Results on $\pi^{+} \pi^{-}$ photoproduction on the nucleon

Alessandra Filippi INFN Torino, Italy

NSTAR2022, Santa Margherita Ligure, Italy - October 18, 2022

The light baryon $\left(N^{*}, \Delta\right)$ spectrum in the Constituent Quark Model

- Quarks confined into colorless hadrons
व
q
$9 \longdiv { q }$
baryons
- Description by first principle QCD and constituent Quark Models:
- Blue lines: expected states
- Yellow/orange boxes: observations

The light baryon spectrum: experimental situation

$\triangleright \quad$ Lowest lying N^{*} and Δ^{*} resonances

- 1.3-2 GeV mass range: second resonant region
- Overlapping states in the same mass region
- Broad widths (short lifetimes)
- Shared decay modes
\triangleright Most of the available information from pion/kaon beams experiments
- Missing states: too small couplings with mesons
$\triangleright \quad$ How to disentangle each signal and spot missing resonances?
- Difficult task if based only on the measurement of crosssections
- Use new approaches: analysis of polarization observables (additional information: spin)
- Perform precision measurements in as many reactions as possible
N^{*} / Δ^{*} in photoproduction reactions

Photonuclear cross sections

- Photon induced reaction could favor the formation of missing resonances which might couple strongly to the γN vertex
$\triangleright \quad \gamma$ reactions not studied extensively in the past - lack of good enough (energy/intensity) photon beams
- Dominant contributions to the "second resonant region": double-pion and η channels
- Double-pion photoproduction: good tool to investigate this mass region

clos Photoproduction of $\pi^{+} \pi^{-}$pairs from protons

with circularly polarized beam

S. Strauch et al. (CLAS) PLR95 (2005), 162003

- CLAS data: $1.35<\mathrm{W}<2.30 \mathrm{GeV}$
- Missing resonances predicted to lie in the region W > 1.8 GeV
- Circularly polarized photon beam, no polarization specified for target and recoil proton
- First measurement of beam-helicity asymmetry distributions as a function of the helicity angle:

$$
I^{\odot}=\frac{1}{P_{\gamma}} \frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}
$$

- Odd trend in all W sub-ranges
- Large asymmetries which change with W up to 1.8 GeV
- Compared with models based on electroproduction of double-charged pions including a set of quasi-two body intermediate states (Mokeev et al.):
$\pi \Delta, \rho N, \pi N(1520), \pi N(1680)+$ contributions from $\Delta(1600), N(1700), N(1710)$, $N(1720)$
- The agreement is not satisfactory, calls for a more detailed description
- The $I \odot$ observable is critically sensitive to interferences

clos

Photoproduction of $\pi^{+} \pi^{-}$pairs off protons (unpolarized)

E. Golovatch (CLAS) PL B788 (2019), 371

$\triangleright \quad$ Measurement of 9 x 1-fold differential cross sections of the $\gamma p \rightarrow \pi^{+} \pi^{-} p$ reaction in the $(1.6,2) \mathrm{GeV}$ range

- Attempt to reproduce the cross-sections using the JM17 meson-baryon reaction model
- Reasonable description
- A PWA fit provides the intermediate resonances contributions \& parameters
$\square \quad$ Intermediate channels: $\pi^{-} \Delta^{++}, \pi^{+} \Delta^{0}, \mathrm{p} \rho^{0}, \pi^{-} \pi^{+} \mathrm{p}$ direct production, $\pi^{+} N(1530) 3 / 2^{-}, \pi^{+} N(1685) 5 / 2^{+}$
- Extraction of masses, widths, photocouplings
- (new) Excited states required in the model:
$\mathbf{N (1 4 4 0)} 1 / 2^{+}, \mathbf{N}(1520) 3 / 2^{-}, \mathrm{N}(1535) 1 / 2^{-}$,
$\mathrm{N}(1650) 1 / 2^{-}, \mathrm{N}(1680) 5 / 2^{-}, \mathbf{N}^{\prime}(1720) 3 / 2^{+}$,
$\mathbf{N (2 1 9 0)} \mathbf{7 / 2 ^ { - }}$
$\Delta(1620) 1 / 2^{-}, \Delta(1700) 3 / 2^{-}, \Delta(1905) 5 / 2^{+}$,
$\Delta(1950) 7 / 2^{+}$

