}(1440)$ take the form

$$
G_{\alpha, B_{0}}(k)=g_{B_{0} \alpha} \frac{1}{4 \pi^{2}}\left(\frac{k}{f_{\pi}}\right)^{l_{\alpha}} \frac{u(k, \Lambda)}{\sqrt{\omega_{\alpha_{M}}(k)}},
$$

where l_{α} is the orbital angular momentum in channel α.

Two-to-two particle interactions

- For the direct two-to-two particle interaction, we introduce separable potentials.

Two-to-two particle interactions

- For the direct two-to-two particle interaction, we introduce separable potentials.
- For the $S_{11} \pi N$ channel

$$
V_{\pi N, \pi N}^{S}\left(k, k^{\prime}\right)=v_{\pi N, \pi N} \frac{3}{4 \pi^{2} f_{\pi}^{2}} \tilde{u}_{\pi N}(k, \Lambda) \tilde{u}_{\pi N}\left(k^{\prime}, \Lambda\right)
$$

where the scattering potential gains a low energy enhancement via

$$
\tilde{u}_{\pi N}(k, \Lambda)=u(k, \Lambda) \frac{m_{\pi}^{\text {phys }}+\omega_{\pi}(k)}{\omega_{\pi}(k)}
$$

and $u(k, \Lambda)$ takes the dipole form.

Two-to-two particle interactions

- For P-wave scattering in the $\Delta(1232)$ or $N^{*}(1440)$ channels
$V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)=v_{\alpha, \beta} \frac{1}{4 \pi^{2} f_{\pi}^{2}} \frac{k}{\omega_{\alpha_{M}}(k)} \frac{k^{\prime}}{\omega_{\beta_{M}}\left(k^{\prime}\right)} u(k, \Lambda) u\left(k^{\prime}, \Lambda\right)$.

Two-to-two particle interactions

- For P-wave scattering in the $\Delta(1232)$ or $N^{*}(1440)$ channels

$$
V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)=v_{\alpha, \beta} \frac{1}{4 \pi^{2} f_{\pi}^{2}} \frac{k}{\omega_{\alpha_{M}}(k)} \frac{k^{\prime}}{\omega_{\beta_{M}}\left(k^{\prime}\right)} u(k, \Lambda) u\left(k^{\prime}, \Lambda\right) \cdot \quad N(\boldsymbol{k})
$$

- For the $\Lambda^{*}(1405)$, the Weinberg-Tomozawa term is considered

$$
V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)=g_{\alpha, \beta}^{\Lambda^{*}} \frac{\left[\omega_{\alpha_{M}}(k)+\omega_{\beta_{M}}\left(k^{\prime}\right)\right] u(k, \Lambda) u\left(k^{\prime}, \Lambda\right)}{16 \pi^{2} f_{\pi}^{2} \sqrt{\omega_{\alpha_{M}}(k) \omega_{\beta_{M}}\left(k^{\prime}\right)}},
$$

Infinite-Volume scattering amplitude

- The T-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$
T_{\alpha, \beta}\left(k, k^{\prime} ; E\right)=\tilde{V}_{\alpha, \beta}\left(k, k^{\prime} ; E\right)+\sum_{\gamma} \int q^{2} d q \frac{\tilde{V}_{\alpha, \gamma}(k, q ; E) T_{\gamma, \beta}\left(q, k^{\prime} ; E\right)}{E-\omega_{\gamma}(q)+i \epsilon}
$$

Infinite-Volume scattering amplitude

- The T-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$
T_{\alpha, \beta}\left(k, k^{\prime} ; E\right)=\tilde{V}_{\alpha, \beta}\left(k, k^{\prime} ; E\right)+\sum_{\gamma} \int q^{2} d q \frac{\tilde{V}_{\alpha, \gamma}(k, q ; E) T_{\gamma, \beta}\left(q, k^{\prime} ; E\right)}{E-\omega_{\gamma}(q)+i \epsilon}
$$

