The light baryon resonance spectrum in a coupled-channel approach

Recent results from the Jülich-Bonn model - NSTAR 2022

October 18, 2022 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich

In collaboration with: M. Döring, M. Mai, Ulf-G. Meißner, C.-W. Shen, Y.-F. Wang, R. Workman (Jülich-Bonn and Jülich-Bonn-Washington collaborations)

Supported by DFG, NSFC and MKW NRW
HPC support by Jülich Supercomputing Centre

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Major source of information:
In recent years: photoproduction reactions

- enlarged data base with high quality (double) polarization observables, towards a complete experiment Reviews: Prog.Part.Nucl.Phys. 125, 103949 (2022), Prog.Part.Nucl.Phys. 111 (2020) 103752

In the future: electroproduction reactions

- 10^{5} data points for $\pi N, \eta N, K Y, \pi \pi N$ already available
- access the Q^{2} dependence of the amplitude Reviews: Prog.Part.Nucl.Phys. 67 (2012)

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI
\Rightarrow Partial wave decomposition: decompose data with respect to a conserved quantum number:
total angular momentum and parity J^{P}

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000
\Rightarrow search for resonances/excited states in those partial waves: poles on the $2^{\text {nd }}$ Riemann sheet
(Breit-Wigner problematic in baryon spectroscopy)

The Jülich-Bonn DCC approach for N^{*} and Δ^{*}

 pion-induced reactionsDynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2} \quad\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- channels ν, μ, γ :

The Jülich-Bonn DCC approach for N^{*} and Δ^{*}

 pion-induced reactionsDynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\begin{aligned}
\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle & =\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- potentials V constructed from effective \mathcal{L}
- s-channel diagrams: T^{P}
genuine resonance states
- t - and u-channel: $T^{N P}$ dynamical generation of poles partial waves strongly correlated
- contact terms

Thresholds of inelastic channels

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- opening of inelastic channels \Rightarrow branch point and new Riemann sheet

3-body $\pi \pi N$ channel:

- parameterized effectively as $\pi \Delta, \sigma N, \rho N$
- $\pi N / \pi \pi$ subsystems fit the respective phase shifts
\square branch points move into complex plane

Example: ρN branch point at

$$
M_{N}+m_{\text {rho }}=1700 \pm i 75 \mathrm{MeV}
$$

Inclusion of branch points important to avoid false resonance signal!

Photoproduction in a semi-phenomenological approach

Multipole amplitude

$$
M_{\mu \gamma}^{\prime \prime}=V_{\mu \gamma}^{\prime \prime}+\sum_{\kappa} T_{\mu \kappa}^{\prime \prime} G_{\kappa} V_{\kappa \gamma}^{\prime \prime}
$$

(partial wave basis)

$T_{\mu \kappa}$: full hadronic T-matrix as in pion-induced reactions
Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$
=\frac{\tilde{\gamma}_{\mu}^{a}(q)}{m_{N}} P_{\mu}^{\mathrm{NP}}(E)+\sum_{i} \frac{\gamma_{\mu ; i}^{a}(q) P_{i}^{P}(E)}{E-m_{i}^{b}}
$$

Simultaneous fit of pion- \& photon-induced reactions

Free parameters

$\pi N \rightarrow \pi N, \eta N, K Y:$ s-channel: resonances $\left(T^{P}\right)$

- $\gamma p \rightarrow \pi N, \eta N, K Y$: couplings of the polynomials and s-channel parameters

- couplings in contact terms: one per PW, couplings to $\pi N, \eta N$, ($\pi \Delta$,) $K \Lambda, K \Sigma$
- t - \& u-channel parameters: cut-offs, mostly fixed to values of previous JüBo studies (couplings fixed from $\mathrm{SU}(3)$)
$\Rightarrow \quad>900$ fit parameters in total, $\sim 72,000$ data points
\bigsqcup calculations on a supercomputer [JURECA, Julich Supercomputing Centre, Journal of large-scale research facilities, 2, A62 (2016)]
- large number of fit parameters, many from polynomials
- can be regarded as advantage: prevents the inclusion of superfluous s-channel states to improve fit

Extension to $K \Sigma$ photoproduction on the proton

JüBo2022 arXiv:2208.00089 [nucl-th], accepted at EPJ A

Unique opportunities in $\gamma p \rightarrow K^{+} \Sigma^{0}, K^{0} \Sigma^{+}$:

- coupling of N^{*} 's, Δ^{*} 's to strangeness channels: missing resonances not seen in πN scattering?
- mixed isospin \rightarrow more information on Δ states
- self-analyzing decay of Y's: recoil polarization from angular distribution of decay products
(important for "complete experiment")
- better data quality than in $\pi N \rightarrow K Y$