Photoproduction of $\pi^{0} \pi^{0}$ pairs off protons
 V. Sokhoyan (CB@ELSA/TAPS) EPJ A51 (2015), 95

- The double- π^{0} production is suitable to investigate the $\Delta(1232) \pi$ intermediate channel
- Less channels contribute compared to the charged pion channel, especially to the non resonant background
- Diffractive ρ production
- Dissociation of the proton into $\Delta^{++} \pi^{-}$
- π exchange is not possible

Use of real linearly polarized photons (ELSA) from 600 MeV to 2500 MeV : access to the $4^{\text {th }}$ resonance region

- Extraction of:
- total cross section
- PWA of the Dalitz plot
- Beam-helicity asymmetries for double- π^{0} production on the proton

Photoproduction of $\pi^{0} \pi^{0}$ pairs from protons and neutrons

M. Oberle et al. (CB, TAPS \& A2 @MAMI) PLB271 (2013), 237

\triangleright Beam-helicity asymmetries in double- π^{0} production on $\mathrm{LH}_{2} / \mathrm{LD}_{2}$ target (free $\mathrm{p}+$ quasi-free $\mathrm{p} \& \mathrm{n}$) with circularly polarized photons up to 1.4 GeV @MAMI
$\triangleright \quad{ }^{\circ}$ evaluated through cross-section asymmetries

- Identical beam-helicity asymmetry measured for free and quasi-free protons; very similar results from neutrons
- Expected up to the second resonance region (W < 1.6 GeV)
- Surprising at larger energies due to difference resonances produced

Free and quasi-free p

quasi-free n

Reasonable reproduction of I^{\odot} trend by Bonn-Gatchina and two-pion MAID models (much worse for Valencia), at least up to the second resonance region

$$
I^{\odot}(\varphi)=\sum_{n=1}^{\infty} A_{n} \sin (n \varphi)
$$

Photoproduction of $\pi^{0} \pi^{ \pm}$pairs from protons and neutrons

M. Oberle et al. (CB, TAPS \& A2 @MAMI) EPJ A (2014), 50

- Beam-helicity asymmetries in double mixed-charge π production on $\mathrm{LH}_{2} / \mathrm{LD}_{2}$ target (free $\mathrm{p}+$ quasi-free $\mathrm{p} \& \mathrm{n}$) with circularly polarized photons up to 1.4 GeV @MAMI
- Sensitive channels to $\rho^{ \pm}$production effects
- More background-populating channels compared to $2 \pi^{0}$

$\triangleright \quad I^{\circ}$ evaluated through cross-section asymmetries ordering particles by charge and by mass
$\triangleright \quad$ Good agreement between measurements on free and quasi-free proton, reasonable with quasi-free neutrons
- Worse agreement with models compared to $2 \pi^{0}$, especially at higher energies:
- more contributions from mixed charge channels, call to finer tuning of models
- Two-pions MAID model behaves better, overall
${ }^{\square}$ Beam-helicity asymmetries are very sensitive to interference terms

clos ${ }^{\circ}$

Experimental method - polarized beam and target

- CLAS-g14 data taking (2011-2012): circularly polarized photon beam with momentum up to $2.5 \mathrm{GeV} / \mathrm{c}$ interacting on a cryogenic HD longitudinally polarized target
- Beam: circularly polarized photons by bremsstrahlung from a longitudinally polarized electron beam (>85\%) through a gold foil radiator
- Circular: \uparrow / \downarrow (960 Hz flip frequency)
- Energy dependent γ polarization

$$
x=\frac{E_{\gamma}}{E_{\text {beam }}}
$$

- Target: "brute-force + aging" polarization method (< 30\%)
- Longitudinal (along beam direction): \Rightarrow / \Leftarrow
- Fixed in different data-sets
- Protons/neutrons