- The coupled-channel potential is readily calculated from the interaction Hamiltonian

$$
\tilde{V}_{\alpha, \beta}\left(k, k^{\prime}\right)=\sum_{B_{0}} \frac{G_{\alpha, B_{0}}^{\dagger}(k) G_{\beta, B_{0}}\left(k^{\prime}\right)}{E-m_{B_{0}}}+V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)
$$

Infinite-Volume scattering matrix

- The S-matrix is related to the T-matrix by

$$
S_{\alpha, \beta}(E)=1-2 i \sqrt{\rho_{\alpha}(E) \rho_{\beta}(E)} T_{\alpha, \beta}\left(k_{\alpha \mathrm{cm}}, k_{\beta \mathrm{cm}} ; E\right),
$$

with

$$
\rho_{\alpha}(E)=\pi \frac{\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)}{E} k_{\alpha \mathrm{cm}}
$$

and $k_{\alpha \mathrm{cm}}$ satisfies the on-shell condition

$$
\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right)+\omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)=E .
$$

Infinite-Volume scattering matrix

- The S-matrix is related to the T-matrix by

$$
S_{\alpha, \beta}(E)=1-2 i \sqrt{\rho_{\alpha}(E) \rho_{\beta}(E)} T_{\alpha, \beta}\left(k_{\alpha \mathrm{cm}}, k_{\beta \mathrm{cm}} ; E\right),
$$

with

$$
\rho_{\alpha}(E)=\pi \frac{\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)}{E} k_{\alpha \mathrm{cm}},
$$

and $k_{\alpha \mathrm{cm}}$ satisfies the on-shell condition

$$
\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right)+\omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)=E
$$

- The cross section $\sigma_{\alpha, \beta}$ for the process $\alpha \rightarrow \beta$ is

$$
\sigma_{\alpha, \beta}=\frac{4 \pi^{3} k_{\alpha \mathrm{cm}} \omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\beta_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\beta_{B}}\left(k_{\alpha \mathrm{cm}}\right)}{E^{2} k_{\beta \mathrm{cm}}}\left|T_{\alpha, \beta}\left(k_{\alpha \mathrm{cm}}, k_{\beta \mathrm{cm}} ; E\right)\right|^{2}
$$

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving for the energy eigenstates...

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving for the energy eigenstates...

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving for the energy eigenstates...

πN phase shift and inelasticity

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving for the energy eigenstates...

P-wave πN phase shifts in the Δ channel - $1 \pi N$ channel

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$
k_{n}=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}} \frac{2 \pi}{L},
$$

with $n_{i}=0,1,2, \ldots$ and integer $n=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$.

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$
k_{n}=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}} \frac{2 \pi}{L},
$$

with $n_{i}=0,1,2, \ldots$ and integer $n=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$.

- The degeneracy of each k_{n} is described by $C_{3}(n)$, which counts the number of ways the integers n_{x}, n_{y}, and n_{z}, can be squared and summed to n.

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$
k_{n}=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}} \frac{2 \pi}{L}
$$

with $n_{i}=0,1,2, \ldots$ and integer $n=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$.

- The degeneracy of each k_{n} is described by $C_{3}(n)$, which counts the number of ways the integers n_{x}, n_{y}, and n_{z}, can be squared and summed to n.
- The non-interacting Hamiltonian takes the form

$$
H_{0}=\operatorname{diag}\left(m_{B_{0}}, \omega_{\pi N}\left(k_{0}\right), \omega_{\pi \Delta}\left(k_{0}\right), \omega_{\pi N}\left(k_{1}\right), \omega_{\pi \Delta}\left(k_{1}\right), \ldots\right)
$$

Interaction Hamiltonian Terms

- $1 \rightarrow 2$ particle interaction terms sit in the first row and column.

