

1

Belle II Perspectives for Baryon Physics

John Yelton U. of Florida yelton@ufl.edu

Recent results from Belle II on charmed baryon lifetimes
Some selected examples of future Belle II analyses

NSTAR Conference, October 2022, Santa Margherita Ligure

SuperKEKB and Belle II: 2nd generation "Super B Factory"

 $c\bar{c}, \ u\bar{u}, \ d\bar{d}, \ \ell^+\ell^- \leftarrow e^+e^- \rightarrow \Upsilon(nS) \rightarrow B^{(*)}\bar{B}^{(*)}$

2

BELLE II Luminosity

Peak Luminosity [x10³⁵cm_{.2}s^{.1}]

Previous record instantaneous luminosity 2.1 x 10³⁴ cm⁻²s⁻¹ Belle integrated luminosity 1000 fb⁻¹ BaBar integrated luminosity 500 fb⁻¹ Peak instantaneous luminosity: 4.7 x 10³⁴ cm⁻² s⁻¹ (world record)

Lifetime measurements of weakly-decaying charmed baryons

Charmed baryon lifetimes are difficult to describe because of the interplay of different decay diagrams including external W-decay spectator diagrams and W-exchange diagrams.

Recent LHCb results have turned around the lifetime hierarchy which had been unchallenged for many years

Belle II Lifetime Measurement

Precise lifetime measurements by Belle II

- Upgraded vertex detector
 - More robust tracking
 - Better vertex resolution

Silicon Vertex Detector (SVD)

New Drift Chamber with longer lever arm than Belle . 60,0000 parameters used for the alignment of the 14336 wires

Not fully instrumented in the current dataset (Will be after present shutdown)

Beamspot effectively point-like in x,y and small in z

Resolution in pathlength 40 μ m (around 87 ps)

Measured Lifetime: 203.20 \pm 0.89 \pm 0.77 ps

Decays of $\Xi_c^{\ 0} \rightarrow \Lambda_c^{\ +}\pi^{-}$ (discovered by Belle, measured by LHCb and by Belle) and $\Xi_c^{+} \rightarrow \Lambda_c^{+} \pi^0$ (theoretically estimated and experimentally limited by

Λ_c^+ lifetime measurement at Belle II

Experiment	Lifetime (fs)
This measurement	$203.20 \pm 0.89 \pm 0.77$
LHCb (2019)	$203.5 \pm 1.0 \pm 1.3 \pm 1.4$
FOCUS (2002)	$204.6 \pm 3.4 \pm 2.5$
SELEX (2001)	$198.1 \pm 7.0 \pm 5.6$
CLEO (2001)	$179.6 \pm 6.9 \pm 4.4$

- World's best measurements of the Λ_c^+ lifetime
 - Consistent with current world averages
 - Slight tension with CLEO measurement remains
 - Benchmark for future baryon lifetime measurements

$\Omega_c^{\ 0}$ Lifetime Measurement

Previous measurements: WA89 $55^{+22}_{-25} \times 10^{-15}$ s, 86 events, modes: $\Omega^{-}\pi^{+}\pi^{-}\pi^{+}$, $\Xi^{-}\kappa^{-}\pi^{+}\pi^{+}$ Wrong mass!

E687 $86_{-30}^{+39} \times 10^{-15}$ s, 25 events, mode: $\Sigma^+ K^- \pi^+$

FOCUS $72\pm 16 \times 10^{-15}$ s, 64 events, modes: $\Omega^{-}\pi^{+}$, Ξ^{-} K⁻ π^{+} π^{+}

LHCb $268\pm26 \times 10^{-15}$ s, pK⁻K⁻ π^+ (in semi-leptonic decays) 276.5±13.7 × 10⁻¹⁵ s, modes: inclusive pK⁻K⁻ π^+ Decay mode not seen by any other experiment!

For Belle II we knew already that $\Omega^{-}\pi^{+}$ was decay mode with the best statistics and signal:noise ratio.

