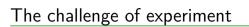
New insights into the quark model from lattice QCD

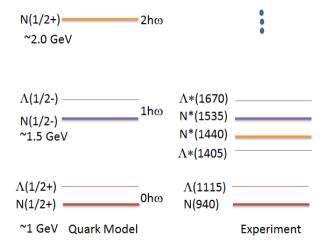
Derek Leinweber

In collaboration with: Curtis Abell, Liam Hockley, Waseem Kamleh, Yan Li, Zhan-Wei Liu, Finn Stokes, Tony Thomas, Jia-Jun Wu

The spectrum of a simple quark model: N and Λ baryons

~1 GeV Quark Model





• The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.
- It's time to reconsider our early notions about the quark-model and its excitation spectrum.

Outline

- Hamiltonian Effective Field Theory (HEFT)
 - Coupled-channel analysis technique aimed at resonance physics.
 - o Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.

- Hamiltonian Effective Field Theory (HEFT)
 - o Coupled-channel analysis technique aimed at resonance physics.
 - Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- ullet A Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.

- Hamiltonian Effective Field Theory (HEFT)
 - o Coupled-channel analysis technique aimed at resonance physics.
 - o Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- ullet A Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^*(1535)$ and $N^*(1650)$ Resonances: novel two quark-model basis-state analysis.

- Hamiltonian Effective Field Theory (HEFT)
 - Coupled-channel analysis technique aimed at resonance physics.
 - o Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- ullet A Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^*(1535)$ and $N^*(1650)$ Resonances: novel two quark-model basis-state analysis.
- $\varLambda(1405)$ Resonance: evidence of a molecular $\overline{K}N$ component

- Hamiltonian Effective Field Theory (HEFT)
 - Coupled-channel analysis technique aimed at resonance physics.
 - o Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- ullet A Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^*(1535)$ and $N^*(1650)$ Resonances: novel two quark-model basis-state analysis.
- $\varLambda(1405)$ Resonance: evidence of a molecular $\overline{K}N$ component
- Roper N(1440) Resonance:
 - Lattice QCD results constrain the HEFT description of experimental data.

Outline

- Hamiltonian Effective Field Theory (HEFT)
 - Coupled-channel analysis technique aimed at resonance physics.
 - o Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- ullet A Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
- $N^*(1535)$ and $N^*(1650)$ Resonances: novel two quark-model basis-state analysis.
- $\Lambda(1405)$ Resonance: evidence of a molecular $\overline{K}N$ component
- Roper N(1440) Resonance:
 - Lattice QCD results constrain the HEFT description of experimental data.
- Conclusions

Hamiltonian Effective Field Theory (HEFT)

- J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
- C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]
- An extension of chiral effective field theory incorporating the Lüscher formalism
 - Linking the energy levels observed in finite volume to scattering observables.

Hamiltonian Effective Field Theory (HEFT)

- J. M. M. Hall, et al. [CSSM], Phys. Rev. D **87** (2013) 094510 [arXiv:1303.4157 [hep-lat]]
- C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]
- An extension of chiral effective field theory incorporating the Lüscher formalism
 - Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
 - HEFT reproduces the finite-volume expansion of chiral perturbation theory.

Hamiltonian Effective Field Theory (HEFT)

- J. M. M. Hall, et al. [CSSM], Phys. Rev. D **87** (2013) 094510 [arXiv:1303.4157 [hep-lat]]
- C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]
- An extension of chiral effective field theory incorporating the Lüscher formalism
 - Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
 - HEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
 - Predictions of the finite-volume spectrum are made.

- J. M. M. Hall, et al. [CSSM], Phys. Rev. D **87** (2013) 094510 [arXiv:1303.4157 [hep-lat]]
- C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]
- An extension of chiral effective field theory incorporating the Lüscher formalism
 - Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
 - HEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
 - Predictions of the finite-volume spectrum are made.
- The eigenvectors of the Hamiltonian provide insight into the composition of the energy eigenstates.
 - Insight is similar to that provided by correlation-matrix eigenvectors in Lattice QCD.

• The rest-frame Hamiltonian has the form $H=H_0+H_I$, with

$$H_0 = \sum_{B_0} \ket{B_0} m_{B_0} ra{B_0} + \sum_{lpha} \int d^3k \ket{lpha(m{k})} \omega_{lpha}(m{k}) ra{lpha(m{k})},$$

Infinite Volume Model

• The rest-frame Hamiltonian has the form $H=H_0+H_I$, with

$$H_0 = \sum_{B_0} |B_0\rangle \, m_{B_0} \, \langle B_0| + \sum_{\alpha} \int d^3k \, |\alpha(\mathbf{k})\rangle \, \omega_{\alpha}(\mathbf{k}) \, \langle \alpha(\mathbf{k})| \,,$$

• $|B_0\rangle$ denotes a quark-model-like basis state with bare mass m_{B_0} .

• The rest-frame Hamiltonian has the form $H=H_0+H_I$, with

$$H_{0} = \sum_{B_{0}} |B_{0}\rangle \, m_{B_{0}} \, \langle B_{0}| + \sum_{\alpha} \int d^{3}k \, |\alpha(\mathbf{k})\rangle \, \omega_{\alpha}(\mathbf{k}) \, \langle \alpha(\mathbf{k})| \,,$$

- $|B_0\rangle$ denotes a quark-model-like basis state with bare mass m_{B_0} .
- ullet $|lpha(oldsymbol{k})
 angle$ designates a two-particle non-interacting basis-state channel with energy

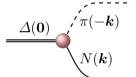
$$\omega_{\alpha}(\mathbf{k}) = \omega_{\alpha_M}(\mathbf{k}) + \omega_{\alpha_B}(\mathbf{k}) = \sqrt{\mathbf{k}^2 + m_{\alpha_M}^2} + \sqrt{\mathbf{k}^2 + m_{\alpha_B}^2},$$

for M = Meson, B = Baryon.

Infinite Volume Model

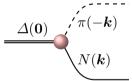
- The interaction Hamiltonian includes two parts, $H_I = g + v$.
- $1 \rightarrow 2$ particle vertex

$$g = \sum_{\alpha, B_0} \int d^3k \left\{ |\alpha(\mathbf{k})\rangle G_{\alpha, B_0}^{\dagger}(k) \langle B_0| + h.c. \right\},\,$$



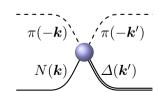
- The interaction Hamiltonian includes two parts, $H_I = g + v$.
- $1 \rightarrow 2$ particle vertex

$$g = \sum_{\alpha, B_0} \int d^3k \left\{ \left. \left| \alpha(\mathbf{k}) \right\rangle G_{\alpha, B_0}^{\dagger}(k) \left\langle B_0 \right| + h.c. \right\} \right.,$$



• $2 \rightarrow 2$ particle vertex

$$v = \sum_{\alpha,\beta} \int d^3k \ d^3k' \left| \alpha(\mathbf{k}) \right\rangle V_{\alpha,\beta}^S(k,k') \left\langle \beta(\mathbf{k'}) \right|.$$



• S-wave vertex interactions between the one baryon and two-particle meson-baryon channels for e.g. $N^*(1535)$ or $\Lambda^*(1405)$ cases take the form

$$G_{\alpha,B_0}(k) = g_{B_0\alpha} \frac{\sqrt{3}}{2\pi f_{\pi}} \sqrt{\omega_{\alpha_M}(k)} u(k,\Lambda), \qquad B_0 / \alpha_M(-k)$$

with regulator

$$u(k, \varLambda) = \left(1 + rac{k^2}{\varLambda^2}
ight)^{-2} \,, \quad ext{ and fixed } \varLambda \sim 0.8 o 1.0 ext{ GeV}.$$

• P-wave and higher vertex interactions for the $\Delta(1232)$ or $N^*(1440)$ take the form

$$G_{\alpha,B_0}(k) = g_{B_0\alpha} \frac{1}{4\pi^2} \left(\frac{k}{f_\pi}\right)^{l_\alpha} \frac{u(k,\Lambda)}{\sqrt{\omega_{\alpha_M}(k)}}, \qquad B_0$$

where l_{α} is the orbital angular momentum in channel α .

