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Prologue

• The idea of dressing quark-model states in a coupled-channel analysis to describe
scattering data has been around for decades.
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• The idea of dressing quark-model states in a coupled-channel analysis to describe
scattering data has been around for decades.

• What’s new are formalisms able to bring these descriptions to the finite-volume of
lattice QCD.

• Lattice QCD calculations of the excitation spectrum provide new constraints.

• It’s time to reconsider our early notions about the quark-model and its excitation
spectrum.
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• Hamiltonian Effective Field Theory (HEFT)
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◦ Incorporates the Lüscher formalism.
◦ Connects scattering observables to the finite-volume spectrum of lattice QCD.
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◦ Connects scattering observables to the finite-volume spectrum of lattice QCD.

• ∆ Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.

• N∗(1535) and N∗(1650) Resonances: novel two quark-model basis-state analysis.

• Λ(1405) Resonance: evidence of a molecular KN component

• Roper N(1440) Resonance:
◦ Lattice QCD results constrain the HEFT description of experimental data.

• Conclusions
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Hamiltonian Effective Field Theory (HEFT)
J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]

C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

• An extension of chiral effective field theory incorporating the Lüscher formalism
◦ Linking the energy levels observed in finite volume to scattering observables.
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• An extension of chiral effective field theory incorporating the Lüscher formalism
◦ Linking the energy levels observed in finite volume to scattering observables.

• In the light quark-mass regime, in the perturbative limit,
◦ HEFT reproduces the finite-volume expansion of chiral perturbation theory.

• Fitting resonance phase-shift data and inelasticities,
◦ Predictions of the finite-volume spectrum are made.

• The eigenvectors of the Hamiltonian provide insight into the composition of the
energy eigenstates.

◦ Insight is similar to that provided by correlation-matrix eigenvectors in Lattice QCD.
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Infinite Volume Model

• The rest-frame Hamiltonian has the form H = H0 + HI , with

H0 =
∑

B0

|B0〉 mB0
〈B0| +

∑

α

∫

d3k |α(k)〉 ωα(k) 〈α(k)| ,
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• The rest-frame Hamiltonian has the form H = H0 + HI , with

H0 =
∑

B0

|B0〉 mB0
〈B0| +

∑

α

∫

d3k |α(k)〉 ωα(k) 〈α(k)| ,

• |B0〉 denotes a quark-model-like basis state with bare mass mB0
.

• |α(k)〉 designates a two-particle non-interacting basis-state channel with energy

ωα(k) = ωαM
(k) + ωαB

(k) =
√

k2 + m2
αM

+
√

k2 + m2
αB

,

for M = Meson, B = Baryon.
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Infinite Volume Model

• The interaction Hamiltonian includes two parts, HI = g + v.

• 1 → 2 particle vertex

g =
∑

α, B0

∫

d3k
{

|α(k)〉 G†
α,B0

(k) 〈B0| + h.c.
}

,
∆(0) π(−k)

N(k)
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g =
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α, B0

∫

d3k
{

|α(k)〉 G†
α,B0

(k) 〈B0| + h.c.
}

,
∆(0) π(−k)

N(k)

• 2 → 2 particle vertex

v =
∑

α,β

∫

d3k d3k′ |α(k)〉 V S
α,β(k, k′) 〈β(k′)| .

π(−k)

N(k)

π(−k
′)

∆(k′)
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S-wave vertex interactions

• S-wave vertex interactions between the one baryon and two-particle meson-baryon
channels for e.g. N∗(1535) or Λ∗(1405) cases take the form

Gα,B0
(k) = gB0α

√
3

2 π fπ

√

ωαM
(k) u(k, Λ) ,

B0
αM (−k)

αB(k)

with regulator

u(k, Λ) =

(

1 +
k2

Λ2

)−2

, and fixed Λ ∼ 0.8 → 1.0 GeV.
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P -wave and higher vertex interactions

• P -wave and higher vertex interactions for the ∆(1232) or N∗(1440) take the form

Gα,B0
(k) = gB0α

1

4π2

(

k

fπ

)lα u(k, Λ)
√

ωαM
(k)

,
B0

αM (−k)

αB(k)

where lα is the orbital angular momentum in channel α.
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Two-to-two particle interactions

• For the direct two-to-two particle interaction, we introduce separable potentials.
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Two-to-two particle interactions

• For the direct two-to-two particle interaction, we introduce separable potentials.