All cut were defined before looking at any lifetime distribution.

132 candidates with a signal purity 66.5%

Prospect for future BARYON analyses in BELLE II

Look at what has been done recently in Belle, and we can extrapolate

- 1. Charmed baryon spectroscopy
- 2. Other baryon spectroscopy (e.g. excited strange baryons)
- 3. Charmed baryon decay modes
- 4. CP Violation in charmed baryons

Clearly too much to say – we can just demonstrate some examples of each

Excited $\Omega_{\rm c}$ Spectroscopy

Spectroscopy of (non-charmed) baryons

Many excited singly/doubly/triply strange baryons can be found, particularly in charmed baryons decays

Confirmed in Ω_c decays Confirmed in 3-body decay (through tail of $\Xi(1520)$) (a1) 5 MeV/c² Events / 2.2 M(K'E⁰) GeV/c² (a2)Events / 5 MeV/c² 30 ² M(K⁰Ξ) GeV/c² 2.2

Strong indication that it is an orbital excitation $J^{P} = (3/2)^{-}$ state, or a molecular state.

It would be expected to have a $(1/2)^{-1}$ partner; Belle II can look for these and other states.

Other example: Investigation of excited Ξ baryons in Ξ_c decays. Belle II uniquely positioned for this kind of physics.

> PRL 121 (2018) 5, 052003 e-Print 2207.03090 Phys. Rev. D 104 (2021), 5, 052005

12

Charmed Baryon Decays: Branching Fractions

 Λ_{c}^{+} has two measurements of the absolute branching fraction: BES III (pK⁻π⁺) 5.84 ± 0.27 ± 0.23% Belle (pK⁻π⁺) 6.84 ± 0.24^{+0.21}_{-0.27}% This "tension" needs to be resolved. If absolute branching fraction is 6.4% or so, all major decay modes have been discovered and only "rare" decays searches remaining. BELLE II/BES III will both contribute

 Ξ_c^+ has one measurement of the absolute branching fraction: Belle ($\Xi^-\pi^+\pi^+$) 2.86 ± 1.21 ± 0.38% Statistically limited! Many decay modes remain unmeasured or poorly measured. Not close to getting the overall picture of decays. BELLE II best placed to contribute

 Ξ_c^0 has one measurement of the absolute branching fraction: Belle ($\Xi^-\pi^+$) 1.80 ± 0.50 ± 0.14% Belle ($\Lambda K^-\pi^+$) 1.07 ± 0.37 ± 0.09%

Statistically limited!

Many decay modes remain unmeasured or poorly measured. Not close to getting the overall picture of decays. BELLE II best placed to contribute

 Ω_c^0 has NO measurement of the absolute branching fractions. Clearly the lifetime saga shows us that Ω_c^0 decays have not been understood.

For instance B($\Omega_c \rightarrow \Omega^- \pi^+ \pi^- \pi^+$)/ B($\Omega_c \rightarrow \Omega^- \pi^+$) = 0.31 ± 0.05 whereas B($\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- \pi^+$)/ B($\Lambda_c^+ \rightarrow \Lambda \pi^+$) = 2.80 ± 0.27 BELLE II best placed to contribute

CP violation searches using charmed baryons

CP violation in baryons very important to understand (baryon asymmetry in the universe.....) CPV in baryons has to be *direct* as there is no mixing between particle and anti-particle

- Some clear experimental advantages over searches in B-baryons:
- e⁺e⁻ machines can get good signals for many charmed baryon modes comparatively low multiplicity makes for final states that are easier to analyze
- Looking for CPV in charmed baryon decays is a several step process: 1. Choose a suitable decay mode and measure the branching fraction

(Nothing measurable expected in Cabibbo-favored decays)