Selected fit results

Extension to $K \Sigma$ photoproduction on the proton

JüBo2022 arXiv:2208.00089 [nucl-th], accepted at EPJ A

Simultaneous analysis of $\pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$ and $\gamma p \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$

- almost 72,000 data points in total, $W_{\max }=2.4 \mathrm{GeV}$

$$
\begin{aligned}
& \gamma p \rightarrow K^{+} \Sigma^{0}: d \sigma / d \Omega, P, \Sigma, T, C_{x^{\prime}, z^{\prime}}, O_{x, z}=5,652 \\
& \gamma p \rightarrow K^{0} \Sigma^{+}: d \sigma / d \Omega, P=448
\end{aligned}
$$

- polarizations scaled by new Λ decay constant α - (Ireland PRL 123 (2019), 182301), if applicable
- χ^{2} minimization with MINUIT on JURECA [Jülich

Supercomputing Centre, JURECA: JLSRF 2, A62 (2016)]

Resonance analysis:

- all 4 -star N and Δ states up to $J=9 / 2$ are seen (exception: $N(1895) 1 / 2^{-}$) + some states rated less than 4 stars
- no additional s-channel diagram, but indications for new dyn. gen. poles

Resonance contributions to $K \Sigma$ photoproduction

$$
\gamma p \rightarrow K^{+} \Sigma^{0}
$$

(Data not included in fit)

JüBo2O22 arXiv:2208.00089 [nucl-th]

- dominant partial waves: $I=3 / 2$

Exception: P_{13} partial wave ($/=1 / 2$):

$N(1720) 3 / 2^{+}$	$\operatorname{Re} E_{0}$	$-2 \operatorname{lm} E_{0}$	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{K \Sigma}^{1 / 2}}{\Gamma_{\text {tot }}}$	$\theta_{\pi N \rightarrow K \Sigma}$
$* * * *$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\%]$	$[\mathrm{deg}]$
2022	$1726(8)$	$185(12)$	$5.9(1)$	$82(6)$
2017	$1689(4)$	$191(3)$	$0.6(0.4)$	$26(58)$
PDG 2021	1675 ± 15	250_{-100}^{+150}	-	-

$N(1900) 3 / 2^{+}$ $* * * *$	$\operatorname{Re} E_{0}$	$-2 \operatorname{lm} E_{0}$	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{K \Sigma}^{1 / 2}}{\Gamma_{\text {tot }}}$	$\theta_{\pi N \rightarrow K \Sigma}$
$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\%]$	$[\mathrm{deg}]$	
2022	$1905(3)$	$93(4)$	$1.3(0.3)$	$-40(18)$
2017	$1923(2)$	$217(23)$	$10(7)$	$-34(74)$
PDG 2021	1920 ± 20	150 ± 50	4 ± 2	110 ± 30

- drop in cross section due to $N(1900) 3 / 2^{+}$
- "cusp-like structure" only qualitatively explained

Resonance contributions to $K \Sigma$ photoproduction

JüBo2O22 arXiv:2208.00089 [nucl-th]

$$
\gamma p \rightarrow K^{+} \Sigma^{0}
$$

Data: Jude et al. (BGOOD) PLB 820 (2021)

Selected results $\gamma p \rightarrow K^{0} \Sigma^{+}$

W [MeV]
Selected fit results:

- much less data than for $K^{+} \Sigma^{0}$ (448 vs 5,652 data points)
- in parts inconsistent data
\rightarrow difficult to achieve a good fit result
- cusp in $\sigma_{\text {tot }}$ at $\sim 2 \mathrm{GeV}$ not reproduced (data not included in fit)

Data: open squares: SPAHIR 1999, cyan: SAPHIR 2005, orange:
CBELSA/TAPS 2007, black squares: CBELSA/TAPS 2011, open circles: A2 2018, open triangles: A2 2013, black triangles: Hall B 2003, black circles: CLAS 2013

New data for $\gamma p \rightarrow \eta p$ from CBELSA/TAPS

included in JüBo2O22

- T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

- $\sum_{\text {Afzal PRL } 125,152002 \text { (2020): }}$ Backward peak in data
\rightarrow Observation of $\eta^{\prime} N$ cusp + importance of $N(1895) 1 / 2^{-}$(BnGa)

$N(1535) 1 / 2^{-}$	$\operatorname{Re} E_{0}$	$-2 \operatorname{lm} E_{0}$	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$	$\theta_{\pi N \rightarrow K \Sigma}$
$* * * *$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\%]$	$[\mathrm{deg}]$
2022	$1504(0)$	$74(1)$	$50(3)$	$118(3)$
2017	$1495(2)$	$112(1)$	$51(1)$	$105(3)$
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5