• For the S11 πN channel

V S
πN,πN ( k, k′ ) = vπN,πN

3

4π2 f2
π

ũπN (k, Λ) ũπN (k′, Λ)

π(−k)

N(k)

π(−k
′)

N(k′)

where the scattering potential gains a low energy enhancement via

ũπN (k, Λ) = u(k, Λ)
mphys

π + ωπ(k)

ωπ(k)

and u(k, Λ) takes the dipole form.
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Two-to-two particle interactions

• For P -wave scattering in the ∆(1232) or N∗(1440) channels

V S
α,β ( k, k′ ) = vα,β

1

4π2 f2
π

k

ωαM
(k)

k′

ωβM
(k′)

u(k, Λ) u(k′, Λ) .

π(−k)

N(k)

π(−k
′)

∆(k′)
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• For P -wave scattering in the ∆(1232) or N∗(1440) channels

V S
α,β ( k, k′ ) = vα,β

1

4π2 f2
π

k

ωαM
(k)

k′

ωβM
(k′)

u(k, Λ) u(k′, Λ) .

π(−k)

N(k)

π(−k
′)

∆(k′)

• For the Λ∗(1405), the Weinberg-Tomozawa term is considered

V S
α,β ( k, k′ ) = gΛ∗

α,β

[ ωαM
(k) + ωβM

(k′) ] u(k, Λ) u(k′, Λ)

16 π2 f2
π

√

ωαM
(k) ωβM

(k′)
,
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Infinite-Volume scattering amplitude

• The T -matrices for two particle scattering are obtained by solving the
coupled-channel integral equations

Tα,β(k, k′; E) = Ṽα,β(k, k′; E) +
∑

γ

∫

q2dq
Ṽα,γ(k, q; E) Tγ,β(q, k′; E)

E − ωγ(q) + iǫ
.
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• The T -matrices for two particle scattering are obtained by solving the
coupled-channel integral equations

Tα,β(k, k′; E) = Ṽα,β(k, k′; E) +
∑

γ

∫

q2dq
Ṽα,γ(k, q; E) Tγ,β(q, k′; E)

E − ωγ(q) + iǫ
.

• The coupled-channel potential is readily calculated from the interaction Hamiltonian

Ṽα,β(k, k′) =
∑

B0

G†
α,B0

(k) Gβ,B0
(k′)

E − mB0

+ V S
α,β(k, k′) ,

π(−k)

N(k)

∆(0) π(−k
′)

∆(k′)

+

π(−k)

N(k)

π(−k
′)

∆(k′)
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Infinite-Volume scattering matrix

• The S-matrix is related to the T -matrix by

Sα,β(E) = 1 − 2i
√

ρα(E) ρβ(E) Tα,β(kα cm, kβ cm; E) ,

with

ρα(E) = π
ωαM

(kα cm) ωαB
(kα cm)

E
kα cm ,

and kα cm satisfies the on-shell condition

ωαM
(kα cm) + ωαB

(kα cm) = E .
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Infinite-Volume scattering matrix

• The S-matrix is related to the T -matrix by

Sα,β(E) = 1 − 2i
√

ρα(E) ρβ(E) Tα,β(kα cm, kβ cm; E) ,

with

ρα(E) = π
ωαM

(kα cm) ωαB
(kα cm)

E
kα cm ,

and kα cm satisfies the on-shell condition

ωαM
(kα cm) + ωαB

(kα cm) = E .