$$
H_{I}=\left(\begin{array}{ccccccc}
0 & \bar{G}_{\pi N, B_{0}}\left(k_{0}\right) & \cdots & \bar{G}_{\pi \Delta, B_{0}}\left(k_{0}\right) & \bar{G}_{\pi N, B_{0}}\left(k_{1}\right) & \ldots & \bar{G}_{\pi \Delta, B_{0}}\left(k_{1}\right) \cdots \\
\bar{G}_{\pi N, B_{0}}^{\dagger}\left(k_{0}\right) & 0 & & & & \\
\vdots & & 0 & & & \\
\bar{G}_{\pi \Delta, B_{0}}^{\dagger}\left(k_{0}\right) & & & \ddots & & \\
\bar{G}_{\pi N, B_{0}}^{\dagger}\left(k_{1}\right) & & & & & \\
\vdots & & & & & \\
\bar{G}_{\pi \Delta, B_{0}}^{\dagger}\left(k_{1}\right) & & & & \\
\vdots & & & &
\end{array}\right)
$$

- ... allow for additional channels.

Interaction Hamiltonian Terms

- $1 \rightarrow 2$ particle interaction terms sit in the first row and column.

$$
H_{I}=\left(\begin{array}{ccccccc}
0 & \bar{G}_{\pi N, B_{0}}\left(k_{0}\right) & \cdots & \bar{G}_{\pi \Delta, B_{0}}\left(k_{0}\right) & \bar{G}_{\pi N, B_{0}}\left(k_{1}\right) & \ldots & \bar{G}_{\pi \Delta, B_{0}}\left(k_{1}\right) \cdots \\
\bar{G}_{\pi N, B_{0}}^{\dagger}\left(k_{0}\right) & 0 & & & & \\
\vdots & & 0 & & & \\
\bar{G}_{\pi \Delta, B_{0}}^{\dagger}\left(k_{0}\right) & & & \ddots & & \\
\bar{G}_{\pi N, B_{0}}^{\dagger}\left(k_{1}\right) & & & & & \\
\vdots & & & & & \\
\bar{G}_{\pi \Delta, B_{0}}^{\dagger}\left(k_{1}\right) & & & & \\
\vdots & & & &
\end{array}\right)
$$

- ... allow for additional channels.
- $2 \rightarrow 2$ particle interaction terms, $\bar{V}_{\alpha, \beta}^{S}\left(k_{n}, k_{n^{\prime}}\right)$, fill out the rest of the matrix.

Relation to infinite-volume contributions

- The finite volume Hamiltonian interaction terms are related to the infinite-volume contributions via

$$
\int k^{2} d k=\frac{1}{4 \pi} \int d^{3} k \rightarrow \frac{1}{4 \pi} \sum_{n \in \mathbb{Z}^{3}}\left(\frac{2 \pi}{L}\right)^{3}=\frac{1}{4 \pi} \sum_{n \in \mathbb{Z}} C_{3}(n)\left(\frac{2 \pi}{L}\right)^{3}
$$

such that

$$
\begin{aligned}
\bar{G}_{\alpha, B_{0}}\left(k_{n}\right) & =\sqrt{\frac{C_{3}(n)}{4 \pi}}\left(\frac{2 \pi}{L}\right)^{\frac{3}{2}} G_{\alpha, B_{0}}\left(k_{n}\right), \\
\bar{V}_{\alpha \beta}^{S}\left(k_{n}, k_{m}\right) & =\sqrt{\frac{C_{3}(n)}{4 \pi}} \sqrt{\frac{C_{3}(m)}{4 \pi}}\left(\frac{2 \pi}{L}\right)^{3} V_{\alpha \beta}^{S}\left(k_{n}, k_{m}\right) .
\end{aligned}
$$

Finite Volume Eigenmode Solution

- Standard Lapack routines provide eigenmode solutions of

$$
\langle i| H|j\rangle\left\langle j \mid E_{\alpha}\right\rangle=E_{\alpha}\left\langle i \mid E_{\alpha}\right\rangle,
$$

- where $|i\rangle$ and $|j\rangle$ are the non-interacting basis states,
- E_{α} is the energy eigenvalue, and
- $\left\langle i \mid E_{\alpha}\right\rangle$ is the eigenvector of the
- Hamiltonian matrix $\langle i| H|j\rangle$.