• For the direct two-to-two particle interaction, we introduce separable potentials.

- For the direct two-to-two particle interaction, we introduce separable potentials.
- For the S_{11} πN channel

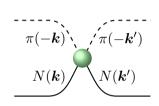
$$V_{\pi N,\pi N}^{S}(k,k') = v_{\pi N,\pi N} \frac{3}{4\pi^{2} f_{\pi}^{2}} \tilde{u}_{\pi N}(k,\Lambda) \tilde{u}_{\pi N}(k',\Lambda)$$

$$(k,k')$$

$$\pi(-k)$$

$$N(k)$$

$$N(k')$$



where the scattering potential gains a low energy enhancement via

$$\tilde{u}_{\pi N}(k, \Lambda) = u(k, \Lambda) \frac{m_{\pi}^{\text{phys}} + \omega_{\pi}(k)}{\omega_{\pi}(k)}$$

and $u(k, \Lambda)$ takes the dipole form.

• For P-wave scattering in the $\Delta(1232)$ or $N^*(1440)$ channels

$$V_{\alpha,\beta}^{S}(k,k') = v_{\alpha,\beta} \frac{1}{4\pi^{2} f_{\pi}^{2}} \frac{k}{\omega_{\alpha_{M}}(k)} \frac{k'}{\omega_{\beta_{M}}(k')} u(k,\Lambda) u(k',\Lambda) . \underbrace{\pi(-\mathbf{k})}_{\pi(-\mathbf{k}')} \underbrace{\pi(-\mathbf{k}')}_{\Lambda(\mathbf{k}')} \underbrace{\pi(-\mathbf{k}')}_{\Lambda($$

• For P-wave scattering in the $\Delta(1232)$ or $N^*(1440)$ channels

$$V_{\alpha,\beta}^{S}\left(k,\,k'\right) = v_{\alpha,\beta} \frac{1}{4\pi^{2} f_{\pi}^{2}} \frac{k}{\omega_{\alpha_{M}}(k)} \frac{k'}{\omega_{\beta_{M}}(k')} u(k,\Lambda) u(k',\Lambda) . \underbrace{\pi(-\mathbf{k})}_{N(\mathbf{k})} \underbrace{\pi(-\mathbf{k}')}_{N(\mathbf{k})} \underbrace{\omega_{(\mathbf{k}')}}_{N(\mathbf{k})} \underbrace{\omega_{(\mathbf{k}')}}_{N(\mathbf{k}')} \underbrace{\omega_{(\mathbf{k}')}}_{N(\mathbf{k})} \underbrace{\omega_{(\mathbf{k}')}}_{N(\mathbf{k})} \underbrace{\omega_{(\mathbf{k}')}}_{N(\mathbf{k}')} \underbrace{\omega_{(\mathbf{$$

• For the $\Lambda^*(1405)$, the Weinberg-Tomozawa term is considered

$$V_{\alpha,\beta}^{S}(k,k') = g_{\alpha,\beta}^{\Lambda^*} \frac{\left[\omega_{\alpha_M}(k) + \omega_{\beta_M}(k')\right] u(k,\Lambda) u(k',\Lambda)}{16 \pi^2 f_{\pi}^2 \sqrt{\omega_{\alpha_M}(k) \omega_{\beta_M}(k')}},$$

Infinite-Volume scattering amplitude

ullet The T-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$T_{\alpha,\beta}(k,k';E) = \tilde{V}_{\alpha,\beta}(k,k';E) + \sum_{\gamma} \int q^2 dq \, \frac{\tilde{V}_{\alpha,\gamma}(k,q;E) \, T_{\gamma,\beta}(q,k';E)}{E - \omega_{\gamma}(q) + i\epsilon} \,.$$

Infinite-Volume scattering amplitude

ullet The T-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$T_{\alpha,\beta}(k,k';E) = \tilde{V}_{\alpha,\beta}(k,k';E) + \sum_{\gamma} \int q^2 dq \, \frac{\tilde{V}_{\alpha,\gamma}(k,q;E) \, T_{\gamma,\beta}(q,k';E)}{E - \omega_{\gamma}(q) + i\epsilon} \, .$$

• The coupled-channel potential is readily calculated from the interaction Hamiltonian

$$\tilde{V}_{\alpha,\beta}(k,k') = \sum_{B_0} \frac{G_{\alpha,B_0}^{\dagger}(k) G_{\beta,B_0}(k')}{E - m_{B_0}} + V_{\alpha,\beta}^{S}(k,k'),$$

$$\pi(-\mathbf{k}) \qquad \qquad (\pi(-\mathbf{k})) \qquad \qquad (\pi(-\mathbf{k})) \qquad (\pi(-\mathbf{k}')) \qquad \qquad (\pi(-\mathbf{k})) \qquad \qquad (\pi(-\mathbf{k}')) \qquad \qquad (\pi(-\mathbf{k})) \qquad \qquad (\pi(-\mathbf{k}$$

Infinite-Volume scattering matrix

ullet The S-matrix is related to the T-matrix by

$$S_{\alpha,\beta}(E) = 1 - 2i\sqrt{\rho_{\alpha}(E)\,\rho_{\beta}(E)} \,T_{\alpha,\beta}(k_{\alpha\,\mathrm{cm}}, k_{\beta\,\mathrm{cm}}; E)\,,$$

with

$$\rho_{\alpha}(E) = \pi \frac{\omega_{\alpha_M}(k_{\alpha \, \text{cm}}) \, \omega_{\alpha_B}(k_{\alpha \, \text{cm}})}{E} \, k_{\alpha \, \text{cm}} \,,$$

and $k_{\alpha \, \rm cm}$ satisfies the on-shell condition

$$\omega_{\alpha_M}(k_{\alpha\,\mathrm{cm}}) + \omega_{\alpha_B}(k_{\alpha\,\mathrm{cm}}) = E.$$

SUBATOMIC

Infinite-Volume scattering matrix

• The S-matrix is related to the T-matrix by

$$S_{\alpha,\beta}(E) = 1 - 2i\sqrt{\rho_{\alpha}(E)\,\rho_{\beta}(E)} \,T_{\alpha,\beta}(k_{\alpha\,\mathrm{cm}}, k_{\beta\,\mathrm{cm}}; E)\,,$$

with

$$\rho_{\alpha}(E) = \pi \frac{\omega_{\alpha_M}(k_{\alpha \, \text{cm}}) \, \omega_{\alpha_B}(k_{\alpha \, \text{cm}})}{E} \, k_{\alpha \, \text{cm}} \,,$$

and $k_{\alpha \, \rm cm}$ satisfies the on-shell condition

$$\omega_{\alpha_M}(k_{\alpha \, \text{cm}}) + \omega_{\alpha_B}(k_{\alpha \, \text{cm}}) = E.$$

• The cross section $\sigma_{\alpha,\beta}$ for the process $\alpha \to \beta$ is

$$\sigma_{\alpha,\beta} = \frac{4\pi^3 k_{\alpha \operatorname{cm}} \omega_{\alpha_M}(k_{\alpha \operatorname{cm}}) \omega_{\alpha_B}(k_{\alpha \operatorname{cm}}) \omega_{\beta_M}(k_{\alpha \operatorname{cm}}) \omega_{\beta_B}(k_{\alpha \operatorname{cm}})}{E^2 k_{\beta \operatorname{cm}}} |T_{\alpha,\beta}(k_{\alpha \operatorname{cm}}, k_{\beta \operatorname{cm}}; E)|^2.$$

• The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\text{cm}}) \omega_{N}(k_{\text{cm}})}{E} k_{\text{cm}} T_{\pi N,\pi N}(k_{\text{cm}}, k_{\text{cm}}; E),$$

$$= \eta(E) e^{2i\delta(E)}.$$

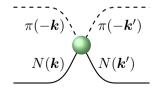
πN phase shift and inelasticity

• The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\text{cm}}) \omega_{N}(k_{\text{cm}})}{E} k_{\text{cm}} T_{\pi N,\pi N}(k_{\text{cm}}, k_{\text{cm}}; E),$$

= $\eta(E) e^{2i \delta(E)}$.