• The cross section σα ,β for the process α → β is

σα ,β =
4π3 kα cm ωαM

(kα cm) ωαB
(kα cm) ωβM

(kα cm) ωβB
(kα cm)

E2 kβ cm
|Tα,β(kα cm, kβ cm; E)|2 .
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πN phase shift and inelasticity

• The S-matrix is related to the T -matrix by

SπN,πN (E) = 1 − 2iπ
ωπ(kcm) ωN (kcm)

E
kcm TπN,πN (kcm, kcm; E) ,

= η(E) e2i δ(E) .
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P -wave πN phase shifts in the ∆ channel - 1 πN channel
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Finite Volume Analysis - Hamiltonian Matrix

• In a finite periodic volume, momentum is quantised to n (2π/L).
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• In a finite periodic volume, momentum is quantised to n (2π/L).

• In a cubic volume of extent L on each side, define the momentum magnitudes

kn =
√

n2
x + n2

y + n2
z

2π

L
,

with ni = 0, 1, 2, . . . and integer n = n2
x + n2

y + n2
z.

• The degeneracy of each kn is described by C3(n), which counts the number of ways
the integers nx, ny, and nz, can be squared and summed to n.

• The non-interacting Hamiltonian takes the form

H0 = diag(mB0
, ωπN (k0), ωπ∆(k0), ωπN (k1), ωπ∆(k1), . . .)
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Interaction Hamiltonian Terms
• 1 → 2 particle interaction terms sit in the first row and column.

HI =































0 GπN,B0
(k0) · · · Gπ∆,B0

(k0) GπN,B0
(k1) · · · Gπ∆,B0

(k1) · · ·

G
†

πN,B0
(k0) 0

.

.

. 0

G
†

π∆,B0
(k0)

. . .

G
†

πN,B0
(k1)

...

G
†

π∆,B0
(k1)

.

.

.































.

• · · · allow for additional channels.
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Interaction Hamiltonian Terms
• 1 → 2 particle interaction terms sit in the first row and column.

HI =































0 GπN,B0
(k0) · · · Gπ∆,B0

(k0) GπN,B0
(k1) · · · Gπ∆,B0

(k1) · · ·

G
†

πN,B0
(k0) 0

.

.

. 0

G
†

π∆,B0
(k0)

. . .

G
†

πN,B0
(k1)

...

G
†

π∆,B0
(k1)

.

.

.































.

• · · · allow for additional channels.

• 2 → 2 particle interaction terms, V
S
α,β(kn, kn′), fill out the rest of the matrix.
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Relation to infinite-volume contributions

• The finite volume Hamiltonian interaction terms are related to the infinite-volume
contributions via

∫

k2dk =
1

4π

∫

d3k → 1

4π

∑

n∈Z3

(

2π

L

)3

=
1

4π

∑

n∈Z

C3(n)

(

2π

L

)3

.

such that

Ḡα,B0
(kn) =

√

C3(n)

4π

(

2π

L

)
3

2

Gα,B0
(kn) ,

V̄ S
αβ(kn, km) =

√

C3(n)

4π

√

C3(m)

4π

(

2π

L

)3

V S
αβ(kn, km) .
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Finite Volume Eigenmode Solution

• Standard Lapack routines provide eigenmode solutions of

〈 i | H | j 〉 〈 j | Eα 〉 = Eα 〈 i | Eα 〉 ,

◦ where | i 〉 and | j 〉 are the non-interacting basis states,

◦ Eα is the energy eigenvalue, and

◦ 〈 i | Eα 〉 is the eigenvector of the

◦ Hamiltonian matrix 〈 i | H | j 〉.
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Energy eigenstates on an L = 5 fm lattice for different regulators

10 20 30 40 50 60

Λ2 (GeV2)

1.1

1.2

1.3

1.4

1.5

1.6

E
(G

eV
)

L = 5.00 fm

• dashed lines are the non-interacting
πN basis-state energy levels.