$H D$

\qquad

$$
\delta_{\odot}=P_{e l} \frac{4 x-x^{2}}{4-4 x+3 x^{2}}
$$

Study of polarization observables in the $\vec{\gamma} \vec{N} \rightarrow \pi^{+} \pi^{-} N$ reaction

$$
\frac{d \sigma}{d x_{i}}=\sigma_{0}\left\{\left(1+\Lambda_{z} \cdot \mathbf{P}_{\mathbf{z}}\right)+\delta_{\odot}\left(\mathbf{I}^{\odot}+\Lambda_{z} \cdot \mathbf{P}_{z}^{\odot}\right)\right\}
$$

\triangleright The differential cross-section can be expressed by four contributions which depend on polarization observables weighted by the extent of beam δ_{\odot} and/or target Λ polarization
$\triangleright \quad$ The trend of the polarization observables depends on the resonance content in a given energy range

- Polarization observables are bilinear combinations of partial amplitudes (Roberts, Oed PRC71
(2005), 0552001): very sensitive to interference effects

Polarization observables extraction

- Problem: extract from the number of collected events the I^{\odot}, P, P^{\odot} observables as a function of the Φ azimuthal angle in the helicity reference system, in W energy ranges

$$
\begin{gathered}
P_{z}=\frac{1}{\Lambda_{z}} \frac{[N(\rightarrow \Rightarrow)+N(\leftarrow \Rightarrow)]-[N(\rightarrow \Leftarrow)+N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow)+N(\leftarrow \Rightarrow)]+[N(\rightarrow \Leftarrow)+N(\leftarrow \Leftarrow)]} \\
I^{\odot}=\frac{1}{\delta_{\odot}} \frac{[N(\rightarrow \Rightarrow)+N(\rightarrow \Leftarrow)]-[N(\leftarrow \Rightarrow)+N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow)+N(\rightarrow \Leftarrow)]+[N(\leftarrow \Rightarrow)+N(\leftarrow \Leftarrow)]} \\
P_{z}^{\odot}=\frac{1}{\Lambda_{z} \delta_{\odot}} \frac{[N(\rightarrow \Rightarrow)+N(\leftarrow \Leftarrow)]-[N(\rightarrow \Leftarrow)+N(\leftarrow \Rightarrow)]}{[N(\rightarrow \Rightarrow)+N(\leftarrow \Leftarrow)]+[N(\rightarrow \Leftarrow)+N(\leftarrow \Rightarrow)]}
\end{gathered}
$$

- Related to differential crosssection asymmetries
- Depending on the relative beam/target spin configurations
- Two data sets with opposite target $(\Rightarrow / \Leftarrow)$ polarizations needed

Polarization asymmetries in every $\varphi_{\text {hel }}$ bin

$$
\frac{d \sigma}{d x_{i}}=\sigma_{0}\left\{\left(1+\Lambda_{z} \cdot \mathbf{P}_{\mathbf{z}}\right)+\delta_{\odot}\left(\mathbf{I}^{\odot}+\Lambda_{z} \cdot \mathbf{P}_{z}^{\odot}\right)\right\}
$$

This equation (Roberts et al., PRC 718(2005), 055201) can be split in four depending on the orientation of beam helicity and target polarization (along z)

- Two data sets with opposite target polarization need to be used (but properly normalized)