• In solving for the energy eigenstates. . .



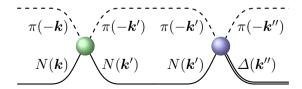
πN phase shift and inelasticity

• The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\rm cm}) \,\omega_{N}(k_{\rm cm})}{E} k_{\rm cm} \,T_{\pi N,\pi N}(k_{\rm cm}, k_{\rm cm}; E),$$

= $\eta(E) \,e^{2i\,\delta(E)}$.

• In solving for the energy eigenstates. . .



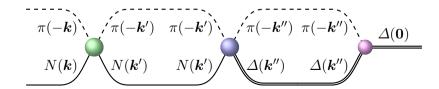
πN phase shift and inelasticity

ullet The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\text{cm}}) \omega_{N}(k_{\text{cm}})}{E} k_{\text{cm}} T_{\pi N,\pi N}(k_{\text{cm}}, k_{\text{cm}}; E),$$

= $\eta(E) e^{2i \delta(E)}$.

• In solving for the energy eigenstates. . .



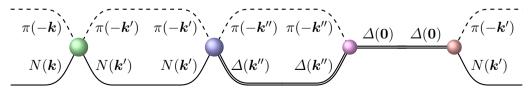
πN phase shift and inelasticity

• The S-matrix is related to the T-matrix by

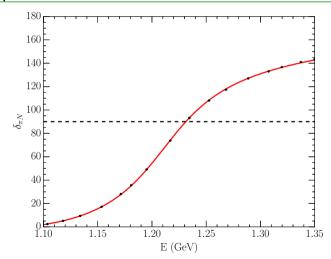
$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\rm cm}) \,\omega_{N}(k_{\rm cm})}{E} k_{\rm cm} \,T_{\pi N,\pi N}(k_{\rm cm}, k_{\rm cm}; E),$$

= $\eta(E) \,e^{2i\,\delta(E)}$.

In solving for the energy eigenstates...



P-wave πN phase shifts in the Δ channel - 1 πN channel



• In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.

- In a finite periodic volume, momentum is quantised to $n\left(2\pi/L\right)$.
- ullet In a cubic volume of extent L on each side, define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \, \frac{2\pi}{L} \,,$$

with $n_i = 0, 1, 2, ...$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

- In a finite periodic volume, momentum is quantised to $n\left(2\pi/L\right)$.
- ullet In a cubic volume of extent L on each side, define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \, \frac{2\pi}{L} \,,$$

with $n_i = 0, 1, 2, ...$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

• The degeneracy of each k_n is described by $C_3(n)$, which counts the number of ways the integers n_x , n_y , and n_z , can be squared and summed to n.

- In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.
- ullet In a cubic volume of extent L on each side, define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \, \frac{2\pi}{L} \,,$$

with $n_i = 0, 1, 2, ...$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

- The degeneracy of each k_n is described by $C_3(n)$, which counts the number of ways the integers n_x , n_y , and n_z , can be squared and summed to n.
- The non-interacting Hamiltonian takes the form

$$H_0 = \text{diag}(m_{B_0}, \ \omega_{\pi N}(k_0), \ \omega_{\pi \Delta}(k_0), \ \omega_{\pi N}(k_1), \ \omega_{\pi \Delta}(k_1), \ \ldots)$$

Interaction Hamiltonian Terms

• $1 \rightarrow 2$ particle interaction terms sit in the first row and column.

$$H_I = \begin{pmatrix} 0 & \overline{G}_{\pi N, B_0}(k_0) & \cdots & \overline{G}_{\pi \Delta, B_0}(k_0) & \overline{G}_{\pi N, B_0}(k_1) & \cdots & \overline{G}_{\pi \Delta, B_0}(k_1) & \cdots \\ \overline{G}_{\pi N, B_0}^\dagger(k_0) & 0 & & & & & \\ \vdots & & & 0 & & & & \\ \overline{G}_{\pi \Delta, B_0}^\dagger(k_0) & & & & \ddots & & \\ \overline{G}_{\pi N, B_0}^\dagger(k_1) & & & & & & \\ \vdots & & & & & & & \\ \overline{G}_{\pi \Delta, B_0}^\dagger(k_1) & & & & & & \\ \vdots & & & & & & & \\ \overline{G}_{\pi \Delta, B_0}^\dagger(k_1) & & & & & & \\ \vdots & & & & & & & \\ \overline{G}_{\pi \Delta, B_0}^\dagger(k_1) & & & & & & \\ \vdots & & & & & & & \\ \end{array} \right) .$$

allow for additional channels.

Interaction Hamiltonian Terms

• $1 \rightarrow 2$ particle interaction terms sit in the first row and column.

- · · · allow for additional channels.
- $2 \to 2$ particle interaction terms, $\overline{V}_{\alpha,\beta}^S(k_n,k_{n'})$, fill out the rest of the matrix.

Relation to infinite-volume contributions

 The finite volume Hamiltonian interaction terms are related to the infinite-volume contributions via

$$\int k^2 dk = \frac{1}{4\pi} \int d^3k \to \frac{1}{4\pi} \sum_{n \in \mathbb{Z}^3} \left(\frac{2\pi}{L}\right)^3 = \frac{1}{4\pi} \sum_{n \in \mathbb{Z}} C_3(n) \left(\frac{2\pi}{L}\right)^3.$$

such that

$$\bar{G}_{\alpha,B_0}(k_n) = \sqrt{\frac{C_3(n)}{4\pi}} \left(\frac{2\pi}{L}\right)^{\frac{3}{2}} G_{\alpha,B_0}(k_n) ,$$

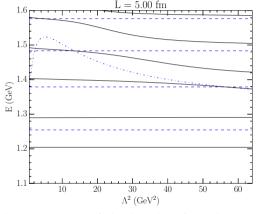
$$\bar{V}_{\alpha\beta}^S(k_n, k_m) = \sqrt{\frac{C_3(n)}{4\pi}} \sqrt{\frac{C_3(m)}{4\pi}} \left(\frac{2\pi}{L}\right)^3 V_{\alpha\beta}^S(k_n, k_m) .$$

Standard Lapack routines provide eigenmode solutions of

$$\langle i | H | j \rangle \langle j | E_{\alpha} \rangle = E_{\alpha} \langle i | E_{\alpha} \rangle,$$

- \circ where $|i\rangle$ and $|j\rangle$ are the non-interacting basis states,
- \circ E_{α} is the energy eigenvalue, and
- $\circ \langle i | E_{\alpha} \rangle$ is the eigenvector of the
- Hamiltonian matrix $\langle i | H | j \rangle$.

Energy eigenstates on an $L=5\ \mathrm{fm}$ lattice for different regulators



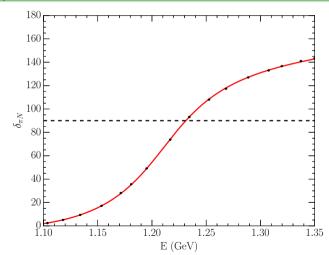
• dashed lines are the non-interacting πN basis-state energy levels.

SUBAT@M

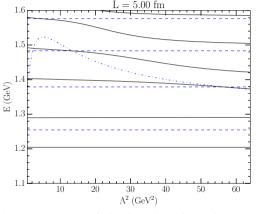
- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.

 Incorporation of the Lüscher formalism ensures energy eigenstates below 1.35 GeV are model independent.