Energy eigenstates on an $L=5 \mathrm{fm}$ lattice for different regulators

- dashed lines are the non-interacting πN basis-state energy levels.
- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.
- Incorporation of the Lüscher formalism ensures energy eigenstates below 1.35 GeV are model independent.

P-wave πN phase shifts in the Δ channel - $1 \pi N$ channel

Energy eigenstates on an $L=5 \mathrm{fm}$ lattice for different regulators

- dashed lines are the non-interacting πN basis-state energy levels.
- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.
- Incorporation of the Lüscher formalism ensures energy eigenstates below 1.35 GeV are model independent.
P-wave πN scattering in the Δ channel - 2 channel πN and $\pi \Delta$

P-wave πN scattering in the Δ channel - 2 channel πN and $\pi \Delta$

- Anticipate regulator independence to 1.7 GeV .

Energy eigenstates on an $L=5 \mathrm{fm}$ lattice for different regulators

- dashed lines are the non-interacting πN and $\pi \Delta$ basis-state energy levels.
- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.

Energy eigenstates on an $L=5 \mathrm{fm}$ lattice for different regulators

- dashed lines are the non-interacting πN and $\pi \Delta$ basis-state energy levels.
- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.
- πN scattering data alone is insufficient to uniquely constrain the Hamiltonian.

Mass dependence of energy eigenstates - Fit to PACS-CS Δ masses

- Lattice QCD results can constrain the Hamiltonian description of experimental data.

CLS Consortium finite-volume lattice energies of Δ-channel excitations

- C. Morningstar, et al. PoS LATTICE2021 (2022), 170 [arXiv:2111.07755 [hep-lat]].
- C. W. Andersen, J. Bulava, B. Hörz and C. Morningstar, Phys. Rev. D 97 (2018) 014506 [arXiv:1710.01557 [hep-lat]].

New examination of low-lying odd-parity nucleon resonances

- Motivated by lattice QCD calculations of the electromagnetic form factors of the two low-lying odd-parity states.
F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].
- Parity-expanded variational analysis (PEVA) removes opposite-parity contaminants.
- Confirms quark model predictions for N^{*} magnetic moments.

N^{*} Magnetic Moments and the constituent quark model

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

Model Calculation References

- CQM (2003)
W.-T. Chiang, S. N. Yang, M. Vanderhaeghen, and D. Drechsel, Magnetic dipole moment of the S 11 (1535) from the $\gamma p \rightarrow \gamma \eta p$ reaction, Nucl. Phys. A723, 205 (2003), nucl-th/0211061
- χ CQM (2005)
J. Liu, J. He, and Y. Dong, Magnetic moments of negative-parity low-lying nucleon resonances in quark models, Phys. Rev. D71, 094004 (2005).
- χ CQM (2013)
N. Sharma, A. Martinez Torres, K. Khemchandani, and H. Dahiya, Magnetic moments of the low-lying 1/2- octet baryon resonances, Eur. Phys. J. A49, 11 (2013), arXiv:1207.3311

New examination of low-lying odd-parity nucleon resonances

- Both the $N^{*}(1535)$ and $N^{*}(1650)$ are quark-model like at larger quark masses.

New examination of low-lying odd-parity nucleon resonances

- Both the $N^{*}(1535)$ and $N^{*}(1650)$ are quark-model like at larger quark masses.
- Perform the first HEFT analysis with two bare basis states which
- Mix to form the $N^{*}(1535)$ and $N^{*}(1650)$.

New examination of low-lying odd-parity nucleon resonances

- Both the $N^{*}(1535)$ and $N^{*}(1650)$ are quark-model like at larger quark masses.
- Perform the first HEFT analysis with two bare basis states which
- Mix to form the $N^{*}(1535)$ and $N^{*}(1650)$.
- Informed by the decay properties of these resonances and energy thresholds, the calculation includes three meson-baryon scattering channels, $\pi N, \eta N$, and $K \Lambda$.