2. Measure the asymmetry parameter, $\boldsymbol{\alpha}$

For a decay such as $\Lambda_c^+ \rightarrow BP$ (baryon + pseudoscalar meson), the α parameter is defined to be:

$$\alpha = \frac{2Re(s.p)}{|s|^2 + |p|^2}$$

(where s and p are the parity-violating swave and the parity-conserving p-wave amplitudes in the decay)

3. Measure the difference in the asymmetry parameters for particles/antiparticles (Note that Belle II has excellent hyperon detection efficiency and purity)

Example Search for CP Violation in Charmed Baryons -

BELLE data $A^{\alpha}_{CP} = \frac{\alpha(\Lambda^+_c) + \alpha(\Lambda^-_c)}{\alpha(\Lambda^+_c) - \alpha(\Lambda^-_c)}$

Asymmetry measurement of the (Cabibbo-allowed) decay $\Xi_c^{0} \rightarrow \Xi^- \pi^+$

 α Is the slope of the line of dN/dcos(θ)

For each 1 ab⁻¹ data expected A_{CP}^{α} precision for the Cabibbo-suppressed modes $\Lambda_c^+ \rightarrow \Lambda K^+$ and $\Sigma^0 K^+$ are ~0.1 and ~0.3

Not very precise, but who knows?

CONCLUSIONS

I presented two Belle II Measurements of charmed baryons

 Λ_{c}^{+} 203.20 ± 0.89 ± 0.77 fs (world's most precise measurement) Ω_{c}^{0} 243 ± 48 ± 11 fs (consistent with LHCb measurement)

I have reviewed some (of the many) lines of research in baryons for which Belle II is uniquely placed

- 1. Charmed Baryon Spectroscopy (particularly involving γ decays)
- 2. Strange Baryon Spectroscopy (particularly using hyperons in charmed baryon decays)
- 3. Charmed Baryon Decay Modes
- 4. CP Violation searches

For all of these, Belle II has the working experiment, it is well calibrated and understood, and now all we need is the luminosity

BACKUP

CP violation searches using charmed baryons continued

What sort of modes should we look for?

 $\Lambda_{c}^{+} \rightarrow \Lambda \text{ K}^{+} \text{ and } \Sigma^{0} \text{ K}^{+} \text{ are the theoretically simplest decay modes to look at Branching Fractions: (6.1 ± 1.2) x 10⁻⁴ and (5.2 ± 0.8) x 10⁻⁴$

(dominated by statistical uncertainty)

At e⁺e⁻ machines:

- $\Lambda~$ efficiency and purity are good
- $\Sigma^0 \rightarrow \Lambda \gamma$ efficiency and purity OK

For 1 ab⁻¹ (Belle integrated luminosity, but small fraction of what Belle II WILL take)

 Λ K⁺ will have around 10,000 events and statistical uncertainty ~ 3% Σ^{0} K⁺ will have around 3,000 events and statistical uncertainty ~ 6%

CP violation searches using charmed baryons continued

For a decay such as $\Lambda_c^+ \to BP$ (baryon + pseudoscalar meson), the α parameter is defined to be: $\alpha = \frac{2Re(s.p)}{|s|^2 + |p|^2}$

(where s and p are the parity-violating s-wave and the parity-conserving p-wave amplitudes in the decay)

Operationally, for a decay such as $\Lambda_c^+ \to \Lambda K^+$ we define an angle θ_Λ , which is the angle between the proton momentum in the Λ frame and the Λ in the Λ_c^+ frame. We divide the data into bins of $\cos(\theta_\Lambda)$ and then use the equation:

$dN/dcos\theta_{\Lambda} \propto 1 + \alpha(\Lambda_{c}^{+} \rightarrow \Lambda K^{+}) \alpha(\Lambda \rightarrow p\pi^{-})cos\theta_{\Lambda}$

In other words, split the data into bins of $\cos\theta_{\Lambda}$, fit the peak in each one, make a plot, find the slope and extract the product of the α parameters (α for a Λ is well known)

Luckily for these analyses, the efficiency tends to be rather flat over varying $\cos\theta_{\Lambda}$