$P ext{-wave }\pi N$ phase shifts in the Δ channel - 1 πN channel



Energy eigenstates on an $L=5\ \mathrm{fm}$ lattice for different regulators



• dashed lines are the non-interacting πN basis-state energy levels.

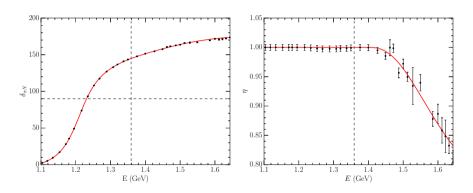
SUBAT@M

- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.

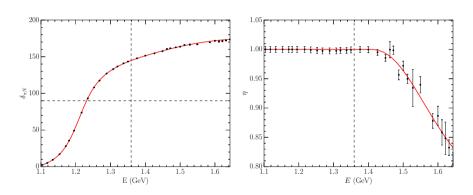
 Incorporation of the Lüscher formalism ensures energy eigenstates below 1.35 GeV are model independent.

$P ext{-wave }\pi N$ scattering in the Δ channel - 2 channel πN and $\pi\Delta$

SUBAT@MIC

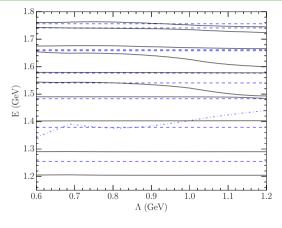


P-wave πN scattering in the Δ channel - 2 channel πN and $\pi \Delta$



• Anticipate regulator independence to 1.7 GeV.

Energy eigenstates on an L=5 fm lattice for different regulators

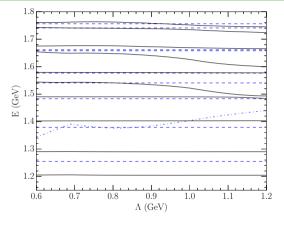


• dashed lines are the non-interacting πN and $\pi \Delta$ basis-state energy levels.

SUBAT@MI

- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.

Energy eigenstates on an $L=5\,\mathrm{fm}$ lattice for different regulators



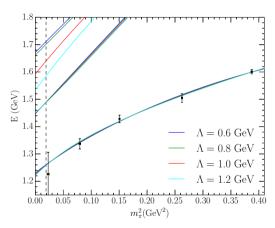
• dashed lines are the non-interacting πN and $\pi \Delta$ basis-state energy levels.

SUBAT@MI

- dot-dash line is the bare basis-state mass.
- solid lines are the eigenstate energy levels.

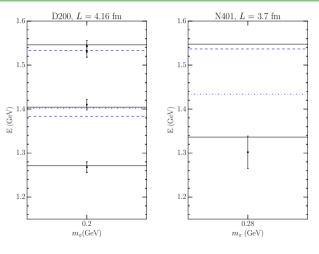
ullet πN scattering data alone is insufficient to uniquely constrain the Hamiltonian.

Mass dependence of energy eigenstates - Fit to PACS-CS Δ masses



• Lattice QCD results can constrain the Hamiltonian description of experimental data.

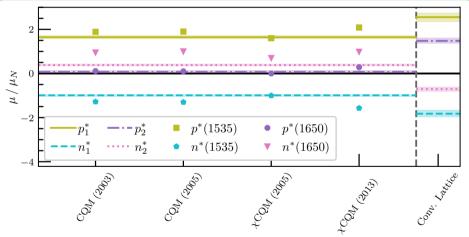
CLS Consortium finite-volume lattice energies of Δ -channel excitations



- C. Morningstar, et al. PoS LATTICE2021 (2022), 170
 [arXiv:2111.07755 [hep-lat]].
- C. W. Andersen, J. Bulava, B. Hörz and
 C. Morningstar, Phys. Rev. D 97 (2018)
 014506 [arXiv:1710.01557 [hep-lat]].

- Motivated by lattice QCD calculations of the electromagnetic form factors of the two low-lying odd-parity states.
 - F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].
- Parity-expanded variational analysis (PEVA) removes opposite-parity contaminants.
- ullet Confirms quark model predictions for N^* magnetic moments.

N^* Magnetic Moments and the constituent quark model



F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

• CQM (2003)

W.-T. Chiang, S. N. Yang, M. Vanderhaeghen, and D. Drechsel, Magnetic dipole moment of the S 11 (1535) from the $\gamma p \to \gamma \eta p$ reaction, Nucl. Phys. **A723**, 205 (2003), nucl-th/0211061

• χCQM (2005)

J. Liu, J. He, and Y. Dong, Magnetic moments of negative-parity low-lying nucleon resonances in quark models, Phys. Rev. **D71**, 094004 (2005).

• χCQM (2013)

N. Sharma, A. Martinez Torres, K. Khemchandani, and H. Dahiya, Magnetic moments of the low-lying $1/2^-$ octet baryon resonances, Eur. Phys. J. **A49**, 11 (2013), arXiv:1207.3311

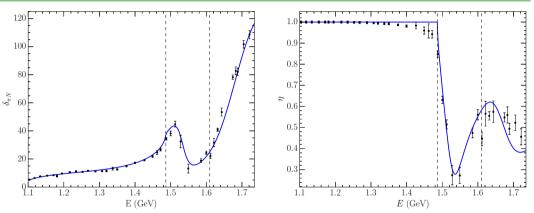
• Both the $N^*(1535)$ and $N^*(1650)$ are quark-model like at larger quark masses.

- Both the $N^*(1535)$ and $N^*(1650)$ are quark-model like at larger quark masses.
- Perform the first HEFT analysis with two bare basis states which
 - \circ Mix to form the $N^*(1535)$ and $N^*(1650)$.

- Both the $N^*(1535)$ and $N^*(1650)$ are quark-model like at larger quark masses.
- Perform the first HEFT analysis with two bare basis states which
 - \circ Mix to form the $N^*(1535)$ and $N^*(1650)$.
- Informed by the decay properties of these resonances and energy thresholds, the calculation includes three meson-baryon scattering channels, πN , ηN , and $K\Lambda$.

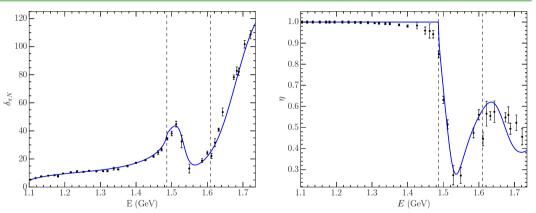
- Both the $N^*(1535)$ and $N^*(1650)$ are quark-model like at larger quark masses.
- Perform the first HEFT analysis with two bare basis states which
 - \circ Mix to form the $N^*(1535)$ and $N^*(1650)$.
- Informed by the decay properties of these resonances and energy thresholds, the calculation includes three meson-baryon scattering channels, πN , ηN , and $K\Lambda$.
- 21 parameter fit provides an excellent characterisation of the data.
 - Pole positions agree with PDG.

Phase shift and inelasticity for the low-lying odd-parity spin-1/2 nucleon resonances



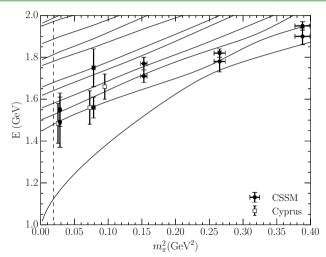
- WI08 single-energy data from SAID.
- Vertical lines indicate the opening of the ηN and $K\Lambda$ thresholds.

Phase shift and inelasticity for the low-lying odd-parity spin-1/2 nucleon resonances

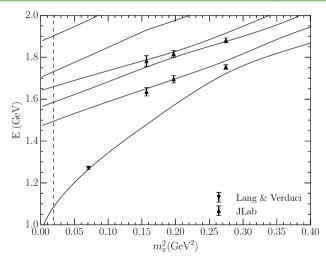


- Note the three-body $\pi\pi N$ threshold at 1.22 GeV.
- See Max Hansen's talk in Parallel Session 1, today at 4:20 pm.