The system of equations can be solved analytically extracting, in every bin, $I^{\odot}, P_{z}, P^{\odot}{ }_{z}$ and σ_{0} as solutions

$$
\begin{aligned}
& N_{\text {exp }}^{\rightarrow \vec{\Rightarrow}}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1+\Lambda_{z} P_{z}+\delta_{\odot}\left(I_{\odot}+\Lambda_{z} P_{Z}^{\odot}\right)\right\rfloor \\
& N_{\text {exp }}^{\leftarrow} \Rightarrow=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1+\Lambda_{z} P_{z}-\delta_{\odot}\left(I_{\odot}+\Lambda_{z} P_{z}^{\odot}\right)\right\rfloor \\
& N_{\text {exp }}^{\leftrightarrow \leftarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1-\Lambda_{z} P_{z}+\delta_{\odot}\left(I_{\odot}-\Lambda_{z} P_{z}^{\odot}\right)\right\rfloor \\
& N_{\text {exp }}^{\leftarrow \leftarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1-\Lambda_{z} P_{z}-\delta_{\odot}\left(I_{\odot}-\Lambda_{z} P_{z}^{\odot}\right)\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& I_{\odot}=\frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}}+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{L_{\text {eff } 1}}{L_{\text {eff } 2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow}-N_{2}^{\leftarrow \Leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{L_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)} \\
& P_{z}^{\odot}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}}-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot \frac{N_{2}^{\leftarrow \Leftarrow}-N_{2}^{\leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{L_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)} \\
& P_{z}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \leftrightarrows}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}
\end{aligned}
$$

clos

Experimental data: empty target subtraction

- Selection of events from the HD target: fiducial cut in r and z
\triangleright The events selected in the fiducial volume of the target contain the contribution from the target walls (unpolarized)
- Empty target subtraction needed
- Relative normalization of different runs: height of Kel-F wall peak
- Subtraction with empty-target runs

Events in the Kel-F peak also used for relative luminosity normalizations between different data sets

clos

Data selection - exclusive $\vec{\gamma} \vec{p} \rightarrow \pi^{+} \pi^{-} p$ reaction

Description	Cut
Particle multiplicity	1 negative, 2 positives
Time coincidence	Time coincidence between: 1 proton, $1 \pi^{+}, 1 \pi^{-}$
$2 \pi p$ z-vertex in HD target	$-9.5<z_{\text {vertex }}<-5.8 \mathrm{~cm}$
$2 \pi p$ pId: $\beta_{\text {corr }}$	$p_{\pi^{ \pm}} / \sqrt{p_{\pi^{2}}^{2}+\left(m_{\pi}-80[\mathrm{MeV}]\right)^{2}} \leq \beta_{\pi^{ \pm}}^{\text {corr }} \leq p_{\pi^{ \pm}} / \sqrt{p_{\pi^{ \pm}}^{2}+\left(m_{\pi}+80[\mathrm{MeV}]\right)^{2}}$
	$p_{p} / \sqrt{p_{p}^{2}+\left(m_{p}-200[\mathrm{MeV}]\right)^{2}} \leq \beta_{p}^{\text {corr }} \leq p_{p} / \sqrt{p_{p}^{2}+\left(m_{p}+200[\mathrm{MeV}]\right)^{2}}$
	$\left\|\Delta\left(\beta_{p}\right)\right\|<0.08$
$2 \pi p$ pId: $\|\Delta \beta\|$	$p_{\pi^{ \pm}} \leq 500[\mathrm{MeV} / c]:\left\|\Delta\left(\beta_{\pi^{ \pm}}\right)\right\|<0.08$
	$p_{\pi^{ \pm}} \geq 500[\mathrm{MeV} / c]:\left\|\Delta\left(\beta_{p)^{ \pm}}\right)\right\|<0.2$
$2 \pi p$ fiducial cuts	$\pi^{+} \& \& \pi^{-} \& \& p$ within fiducial volume
Missing mass for proton pId	$0.824 \leq \mathrm{m} \cdot \mathrm{m} \cdot\left(\pi^{+} \pi^{-}\right) \leq 1.052\left[\mathrm{GeV} / c^{2}\right]$
Total missing mass	$\mathrm{m} \cdot \mathrm{m} \cdot\left(\pi^{+} \pi^{-} p\right)<0\left[\mathrm{GeV} / c^{2}\right]$
Fermi momentum	$p_{F}<100 \mathrm{MeV} / c$
Coplanarity	$\|\operatorname{coplanarity}\|<10^{\circ}$