• dot-dash line is the bare basis-state
mass.

• solid lines are the eigenstate energy
levels.

• Incorporation of the Lüscher formalism ensures energy eigenstates below 1.35 GeV
are model independent.
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P -wave πN phase shifts in the ∆ channel - 1 πN channel
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Energy eigenstates on an L = 5 fm lattice for different regulators
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L = 5.00 fm

• dashed lines are the non-interacting
πN basis-state energy levels.

• dot-dash line is the bare basis-state
mass.

• solid lines are the eigenstate energy
levels.

• Incorporation of the Lüscher formalism ensures energy eigenstates below 1.35 GeV
are model independent.
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P -wave πN scattering in the ∆ channel - 2 channel πN and π∆
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P -wave πN scattering in the ∆ channel - 2 channel πN and π∆
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• Anticipate regulator independence to 1.7 GeV.
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Energy eigenstates on an L = 5 fm lattice for different regulators
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• dashed lines are the non-interacting
πN and π∆ basis-state energy
levels.

• dot-dash line is the bare basis-state
mass.

• solid lines are the eigenstate energy
levels.
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Energy eigenstates on an L = 5 fm lattice for different regulators
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1.8

E
(G

eV
)

• dashed lines are the non-interacting
πN and π∆ basis-state energy
levels.

• dot-dash line is the bare basis-state
mass.

• solid lines are the eigenstate energy
levels.

• πN scattering data alone is insufficient to uniquely constrain the Hamiltonian.
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Mass dependence of energy eigenstates - Fit to PACS-CS ∆ masses
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• Lattice QCD results can constrain the Hamiltonian description of experimental data.
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CLS Consortium finite-volume lattice energies of ∆-channel excitations
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• C. Morningstar, et al. PoS

LATTICE2021 (2022), 170

[arXiv:2111.07755 [hep-lat]].

• C. W. Andersen, J. Bulava, B. Hörz and

C. Morningstar, Phys. Rev. D 97 (2018)

014506 [arXiv:1710.01557 [hep-lat]].
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New examination of low-lying odd-parity nucleon resonances

• Motivated by lattice QCD calculations of the electromagnetic form factors of the
two low-lying odd-parity states.

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

• Parity-expanded variational analysis (PEVA) removes opposite-parity contaminants.

• Confirms quark model predictions for N∗ magnetic moments.
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N ∗ Magnetic Moments and the constituent quark model
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Model Calculation References

• CQM (2003)
W.-T. Chiang, S. N. Yang, M. Vanderhaeghen, and D. Drechsel, Magnetic dipole moment of the S 11

(1535) from the γp → γηp reaction, Nucl. Phys. A723, 205 (2003), nucl-th/0211061

• χCQM (2005)
J. Liu, J. He, and Y. Dong, Magnetic moments of negative-parity low-lying nucleon resonances in quark

models, Phys. Rev. D71, 094004 (2005).

• χCQM (2013)
N. Sharma, A. Martinez Torres, K. Khemchandani, and H. Dahiya, Magnetic moments of the low-lying

1/2− octet baryon resonances, Eur. Phys. J. A49, 11 (2013), arXiv:1207.3311
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New examination of low-lying odd-parity nucleon resonances

• Both the N∗(1535) and N∗(1650) are quark-model like at larger quark masses.
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• Perform the first HEFT analysis with two bare basis states which
◦ Mix to form the N∗(1535) and N∗(1650).

• Informed by the decay properties of these resonances and energy thresholds, the
calculation includes three meson-baryon scattering channels, πN , ηN , and KΛ.
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New examination of low-lying odd-parity nucleon resonances

• Both the N∗(1535) and N∗(1650) are quark-model like at larger quark masses.

• Perform the first HEFT analysis with two bare basis states which
◦ Mix to form the N∗(1535) and N∗(1650).

• Informed by the decay properties of these resonances and energy thresholds, the
calculation includes three meson-baryon scattering channels, πN , ηN , and KΛ.