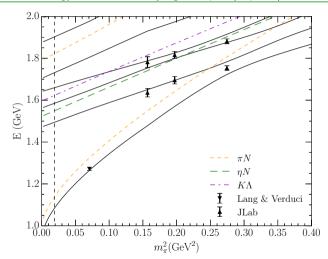
Finite-volume $L=3\ {\rm fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons



Finite-volume $L=2\ {\rm fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons



Finite-volume L=2 fm energy levels for low-lying odd-parity spin-1/2 nucleons



Standard Lapack routines provide eigenmode solutions of

$$\langle i | H | j \rangle \langle j | E_{\alpha} \rangle = E_{\alpha} \langle i | E_{\alpha} \rangle.$$

• Eigenvector $\langle i | E_{\alpha} \rangle$ describes the composition of the eigenstate $| E_{\alpha} \rangle$ in terms of the basis states $| i \rangle$ with

$$|i\rangle = |B_0\rangle, |\pi N, k_0\rangle, |\pi N, k_1\rangle, \cdots |\eta N, k_0\rangle, |\eta N, k_1\rangle, \cdots$$

• Standard Lapack routines provide eigenmode solutions of

$$\langle i | H | j \rangle \langle j | E_{\alpha} \rangle = E_{\alpha} \langle i | E_{\alpha} \rangle.$$

• Eigenvector $\langle i \, | \, E_{\alpha} \, \rangle$ describes the composition of the eigenstate $| \, E_{\alpha} \, \rangle$ in terms of the basis states $| \, i \, \rangle$ with

$$|i\rangle = |B_0\rangle, |\pi N, k_0\rangle, |\pi N, k_1\rangle, \cdots |\eta N, k_0\rangle, |\eta N, k_1\rangle, \cdots$$

• The overlap of the bare basis state $|B_0\rangle$ with eigenstate $|E_{\alpha}\rangle$,

$$\langle B_0 | E_{\alpha} \rangle$$
,

is of particular interest,

• In Hamiltonian EFT, the only localised basis state is the bare basis state.

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how $\chi {\sf PT}$ provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$\frac{3}{16} \frac{1}{(f_{\pi} L)^2 E_{\pi} L} \left(\frac{E_N - M_N}{E_N} \right) \sim 10^{-3},$$

relative to the ground state.

O. Bar, Phys. Rev. D **92** (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how $\chi {\sf PT}$ provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$\frac{3}{16} \frac{1}{(f_{\pi} L)^2 E_{\pi} L} \left(\frac{E_N - M_N}{E_N} \right) \sim 10^{-3},$$

relative to the ground state.

O. Bar, Phys. Rev. D **92** (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

 Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

$$\overline{\chi}(0) |\Omega\rangle \simeq |B_0\rangle$$
,

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how $\chi {\sf PT}$ provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$\frac{3}{16} \frac{1}{(f_{\pi} L)^2 E_{\pi} L} \left(\frac{E_N - M_N}{E_N} \right) \sim 10^{-3},$$

relative to the ground state.

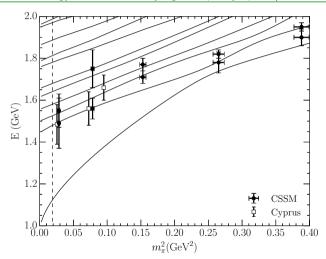
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

 Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

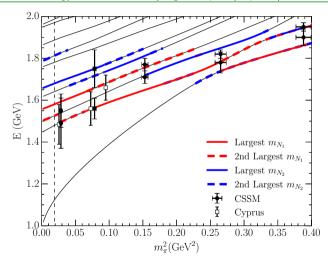
$$\overline{\chi}(0) |\Omega\rangle \simeq |B_0\rangle$$
,

• Element $\langle B_0 \, | \, E_\alpha \, \rangle$ of the eigenvector governs the likelihood of observing $| \, E_\alpha \, \rangle$.

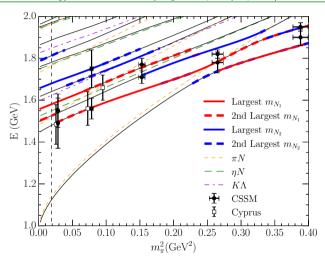
Finite-volume L=3 fm energy levels for low-lying odd-parity spin-1/2 nucleons



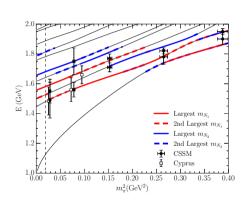
Finite-volume L=3 fm energy levels for low-lying odd-parity spin-1/2 nucleons

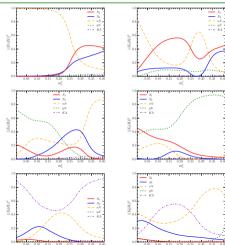


Finite-volume L=3 fm energy levels for low-lying odd-parity spin-1/2 nucleons

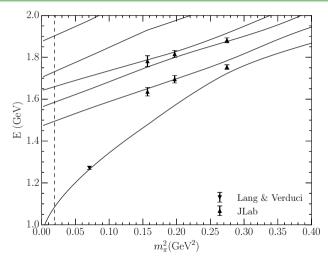


Energy eigenstate composition - 3 fm lattice

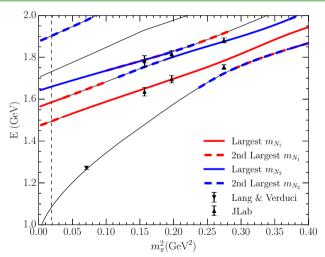




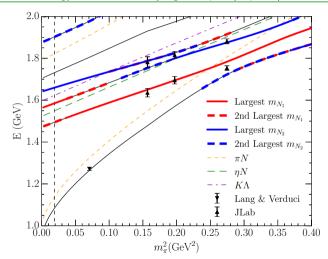
Finite-volume $L=2\ {\rm fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons



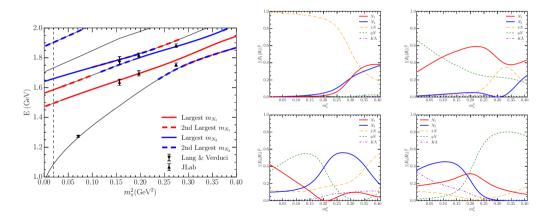
Finite-volume $L=2\ {\rm fm}$ energy levels for low-lying odd-parity spin-1/2 nucleons



Finite-volume L=2 fm energy levels for low-lying odd-parity spin-1/2 nucleons



Energy eigenstate composition - 2 fm lattice



Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

• Consider $\pi \Sigma$, $\bar{K}N$, $\eta \Lambda$, $K\Xi$ channels, and one bare basis state, B_0 .