New examination of low-lying odd-parity nucleon resonances

- Both the $N^{*}(1535)$ and $N^{*}(1650)$ are quark-model like at larger quark masses.
- Perform the first HEFT analysis with two bare basis states which
- Mix to form the $N^{*}(1535)$ and $N^{*}(1650)$.
- Informed by the decay properties of these resonances and energy thresholds, the calculation includes three meson-baryon scattering channels, $\pi N, \eta N$, and $K \Lambda$.
- 21 parameter fit provides an excellent characterisation of the data.
- Pole positions agree with PDG.

Phase shift and inelasticity for the low-lying odd-parity spin-1/2 nucleon resonances

- WI08 single-energy data from SAID.
- Vertical lines indicate the opening of the ηN and $K \Lambda$ thresholds.

Phase shift and inelasticity for the low-lying odd-parity spin-1/2 nucleon resonances

- Note the three-body $\pi \pi N$ threshold at 1.22 GeV .
- See Max Hansen's talk in Parallel Session 1, today at 4:20 pm.

Finite-volume $L=3 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Finite-volume $L=2 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Finite-volume $L=2 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Finite Volume Eigenmode Solution

- Standard Lapack routines provide eigenmode solutions of

$$
\langle i| H|j\rangle\left\langle j \mid E_{\alpha}\right\rangle=E_{\alpha}\left\langle i \mid E_{\alpha}\right\rangle
$$

- Eigenvector $\left\langle i \mid E_{\alpha}\right\rangle$ describes the composition of the eigenstate $\left|E_{\alpha}\right\rangle$ in terms of the basis states $|i\rangle$ with

$$
|i\rangle=\left|B_{0}\right\rangle, \quad\left|\pi N, k_{0}\right\rangle, \quad\left|\pi N, k_{1}\right\rangle, \quad \cdots\left|\eta N, k_{0}\right\rangle, \quad\left|\eta N, k_{1}\right\rangle, \quad \cdots .
$$

Finite Volume Eigenmode Solution

- Standard Lapack routines provide eigenmode solutions of

$$
\langle i| H|j\rangle\left\langle j \mid E_{\alpha}\right\rangle=E_{\alpha}\left\langle i \mid E_{\alpha}\right\rangle .
$$

- Eigenvector $\left\langle i \mid E_{\alpha}\right\rangle$ describes the composition of the eigenstate $\left|E_{\alpha}\right\rangle$ in terms of the basis states $|i\rangle$ with

$$
|i\rangle=\left|B_{0}\right\rangle, \quad\left|\pi N, k_{0}\right\rangle, \quad\left|\pi N, k_{1}\right\rangle, \quad \cdots\left|\eta N, k_{0}\right\rangle, \quad\left|\eta N, k_{1}\right\rangle, \quad \cdots .
$$

- The overlap of the bare basis state $\left|B_{0}\right\rangle$ with eigenstate $\left|E_{\alpha}\right\rangle$,

$$
\left\langle B_{0} \mid E_{\alpha}\right\rangle,
$$

is of particular interest,

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χ PT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$
\frac{3}{16} \frac{1}{\left(f_{\pi} L\right)^{2} E_{\pi} L}\left(\frac{E_{N}-M_{N}}{E_{N}}\right) \sim 10^{-3}
$$

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χ PT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$
\frac{3}{16} \frac{1}{\left(f_{\pi} L\right)^{2} E_{\pi} L}\left(\frac{E_{N}-M_{N}}{E_{N}}\right) \sim 10^{-3}
$$

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

- Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

$$
\bar{\chi}(0)|\Omega\rangle \simeq\left|B_{0}\right\rangle
$$

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χ PT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$
\frac{3}{16} \frac{1}{\left(f_{\pi} L\right)^{2} E_{\pi} L}\left(\frac{E_{N}-M_{N}}{E_{N}}\right) \sim 10^{-3}
$$

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-latt].

- Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

$$
\bar{\chi}(0)|\Omega\rangle \simeq\left|B_{0}\right\rangle
$$

- Element $\left\langle B_{0} \mid E_{\alpha}\right\rangle$ of the eigenvector governs the likelihood of observing $\left|E_{\alpha}\right\rangle$. 38 of 77

Finite-volume $L=3 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Finite-volume $L=3 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Finite-volume $L=3 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Energy eigenstate composition - 3 fm lattice

Finite-volume $L=2 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Finite-volume $L=2 \mathrm{fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons

Finite-volume $L=2 \mathrm{fm}$ energy levels for low-lying odd-parity spin- $1 / 2$ nucleons

Energy eigenstate composition - 2 fm lattice

Analysis of low-lying odd-parity Λ resonances

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.

Analysis of low-lying odd-parity Λ resonances

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.
- Eight two-to-two particle couplings are considered for isospin 0 and 1

$$
g_{\pi \Sigma, \pi \Sigma}^{0}, g_{\bar{K} N, \bar{K} N}^{0}, g_{\bar{K} N, \pi \Sigma}^{0}, g_{H}^{0}, g_{\pi \Sigma, \pi \Sigma}^{1}, g_{\bar{K} N, \bar{K} N}^{1}, g_{\bar{K} N, \pi \Sigma}^{1}, g_{\bar{K} N, \pi A}^{1},
$$

Analysis of low-lying odd-parity Λ resonances

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.
- Eight two-to-two particle couplings are considered for isospin 0 and 1

$$
g_{\pi \Sigma, \pi \Sigma}^{0}, g_{\bar{K} N, \bar{K} N}^{0}, g_{\bar{K} N, \pi \Sigma}^{0}, g_{H}^{0}, g_{\pi \Sigma, \pi \Sigma}^{1}, g_{\bar{K} N, \bar{K} N}^{1}, g_{\bar{K} N, \pi \Sigma}^{1}, g_{\bar{K} N, \pi \Lambda}^{1},
$$

- Five parameters describing bare to two-particle interactions are introduced

$$
m_{B_{0}}, g_{\pi \Sigma, B_{0}}^{0}, g_{K N, B_{0}}^{0}, g_{\eta \Lambda, B_{0}}^{0}, g_{K \Xi, B_{0}}^{0},
$$

Analysis of low-lying odd-parity Λ resonances

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.
- Eight two-to-two particle couplings are considered for isospin 0 and 1

$$
g_{\pi \Sigma, \pi \Sigma}^{0}, g_{\bar{K} N, \bar{K} N}^{0}, g_{\bar{K} N, \pi \Sigma}^{0}, g_{H}^{0}, g_{\pi \Sigma, \pi \Sigma}^{1}, g_{\bar{K} N, \bar{K} N}^{1}, g_{\bar{K} N, \pi \Sigma}^{1}, g_{\bar{K} N, \pi A}^{1},
$$

- Five parameters describing bare to two-particle interactions are introduced

$$
m_{B_{0}}, g_{\pi \Sigma, B_{0}}^{0}, g_{\bar{K} N, B_{0}}^{0}, g_{\eta \Lambda, B_{0}}^{0}, g_{K \Xi, B_{0}}^{0}
$$

- These 13 parameters are constrained by experimental data.

Couplings and $m_{B_{0}}$ Constrained by Experiment

(a) $K^{-} p \rightarrow K^{-} p$

(b) $K^{-} p \rightarrow \bar{K}^{0} n$
(c) $K^{-} p \rightarrow \pi^{-} \Sigma^{+}$

(d) $K^{-} p \rightarrow \pi^{0} \Sigma^{0}$

(f) $K^{-} p \rightarrow \pi^{0} \Lambda$

Finite Volume Λ Spectrum for $L=3 \mathrm{fm}$

Finite Volume Λ Spectrum for $L=3 \mathrm{fm}$

(a) State 1

(b) State 2

(c) State 3

(d) State 4

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the $\Lambda(1405)$ when it is dominated by a $\bar{K} N$ molecule.