• 21 parameter fit provides an excellent characterisation of the data.
◦ Pole positions agree with PDG.
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Phase shift and inelasticity for the low-lying odd-parity spin-1/2 nucleon resonances
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• WI08 single-energy data from SAID.

• Vertical lines indicate the opening of the ηN and KΛ thresholds.
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Phase shift and inelasticity for the low-lying odd-parity spin-1/2 nucleon resonances
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• Note the three-body ππN threshold at 1.22 GeV.

• See Max Hansen’s talk in Parallel Session 1, today at 4:20 pm.
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Finite-volume L = 3 fm energy levels for low-lying odd-parity spin-1/2 nucleons
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Finite-volume L = 2 fm energy levels for low-lying odd-parity spin-1/2 nucleons
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Finite-volume L = 2 fm energy levels for low-lying odd-parity spin-1/2 nucleons
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Finite Volume Eigenmode Solution

• Standard Lapack routines provide eigenmode solutions of

〈 i | H | j 〉 〈 j | Eα 〉 = Eα 〈 i | Eα 〉 .

• Eigenvector 〈 i | Eα 〉 describes the composition of the eigenstate | Eα 〉 in terms of
the basis states | i 〉 with

| i 〉 = | B0 〉, | πN, k0 〉, | πN, k1 〉, · · · | ηN, k0 〉, | ηN, k1 〉, · · · .
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• Standard Lapack routines provide eigenmode solutions of

〈 i | H | j 〉 〈 j | Eα 〉 = Eα 〈 i | Eα 〉 .

• Eigenvector 〈 i | Eα 〉 describes the composition of the eigenstate | Eα 〉 in terms of
the basis states | i 〉 with

| i 〉 = | B0 〉, | πN, k0 〉, | πN, k1 〉, · · · | ηN, k0 〉, | ηN, k1 〉, · · · .

• The overlap of the bare basis state | B0 〉 with eigenstate | Eα 〉,

〈 B0 | Eα 〉 ,

is of particular interest,
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Finite Volume Eigenmode Solution
• In Hamiltonian EFT, the only localised basis state is the bare basis state.
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Finite Volume Eigenmode Solution
• In Hamiltonian EFT, the only localised basis state is the bare basis state.

• Bär has highlighted how χPT provides an estimate of the direct coupling of
smeared nucleon interpolating fields to a non-interacting πN (basis) state,

3

16

1

(fπ L)2 Eπ L

(

EN − MN

EN

)

∼ 10−3 ,

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].
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Finite Volume Eigenmode Solution
• In Hamiltonian EFT, the only localised basis state is the bare basis state.

• Bär has highlighted how χPT provides an estimate of the direct coupling of
smeared nucleon interpolating fields to a non-interacting πN (basis) state,

3

16

1

(fπ L)2 Eπ L

(

EN − MN

EN

)

∼ 10−3 ,

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

• Conclude the smeared interpolating fields of lattice QCD are associated with the
bare basis states of HEFT

χ(0) |Ω〉 ≃ |B0〉 ,

• Element 〈 B0 | Eα 〉 of the eigenvector governs the likelihood of observing | Eα 〉.
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Finite-volume L = 3 fm energy levels for low-lying odd-parity spin-1/2 nucleons
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Energy eigenstate composition - 3 fm lattice
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Finite-volume L = 2 fm energy levels for low-lying odd-parity spin-1/2 nucleons
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Energy eigenstate composition - 2 fm lattice
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Analysis of low-lying odd-parity Λ resonances

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

• Consider πΣ, K̄N , ηΛ, KΞ channels, and one bare basis state, B0.
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• Eight two-to-two particle couplings are considered for isospin 0 and 1
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Analysis of low-lying odd-parity Λ resonances

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

• Consider πΣ, K̄N , ηΛ, KΞ channels, and one bare basis state, B0.