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

- Consider $\pi \Sigma$, $\bar{K}N$, $\eta \Lambda$, $K\Xi$ channels, and one bare basis state, B_0 .
- ullet Eight two-to-two particle couplings are considered for isospin 0 and 1

$$g^0_{\pi \Sigma, \pi \Sigma}, \ g^0_{\bar{K}N, \bar{K}N}, \ g^0_{\bar{K}N, \pi \Sigma}, \ g^0_{H}, \ g^1_{\pi \Sigma, \pi \Sigma}, \ g^1_{\bar{K}N, \bar{K}N}, \ g^1_{\bar{K}N, \pi \Sigma}, \ g^1_{\bar{K}N, \pi \Lambda},$$

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

- Consider $\pi\Sigma$, $\bar{K}N$, $\eta\Lambda$, $K\Xi$ channels, and one bare basis state, B_0 .
- ullet Eight two-to-two particle couplings are considered for isospin 0 and 1

$$g^0_{\pi \varSigma, \pi \varSigma}, \ g^0_{\bar{K}N, \bar{K}N}, \ g^0_{\bar{K}N, \pi \varSigma}, \ g^0_{H}, \ g^1_{\pi \varSigma, \pi \varSigma}, \ g^1_{\bar{K}N, \bar{K}N}, \ g^1_{\bar{K}N, \pi \varSigma}, \ g^1_{\bar{K}N, \pi \Lambda},$$

• Five parameters describing bare to two-particle interactions are introduced

$$m_{B_0}, \ g^0_{\pi\Sigma, B_0}, \ g^0_{\bar{K}N, B_0}, \ g^0_{\eta\Lambda, B_0}, \ g^0_{K\Xi, B_0},$$

Z. W. Liu, et al. [CSSM], Phys. Rev. D 95 (2017) 014506 [arXiv:1607.05856 [nucl-th]]

- Consider $\pi\Sigma$, $\bar{K}N$, $\eta\Lambda$, $K\Xi$ channels, and one bare basis state, B_0 .
- ullet Eight two-to-two particle couplings are considered for isospin 0 and 1

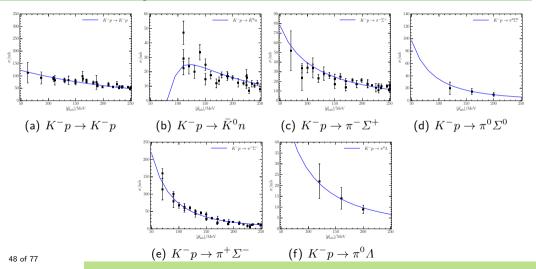
$$g^0_{\pi \varSigma, \pi \varSigma}, \ g^0_{\bar{K}N, \bar{K}N}, \ g^0_{\bar{K}N, \pi \varSigma}, \ g^0_{H}, \ g^1_{\pi \varSigma, \pi \varSigma}, \ g^1_{\bar{K}N, \bar{K}N}, \ g^1_{\bar{K}N, \pi \varSigma}, \ g^1_{\bar{K}N, \pi \Lambda},$$

• Five parameters describing bare to two-particle interactions are introduced

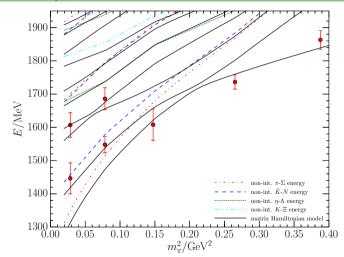
$$m_{B_0}, \ g^0_{\pi\Sigma, B_0}, \ g^0_{\bar{K}N, B_0}, \ g^0_{\eta\Lambda, B_0}, \ g^0_{K\Xi, B_0},$$

• These 13 parameters are constrained by experimental data.

Couplings and m_{B_0} Constrained by Experiment

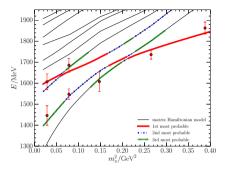


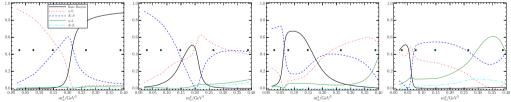
Finite Volume Λ Spectrum for L=3 fm



Finite Volume Λ Spectrum for L=3 fm







_{51 of 77} (a) State 1

(b) State 2

(c) State 3

(d) State 4

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.

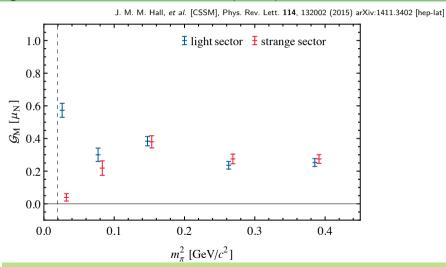
J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

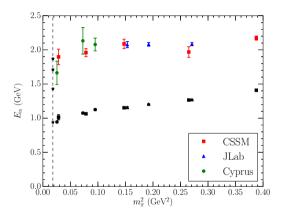
- ullet Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- \bullet In forming such a molecular state, the $\varLambda(u,d,s)$ valence quark configuration is complemented by
 - $\circ~$ A u,\overline{u} pair making a $K^-(s,\overline{u})$ proton (u,u,d) bound state, or
 - $\circ~$ A d,\overline{d} pair making a $\overline{K}^0(s,\overline{d})$ neutron (d,d,u) bound state.

- J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]
- ullet Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- \bullet In forming such a molecular state, the $\varLambda(u,d,s)$ valence quark configuration is complemented by
 - $\circ~$ A u,\overline{u} pair making a $K^-(s,\overline{u})$ proton (u,u,d) bound state, or
 - $\circ~$ A d,\overline{d} pair making a $\overline{K}^0(s,\overline{d})$ neutron (d,d,u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.

- J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]
- ullet Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- \bullet In forming such a molecular state, the $\varLambda(u,d,s)$ valence quark configuration is complemented by
 - $\circ~$ A u,\overline{u} pair making a $K^-(s,\overline{u})$ proton (u,u,d) bound state, or
 - $\circ~$ A d,\overline{d} pair making a $\overline{K}^0(s,\overline{d})$ neutron (d,d,u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.

- J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]
- ullet Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- \bullet In forming such a molecular state, the $\varLambda(u,d,s)$ valence quark configuration is complemented by
 - $\circ\;$ A u,\overline{u} pair making a $K^-(s,\overline{u})$ proton (u,u,d) bound state, or
 - $\circ~$ A d,\overline{d} pair making a $\overline{K}^0(s,\overline{d})$ neutron (d,d,u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the $\Lambda(1405)$ when it is dominated by a $\overline{K}N$ molecule.



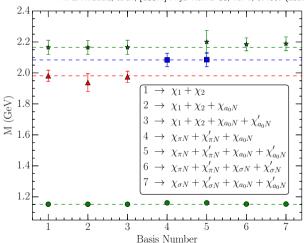


- CSSM: Z. W. Liu, et al. [CSSM], Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]
- Cyprus: C. Alexandrou, et al. (AMIAS), Phys. Rev. D 91, 014506 (2015) arXiv:1411.6765 [hep-lat]
- JLab: R. G. Edwards, et al. [HSC] Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].

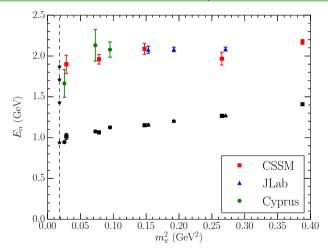
Search for low-lying lattice QCD eigenstates in the Roper regime

A. L. Kiratidis, et al., [CSSM] Phys. Rev. D 95, no. 7, 074507 (2017) [arXiv:1608.03051 [hep-lat]].

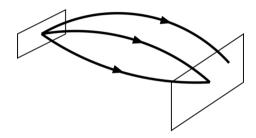
SUBAT@MI



Have we seen the 2s excitation of the quark model?

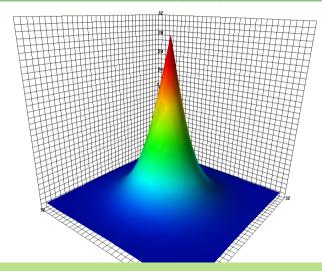


Landau-Gauge Wave functions from the Lattice

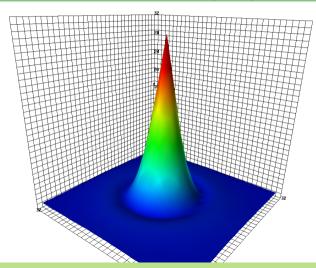


• Measure the *overlap* of the annihilation operator with the state as a function of the quark positions.