Strange Magnetic Form Factor of the $\Lambda(1405)$

M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

Where is the Roper resonance?

- CSSM: Z. W. Liu, et al. [CSSM], Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]
- Cyprus: C. Alexandrou, et al. (AMIAS), Phys. Rev. D 91, 014506 (2015) arXiv:1411.6765 [hep-lat]
- JLab: R. G. Edwards, et al. [HSC] Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].

54 of 77

Search for low-lying lattice QCD eigenstates in the Roper regime

A. L. Kiratidis, et al., [CSSM] Phys. Rev. D 95, no. 7, 074507 (2017) [arXiv:1608.03051 [hep-lat]].

Have we seen the $2 s$ excitation of the quark model?

Landau-Gauge Wave functions from the Lattice

- Measure the overlap of the annihilation operator with the state as a function of the quark positions.

Comparison with the Simple Quark Model [CSSM]

D. S. Roberts, W. Kamleh and D. B. Leinweber, Phys. Lett. B 725, 164 (2013) [arXiv:1304.0325 [hep-lat]].

First positive-parity excitation: Charge Radii

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

First positive-parity excitation: Magnetic moments

The $2 s$ excitation of the nucleon sits at 1.9 GeV

The $2 s$ excitation of the nucleon sits at 1.9 GeV

- The $N 1 / 2^{+}(1880)$ observed in photoproduction is associated with the $2 s$ excitation of the nucleon.
- Z. W. Liu, W. Kamleh, DBL, F. M. Stokes, A. W. Thomas and J. J. Wu, Phys. Rev. D 95, no. 3, 034034 (2017)
[arXiv:1607.04536 [nucl-th]]

The $2 s$ excitation of the nucleon sits at 1.9 GeV

- The $N 1 / 2^{+}(1880)$ observed in photoproduction is associated with the $2 s$ excitation of the nucleon.
- Z. W. Liu, W. Kamleh, DBL, F. M. Stokes, A. W. Thomas and J. J. Wu, Phys. Rev. D 95, no. 3, 034034 (2017)
[arXiv:1607.04536 [nucl-th]]
- What about the Roper resonance?

Positive-parity Nucleon Spectrum: Bare Roper Case with $m_{0}=1.7 \mathrm{GeV}$

- Consider $\pi N, \pi \Delta$ and σN channels, dressing a bare state.
- Fit to phase shift and inelasticity.
(dashed blue curve)

- Fit yields two poles in the region of the PDG estimate $1365 \pm 15-i 95 \pm 15 \mathrm{MeV}$. 65 of 77

1.7 GeV Bare Roper: Hamiltonian Model N^{\prime} Spectrum

Positive-parity Nucleon Spectrum: Bare Roper Case with $m_{0}=2.0 \mathrm{GeV}$

J. j. Wu, et al. [CSSM], arXiv:1703.10715 [nucl-th]

- Consider $\pi N, \pi \Delta$ and σN channels, dressing a bare state.
- Fit to

- Fit yields a pole at $1393-i 167 \mathrm{MeV} \sim$ PDG estimate $1365 \pm 15-i 95 \pm 15 \mathrm{MeV}$. 67 of 77

2.0 GeV Bare Roper: Hamiltonian Model N^{\prime} Spectrum

2.0 GeV Bare Roper: Hamiltonian Model N^{\prime} Spectrum

$\pi N, \pi \Delta$ and σN channels, dressing a bare state.
C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek, Phys. Rev. D 95, no. 1, 014510 (2017) [arXiv:1610.01422 [hep-lat]].

Two different descriptions of the Roper resonance

(left) Meson dressings of a quark-model like core.
(right) Resonance generated by strong rescattering in meson-baryon channels.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.
Produces poles in accord with PDG.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well. Produces poles in accord with PDG.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well. Produces poles in accord with PDG.
1st lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$

Describes experimental data well.
Produces poles in accord with PDG.