• Eight two-to-two particle couplings are considered for isospin 0 and 1
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, g1
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• Five parameters describing bare to two-particle interactions are introduced

mB0
, g0
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, g0
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, g0
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,

• These 13 parameters are constrained by experimental data.
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Couplings and mB0
Constrained by Experiment
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Finite Volume Λ Spectrum for L = 3 fm
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Strange Magnetic Form Factor of the Λ(1405)

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular KN bound state.

52 of 77



Strange Magnetic Form Factor of the Λ(1405)

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular KN bound state.

• In forming such a molecular state, the Λ(u, d, s) valence quark configuration is
complemented by

◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d, d pair making a K0(s, d) - neutron (d, d, u) bound state.

52 of 77



Strange Magnetic Form Factor of the Λ(1405)

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular KN bound state.

• In forming such a molecular state, the Λ(u, d, s) valence quark configuration is
complemented by

◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d, d pair making a K0(s, d) - neutron (d, d, u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon and has no
preferred spin orientation.

52 of 77



Strange Magnetic Form Factor of the Λ(1405)

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular KN bound state.

• In forming such a molecular state, the Λ(u, d, s) valence quark configuration is
complemented by

◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d, d pair making a K0(s, d) - neutron (d, d, u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon and has no
preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.

52 of 77



Strange Magnetic Form Factor of the Λ(1405)

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular KN bound state.

• In forming such a molecular state, the Λ(u, d, s) valence quark configuration is
complemented by

◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d, d pair making a K0(s, d) - neutron (d, d, u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon and has no
preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.

• Thus, the strange quark does not contribute to the magnetic form factor of the
Λ(1405) when it is dominated by a KN molecule.
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Strange Magnetic Form Factor of the Λ(1405)
J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]
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Where is the Roper resonance?
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• CSSM: Z. W. Liu, et al. [CSSM], Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]

• Cyprus: C. Alexandrou, et al. (AMIAS), Phys. Rev. D 91, 014506 (2015) arXiv:1411.6765 [hep-lat]

• JLab: R. G. Edwards, et al. [HSC] Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].
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Search for low-lying lattice QCD eigenstates in the Roper regime
A. L. Kiratidis, et al., [CSSM] Phys. Rev. D 95, no. 7, 074507 (2017) [arXiv:1608.03051 [hep-lat]].

1 2 3 4 5 6 7
Basis Number
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M
(G

eV
)

1 → χ1 + χ2

2 → χ1 + χ2 + χa0N

3 → χ1 + χ2 + χa0N + χ′

a0N

4 → χπN + χ′

πN + χa0N

5 → χπN + χ′

πN + χa0N + χ′

a0N

6 → χπN + χ′

πN + χσN + χ′

σN

7 → χσN + χ′

σN + χa0N + χ′

a0N
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Have we seen the 2s excitation of the quark model?

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2

π (GeV2)

0.0

0.5

1.0

1.5

2.0

2.5

E
α
(G

eV
)

CSSM

JLab

Cyprus

56 of 77



Landau-Gauge Wave functions from the Lattice

• Measure the overlap of the annihilation operator with the state
as a function of the quark positions.
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d-quark probability density in ground state proton [CSSM]
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d-quark probability density in 1st excited state of proton [CSSM]
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d-quark probability density in N = 3 excited state of proton [CSSM]
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Comparison with the Simple Quark Model [CSSM]
D. S. Roberts, W. Kamleh and D. B. Leinweber, Phys. Lett. B 725, 164 (2013) [arXiv:1304.0325 [hep-lat]].
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First positive-parity excitation: Charge Radii

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].
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First positive-parity excitation: Magnetic moments

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].
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The 2s excitation of the nucleon sits at 1.9 GeV
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The 2s excitation of the nucleon sits at 1.9 GeV
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• The N1/2+(1880) observed in
photoproduction is associated with
the 2s excitation of the nucleon.