$N(1650) 1 / 2^{-}$	$\operatorname{Re} E_{0}$	$-2 \operatorname{lm} E_{0}$	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$	$\theta_{\pi N \rightarrow K \Sigma}$
$\quad * * *$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\%]$	$[\mathrm{deg}]$
2022	$1678(3)$	$127(3)$	$34(12)$	$71(45)$
2017	$1674(3)$	$130(9)$	$18(3)$	$28(5)$
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

$\rightarrow \eta N$ residue $N(1650) 1 / 2^{-}$much larger (similarly observed by BnGa)

JüBo2022:

- no $\eta^{\prime} N$ channel (or cusp), to be included in the future
- no $N(1895) 1 / 2^{-}$(not needed)
- backward peak from $N(1720) \& N(1900) 3 / 2^{+}$

New data for $\gamma p \rightarrow \eta p$ from CBELSA/TAPS

included in JüBo2O22

- T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

- $\sum_{\text {Afzal PRL 125, } 152002 \text { (2020): }}$ Backward peak in data
\rightarrow Observation of $\eta^{\prime} N$ cusp + importance of $N(1895) 1 / 2^{-}$(BnGa)

$\begin{gathered} N(1535) 1 / 2^{-} \\ * * * * \end{gathered}$	$\operatorname{Re} E_{0}$ [MeV]	$-2 \operatorname{Im} E_{0}$ [MeV]	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$ [\%]	$\begin{aligned} & \theta_{\pi N \rightarrow K \Sigma} \\ & {[\mathrm{deg}]} \\ & \hline \end{aligned}$
2022	1504(0)	74 (1)	50(3)	118(3)
2017	1495(2)	112(1)	51(1)	105(3)
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5
$\begin{gathered} N(1650) 1 / 2^{-} \\ * * * * \end{gathered}$	$\operatorname{Re} E_{0}$ [MeV]	$-2 \operatorname{Im} E_{0}$ [MeV]	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$ [\%]	$\begin{aligned} & \theta_{\pi N \rightarrow K \Sigma} \\ & {[\mathrm{deg}]} \end{aligned}$
2022	1678(3)	127(3)	34(12)	71(45)
2017	1674(3)	130(9)	18(3)	28(5)
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

$\rightarrow \eta N$ residue $N(1650) 1 / 2^{-}$much larger (similarly observed by BnGa)

JüBo2022:

- no $\eta^{\prime} N$ channel (or cusp), to be included in the future
- no $N(1895) 1 / 2^{-}$(not needed)
- backward peak from $N(1720) \& N(1900) 3 / 2^{+}$ (turquoise lines: both states off) J JULICH

Inclusion of the ωN channnel: $\pi N \rightarrow \omega N$ channel

Wang et al. 2208.03061 [nucl-th]

- Preparation of the study of $\gamma N \rightarrow \omega N$ (abundant high quality data)
- importance of ω in nuclear matter [H. Shen et al. 1998 NPA]
- Scattering length $a_{\omega N} \rightarrow$ whether or not there are in-medium bound states

Selected fit results: Total cross section, backward/forward differential cross section

[^0]
Inclusion of the ωN channnel: $\pi N \rightarrow \omega N$ channel

Wang et al. 2208.03061 [nucl-th]

- Preparation of the study of $\gamma N \rightarrow \omega N$ (abundant high quality data)
- importance of ω in nuclear matter [H. Shen et al. 1998 NPA]
- Scattering length $a_{\omega N} \rightarrow$ whether or not there are in-medium bound states

Scattering length:

- $\operatorname{Re} \bar{a}>0 \rightarrow$ in-medium bound states
- Result of fit $A(B)$
$\bar{a}=-0.24(-0.21)+0.05 i(0.05 i)$

§) JüLICH

Summary

Jülich-Bonn dynamical coupled-channel analysis:

- Extraction of the N^{*} and Δ^{*} spectrum in a simultaneous analysis of pion- and photon-induced reactions:
$-\pi N \rightarrow \pi N, \eta N, K \Lambda$ and $K \Sigma$
lagrangian based description, unitarity \& analyticity respected
- $\gamma N \rightarrow \pi N, \eta N, K \Lambda$ and $K \Sigma$ in a semi-phenomenological approach hadronic final state interaction: JüBo DCC analysis
\rightarrow analysis of almost 72,000 data points
- $\pi N \rightarrow \omega N$ channel included, prerequisite for ω photoproduction
- Electroproduction: Jülich-Bonn-Washington approach Mai et al. PRC 103 (2021), PRC 106 (2022)
- JüBo photoproduction amplitude as input at $Q^{2}=0$
- New interactive web interface: https://jbw.phys.gwu.edu (multipoles, observables, data)
\rightarrow Talk by Maxim Mai on Wednesday
Thank you for your attention!

[^0]: Data: Kraemer et al. 1964 PR, Danburg et al. 1970 PRD, Binnie et al. 1973 PRD, Keyne et al. 1976 PRD, Karami et al. 1979 NPB