Particle ID for $\pi^{+} \pi^{-}$and p based on TOF
Further selection on ($\pi^{+} \pi^{-}$) missing mass to identify the proton

Total missing mass cut

Missing momentum cut: reject reactions without spectator at rest

Coplanarity cut for pion pairs

clos

Experimental angular distributions

- Needed input: angular distributions ($\varphi_{\text {hel }}$)
- Bin by bin: number of events selected with
- Given helicity (positive/negative in the same data set)
- Given target polarization (in different data sets)
- Selection in W energy ranges ($\sim 100 \mathrm{MeV}$ wide window)
- Counts to be properly normalized between different data sets
> Slight differences when selecting different combinations of helicities/target polarization: origin of the investigated asymmetries

Set w/ positive target polarization

Set w/ negative target polarization

preliminary

clo Evaluation of experimental beam-helicity asymmetries E*

$\triangleright \quad$ E* can be extracted from the data matching proper samples (with similar experimental conditions, and extracting the weighted average for all samples)
For each data set:

$$
E^{*}=\frac{1}{\delta_{\odot}} \frac{N^{+}-N^{-}}{N^{+}+N^{-}}
$$

The E* values agree with previous measurements with polarized beam only (blue points) Systematic errors (grey bars) from spread of values obtained using different data sets

clos ${ }^{\circ}$

Preliminary results - I^{\odot} on proton

- Extraction of polarization asymmetries from the equation by Roberts et al.
- According to general symmetry principles I° is expected to be an odd function of the helicity angle
- It depends only on the ratio of target polarizations
$\triangleright \quad$ The trend is in reasonable agreement with the earlier observations by CLAS based on a different data-set (unpolarized target)

Blue points from S. Strauch et al., CLAS Coll., PRL 95 (2005), 162003

clos

Preliminary results $-P_{z}$ on proton

- No other results available for comparisons: first results ever
- $\quad P_{z}$ expected to be odd based on partial amplitudes symmetry
- Vanishing at zero angle: coplanarity condition
- Beware: when the helicity angle is oriented in the bottom hemisphere a sign flip occurs in Roberts' equations and, consequently, in the parity of the solutions
- Improvingly symmetric odd trend with W increase
- The lack of left/right symmetry could be due to instrumental reasons (different acceptance, ...)

clos

Preliminary results $-P_{z}^{\odot}$ on proton

- No other results available for comparisons: first results ever
P_{z}^{\odot} expected to be even based on partial amplitudes symmetry
$P_{z}{ }^{\ominus}$ is compatible with zero (within errors)
- Large statistical uncertainties obtained from the error propagation of the system solutions - small extent overall of target polarization (23\% max.)

Summary and outlook

- Double-pion photoproduction with polarized beam and/or target as a novel tool to extract information about the baryonic spectrum
- $\quad \gamma \mathrm{p}$ channel
- Analysis completed, extraction of results for all compatible data set pairs underway
- Final evaluation of systematics in progress (take care of correlations among the sets)
- Outlook: γ n channel - in progress
- Same data analysis chain used for γp to be applied to the $\pi^{+} \pi^{-n}(p)$ final state
- Use the same W binning and overall analysis approach
- Stay tuned: some novel results upcoming!
- The interpretation of results in terms of partial amplitudes contribution call for new models updating the interaction pattern and reproducing all the new extracted observables
- So far, none of the available reaction models agrees completely with the asymmetries extracted from reactions involving the production of charged pion pairs