• Z. W. Liu, W. Kamleh, DBL, F. M. Stokes,

A. W. Thomas and J. J. Wu, Phys. Rev. D

95, no. 3, 034034 (2017)

[arXiv:1607.04536 [nucl-th]]
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• What about the Roper resonance?
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Positive-parity Nucleon Spectrum: Bare Roper Case with m0 = 1.7 GeV

• Consider πN , π∆ and σN channels, dressing a bare state.
• Fit to phase shift and inelasticity. (dashed blue curve)
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• Fit yields two poles in the region of the PDG estimate 1365 ± 15 − i 95 ± 15 MeV.
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1.7 GeV Bare Roper: Hamiltonian Model N ′ Spectrum
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Positive-parity Nucleon Spectrum: Bare Roper Case with m0 = 2.0 GeV
J. j. Wu, et al. [CSSM], arXiv:1703.10715 [nucl-th]

• Consider πN , π∆ and σN channels, dressing a bare state.
• Fit to phase shift and inelasticity. (red curve)
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• Fit yields a pole at 1393 − i 167 MeV ∼ PDG estimate 1365 ± 15 − i 95 ± 15 MeV.
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2.0 GeV Bare Roper: Hamiltonian Model N ′ Spectrum
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2.0 GeV Bare Roper: Hamiltonian Model N ′ Spectrum
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E10

πN , π∆ and σN channels, dressing a bare state.
C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek, Phys. Rev. D 95, no. 1, 014510 (2017) [arXiv:1610.01422 [hep-lat]].
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Two different descriptions of the Roper resonance
m0 = 1.7 GeV m0 = 2.0 GeV
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(left) Meson dressings of a quark-model like core.
(right) Resonance generated by strong rescattering in meson-baryon channels.

70 of 77



Score Card

Criteria m0 = 1.7 GeV m0 = 2.0 GeV

Describes experimental data well.
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Two different descriptions of the Roper resonance
m0 = 1.7 GeV m0 = 2.0 GeV
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(left) Meson dressings of a quark-model like core.
(right) Resonance generated by strong rescattering in meson-baryon channels.
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Conclusion

• The Roper resonance is not associated with a low-lying three-quark core.
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• The 2s excitation of the nucleon is dressed to lie at ∼ 1.9 GeV

• The lattice state in the Roper region has ∼ 5% bare state contribution.
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∆-baryon spectrum from lattice QCD (preliminary)

HSC: J. Bulava, et al., Phys. Rev. D 82 (2010) 014507 [arXiv:1004.5072 [hep-lat]].

JLab: T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) 034503 [arXiv:2010.03052 [hep-lat]].

PACS-CS: S. Aoki et al. [PACS-CS], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].
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Conclusions
• Hamiltonian Effective Field Theory (HEFT)

◦ Connects infinite-volume scattering observables to finite-volume Lattice QCD.
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◦ With lattice QCD constraints, HEFT provides new insight into resonance structure.

• ∆ Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.

• Odd-parity N∗(1535) and N∗(1650) Resonances:
◦ Knowledge of eigenstate composition can be used to understand the states observed.
◦ Dominated by a quark-core bare state dressed by meson degrees of freedom.

• Roper N(1440) Resonance: Arises from dynamical coupled-channel effects.
◦ Lattice QCD results constrain the HEFT description of experimental data.
◦ State composition matches when the 2s excitation of the quark model sits at ∼ 2 GeV.
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The spectrum of quark-model-like states is relatively simple
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HEFT Extensions

• Formalism for partial-wave mixing in HEFT has been developed in
Y. Li, J. J. Wu, C. D. Abell, D. B. L. and A. W. Thomas. Phys. Rev. D 101,
no.11, 114501 (2020) [arXiv:1910.04973 [hep-lat]]

• And extended to moving and elongated finite-volumes in
Y. Li, J. J. Wu, D. B. L. and A. W. Thomas Phys. Rev. D 103 no.9, 094518
(2021) [arXiv:2103.12260 [hep-lat]].
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