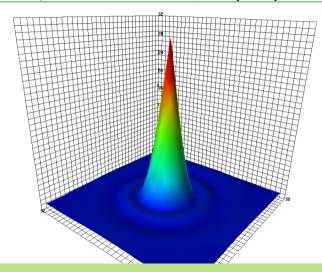
d-quark probability density in ground state proton [CSSM]



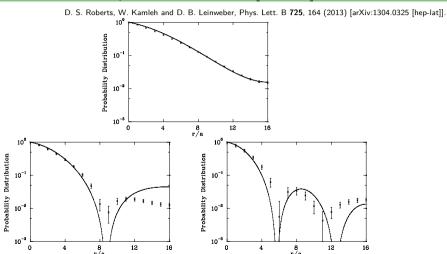
d-quark probability density in 1st excited state of proton [CSSM]



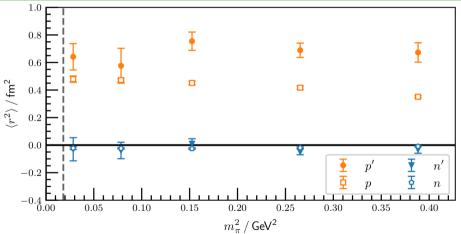
d-quark probability density in N=3 excited state of proton [CSSM]



Comparison with the Simple Quark Model [CSSM]

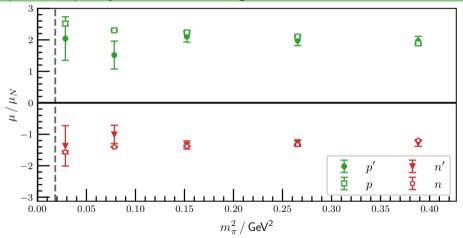


First positive-parity excitation: Charge Radii



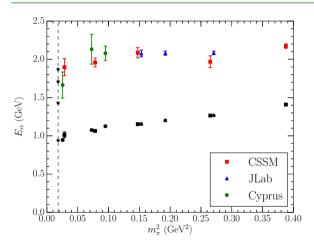
F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

First positive-parity excitation: Magnetic moments

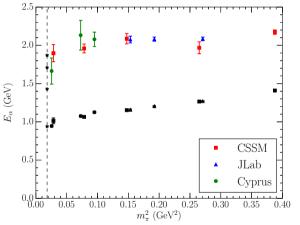


F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

The 2s excitation of the nucleon sits at 1.9 GeV

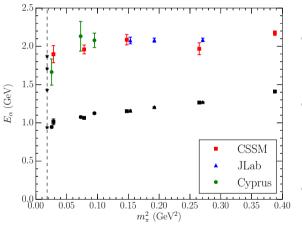


The 2s excitation of the nucleon sits at 1.9 GeV



- The $N1/2^+(1880)$ observed in photoproduction is associated with the 2s excitation of the nucleon.
- Z. W. Liu, W. Kamleh, DBL, F. M. Stokes,
 A. W. Thomas and J. J. Wu, Phys. Rev. D
 95, no. 3, 034034 (2017)
 [arXiv:1607.04536 [nucl-th]]

The 2s excitation of the nucleon sits at 1.9 GeV



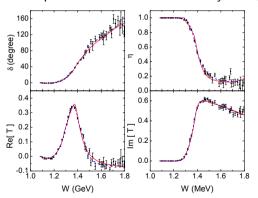
- The $N1/2^+(1880)$ observed in photoproduction is associated with the 2s excitation of the nucleon.
- Z. W. Liu, W. Kamleh, DBL, F. M. Stokes,
 A. W. Thomas and J. J. Wu, Phys. Rev. D
 95, no. 3, 034034 (2017)
 [arXiv:1607.04536 [nucl-th]]
- What about the Roper resonance?

Positive-parity Nucleon Spectrum: Bare Roper Case with $m_0 = 1.7$ GeV

• Consider πN , $\pi \Delta$ and σN channels, dressing a bare state.

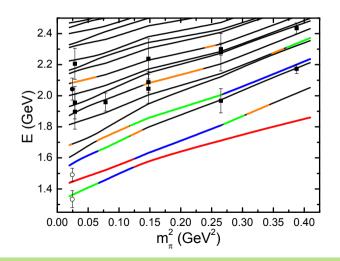
• Consider πN , $\pi \Delta$ and σN channels, dressing a bare state. • Fit to phase shift and inelasticity.

(dashed blue curve)



 \bullet Fit yields two poles in the region of the PDG estimate $1365\pm15-i\,95\pm15$ MeV. 65 of 77

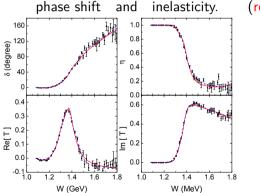
1.7 GeV Bare Roper: Hamiltonian Model N' Spectrum



Positive-parity Nucleon Spectrum: Bare Roper Case with $m_0 = 2.0$ GeV

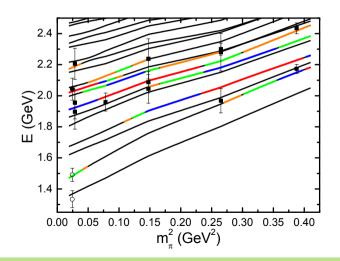
J. j. Wu, et al. [CSSM], arXiv:1703.10715 [nucl-th]

- Consider πN , $\pi \Delta$ and σN channels, dressing a bare state.
- Fit to phase shift and inelasticity. (red curve)

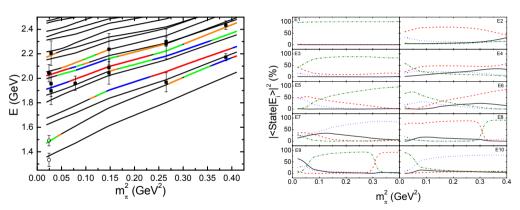


• Fit yields a pole at $1393-i\,167$ MeV \sim PDG estimate $1365\pm15-i\,95\pm15$ MeV. 67 of 77

2.0 GeV Bare Roper: Hamiltonian Model N' Spectrum



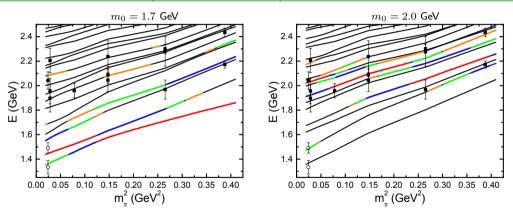
2.0 GeV Bare Roper: Hamiltonian Model N' Spectrum



 πN , $\pi \Delta$ and σN channels, dressing a bare state.

C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek, Phys. Rev. D 95, no. 1, 014510 (2017) [arXiv:1610.01422 [hep-lat]]. 69 of 77

Two different descriptions of the Roper resonance



(left) Meson dressings of a quark-model like core. (right) Resonance generated by strong rescattering in meson-baryon channels.

Criteria

 $m_0 = 1.7 \text{ GeV}$ $m_0 = 2.0 \text{ GeV}$

Describes experimental data well.

\sim			
C	rıt	er	ıa

$$m_0 = 1.7 \text{ GeV} \quad m_0 = 2.0 \text{ GeV}$$

Criteria

 $m_0 = 1.7 \text{ GeV}$ $m_0 = 2.0 \text{ GeV}$

Describes experimental data well.

Produces poles in accord with PDG.

Criteria	$m_0=1.7\mathrm{GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.	✓	✓

Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.	✓	✓
1st lattice scattering state created via σN interpol-		
ator has dominant $\langle\sigma N E_1 angle$ in HEFT.		

Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.	✓	✓
1st lattice scattering state created via σN interpol-	✓	✓
ator has dominant $\langle \sigma N E_1 angle$ in HEFT.		

Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	V
Produces poles in accord with PDG.	✓	✓
1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N E_1 \rangle$ in HEFT.	~	✓
2nd lattice scattering state created via πN interpolator has dominant $\langle \pi N E_2 \rangle$ in HEFT.		

Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.		✓
1st lattice scattering state created via σN interpol-	✓	✓
ator has dominant $\langle \sigma N E_1 angle$ in HEFT.		
2nd lattice scattering state created via πN interpol-	×	✓
ator has dominant $\langle \pi N E_2 angle$ in HEFT.		

Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~\mathrm{GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.	✓	✓
1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N E_1 \rangle$ in HEFT.	✓	~
2nd lattice scattering state created via πN interpolator has dominant $\langle \pi N E_2 \rangle$ in HEFT.	×	V
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 E_{\alpha} \rangle$.		

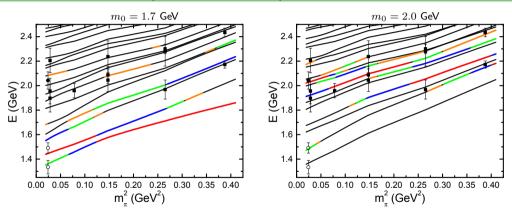
Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.	✓	✓
1st lattice scattering state created via σN interpol-	✓	✓
ator has dominant $\langle \sigma N E_1 \rangle$ in HEFT. 2nd lattice scattering state created via πN interpolator has dominant $\langle \pi N E_2 \rangle$ in HEFT.	×	✓
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 E_{\alpha} \rangle$.	×	✓

Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.	✓	✓
1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N E_1 \rangle$ in HEFT.	✓	✓
2nd lattice scattering state created via πN interpolator has dominant $\langle \pi N E_2 \rangle$ in HEFT.	×	✓
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 E_{\alpha} \rangle$.	×	✓
HEFT predicts three-quark states that exist in lattice QCD.		

SUE	AT(a	MIC	
		Ĭ	No.	
		\$189	Star.	

Criteria	$m_0=1.7~{\rm GeV}$	$m_0=2.0~{\rm GeV}$
Describes experimental data well.	✓	✓
Produces poles in accord with PDG.	✓	✓
1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N E_1 \rangle$ in HEFT.	✓	✓
2nd lattice scattering state created via πN interpolator has dominant $\langle \pi N E_2 \rangle$ in HEFT.	X	✓
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 E_{\alpha} \rangle$.	×	V
HEFT predicts three-quark states that exist in lattice QCD.	×	V

Two different descriptions of the Roper resonance

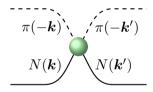


(left) Meson dressings of a quark-model like core. (right) Resonance generated by strong rescattering in meson-baryon channels.

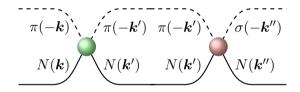
• The Roper resonance is not associated with a low-lying three-quark core.

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

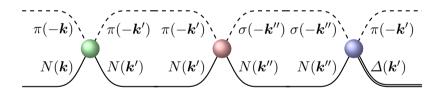
- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.



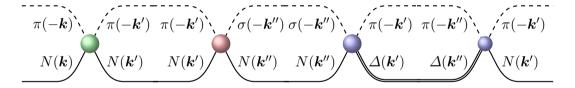
- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.



- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.



- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.



- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

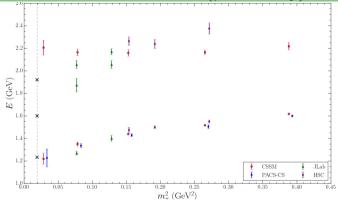
$$\pi(-\mathbf{k}) \stackrel{\checkmark}{\searrow} \pi(-\mathbf{k}') \pi(-\mathbf{k}') \stackrel{\checkmark}{\searrow} \pi(-\mathbf{k}') \stackrel{\widetilde}{\searrow} \pi(-\mathbf{k}') \stackrel{\widetilde}{\searrow} \pi(-\mathbf{k}') \stackrel{\widetilde}{\Longrightarrow} \pi$$

ullet The 2s excitation of the nucleon is dressed to lie at ~ 1.9 GeV

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

- The 2s excitation of the nucleon is dressed to lie at ~ 1.9 GeV
- The lattice state in the Roper region has $\sim 5\%$ bare state contribution.

Δ -baryon spectrum from lattice QCD (preliminary)



HSC: J. Bulava, et al., Phys. Rev. D 82 (2010) 014507 [arXiv:1004.5072 [hep-lat]].

JLab: T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) 034503 [arXiv:2010.03052 [hep-lat]].
PACS-CS: S. Aoki et al. [PACS-CS], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].

- Hamiltonian Effective Field Theory (HEFT)
 - o Connects infinite-volume scattering observables to finite-volume Lattice QCD.

- Hamiltonian Effective Field Theory (HEFT)
 - o Connects infinite-volume scattering observables to finite-volume Lattice QCD.
 - o Connects lattice results at different quark masses within a single formalism.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects infinite-volume scattering observables to finite-volume Lattice QCD.
 - o Connects lattice results at different quark masses within a single formalism.
 - Provides insight into the composition of energy eigenstates.
 - $\circ\;$ Facilitates an understanding of lattice QCD results.

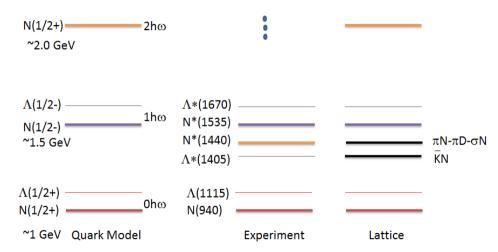
- Hamiltonian Effective Field Theory (HEFT)
 - Connects infinite-volume scattering observables to finite-volume Lattice QCD.
 - o Connects lattice results at different quark masses within a single formalism.
 - $\circ\,$ Provides insight into the composition of energy eigenstates.
 - Facilitates an understanding of lattice QCD results.
 - With lattice QCD constraints, HEFT provides new insight into resonance structure.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects infinite-volume scattering observables to finite-volume Lattice QCD.
 - o Connects lattice results at different quark masses within a single formalism.
 - o Provides insight into the composition of energy eigenstates.
 - Facilitates an understanding of lattice QCD results.
 - With lattice QCD constraints, HEFT provides new insight into resonance structure.
- A Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects infinite-volume scattering observables to finite-volume Lattice QCD.
 - o Connects lattice results at different quark masses within a single formalism.
 - o Provides insight into the composition of energy eigenstates.
 - Facilitates an understanding of lattice QCD results.
 - With lattice QCD constraints, HEFT provides new insight into resonance structure.
- ullet A Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.
- Odd-parity $N^*(1535)$ and $N^*(1650)$ Resonances:
 - Knowledge of eigenstate composition can be used to understand the states observed.
 - Dominated by a quark-core bare state dressed by meson degrees of freedom.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects infinite-volume scattering observables to finite-volume Lattice QCD.
 - o Connects lattice results at different quark masses within a single formalism.
 - o Provides insight into the composition of energy eigenstates.
 - Facilitates an understanding of lattice QCD results.
 - With lattice QCD constraints, HEFT provides new insight into resonance structure.
- ullet A Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.
- Odd-parity $N^*(1535)$ and $N^*(1650)$ Resonances:
 - Knowledge of eigenstate composition can be used to understand the states observed.
 - Dominated by a quark-core bare state dressed by meson degrees of freedom.
- Roper N(1440) Resonance: Arises from dynamical coupled-channel effects.
 - Lattice QCD results constrain the HEFT description of experimental data.
 - \circ State composition matches when the 2s excitation of the quark model sits at ~ 2 GeV.

The spectrum of quark-model-like states is relatively simple



- Formalism for partial-wave mixing in HEFT has been developed in Y. Li, J. J. Wu, C. D. Abell, D. B. L. and A. W. Thomas. Phys. Rev. D 101, no.11, 114501 (2020) [arXiv:1910.04973 [hep-lat]]
- And extended to moving and elongated finite-volumes in Y. Li, J. J. Wu, D. B. L. and A. W. Thomas Phys. Rev. D 103 no.9, 094518 (2021) [arXiv:2103.12260 [hep-lat]].