1st lattice scattering state created via σN interpol| \checkmark | |
| :---: | :---: |
| \checkmark | \checkmark |
| \checkmark | \checkmark | ator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
1st lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
2nd lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
1st lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
2nd lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
1st lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
2nd lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
1st lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
2nd lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
1st lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
2nd lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.
HEFT predicts three-quark states that exist in lattice QCD.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.
Produces poles in accord with PDG.
1st lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
2nd lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.
HEFT predicts three-quark states that exist in lattice QCD.

Two different descriptions of the Roper resonance

(left) Meson dressings of a quark-model like core.
(right) Resonance generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

- The $2 s$ excitation of the nucleon is dressed to lie at $\sim 1.9 \mathrm{GeV}$

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

- The $2 s$ excitation of the nucleon is dressed to lie at $\sim 1.9 \mathrm{GeV}$
- The lattice state in the Roper region has $\sim 5 \%$ bare state contribution.

Δ-baryon spectrum from lattice QCD (preliminary)

HSC: J. Bulava, et al., Phys. Rev. D 82 (2010) 014507 [arXiv:1004.5072 [hep-lat]].
JLab: T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) 034503 [arXiv:2010.03052 [hep-lat]]. PACS-CS: S. Aoki et al. [PACS-CS], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects infinite-volume scattering observables to finite-volume Lattice QCD.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects infinite-volume scattering observables to finite-volume Lattice QCD.
- Connects lattice results at different quark masses within a single formalism.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects infinite-volume scattering observables to finite-volume Lattice QCD.
- Connects lattice results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates.
- Facilitates an understanding of lattice QCD results.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects infinite-volume scattering observables to finite-volume Lattice QCD.
- Connects lattice results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates.
- Facilitates an understanding of lattice QCD results.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects infinite-volume scattering observables to finite-volume Lattice QCD.
- Connects lattice results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates.
- Facilitates an understanding of lattice QCD results.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- Δ Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects infinite-volume scattering observables to finite-volume Lattice QCD.
- Connects lattice results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates.
- Facilitates an understanding of lattice QCD results.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- Δ Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.
- Odd-parity $N^{*}(1535)$ and $N^{*}(1650)$ Resonances:
- Knowledge of eigenstate composition can be used to understand the states observed.
- Dominated by a quark-core bare state dressed by meson degrees of freedom.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects infinite-volume scattering observables to finite-volume Lattice QCD.
- Connects lattice results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates.
- Facilitates an understanding of lattice QCD results.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- Δ Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.
- Odd-parity $N^{*}(1535)$ and $N^{*}(1650)$ Resonances:
- Knowledge of eigenstate composition can be used to understand the states observed.
- Dominated by a quark-core bare state dressed by meson degrees of freedom.
- Roper $N(1440)$ Resonance: Arises from dynamical coupled-channel effects.
- Lattice QCD results constrain the HEFT description of experimental data.
- State composition matches when the $2 s$ excitation of the quark model sits at $\sim 2 \mathrm{GeV}$.

The spectrum of quark-model-like states is relatively simple

$$
\begin{aligned}
& \mathrm{N}(1 / 2+) \quad 2 \mathrm{~h} \omega \\
& \sim 2.0 \mathrm{GeV}
\end{aligned}
$$

~1 GeV Quark Model

Experiment

HEFT Extensions

- Formalism for partial-wave mixing in HEFT has been developed in Y. Li, J. J. Wu, C. D. Abell, D. B. L. and A. W. Thomas. Phys. Rev. D 101, no.11, 114501 (2020) [arXiv:1910.04973 [hep-lat]]
- And extended to moving and elongated finite-volumes in Y. Li, J. J. Wu, D. B. L. and A. W. Thomas Phys. Rev. D 103 no.9, 094518 (2021) [arXiv:2103.12260 [hep-lat]].

