The light baryon resonance spectrum in a coupled-channel approach

Recent results from the Jülich-Bonn model - NSTAR 2022

October 18, 2022 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich

In collaboration with: M. Döring, M. Mai, Ulf-G. Meißner, C.-W. Shen, Y.-F. Wang, R. Workman (Jülich-Bonn and Jülich-Bonn-Washington collaborations)

Supported by DFG, NSFC and MKW NRW HPC support by Jülich Supercomputing Centre

Member of the Helmholtz Association

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Major source of information:

In recent years: photoproduction reactions

 enlarged data base with high quality (double) polarization observables, towards a complete experiment Reviews: Prog.Part.Nucl.Phys. 125, 103949 (2022), Prog.Part.Nucl.Phys. 111 (2020) 103752

In the future: electroproduction reactions

= 10^5 data points for πN , ηN , KY, $\pi \pi N$ already available

access the Q² dependence of the amplitude Reviews: Prog.Part.Nucl.Phys. 67 (2012) Member of the Helmholtz Association October 18, 2022 Slide 111

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

\Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity J^P

 ⇒ search for resonances/excited states in those partial waves:
 poles on the 2nd Riemann sheet

(Breit-Wigner problematic in baryon spectroscopy)

The Jülich-Bonn DCC approach for \mathcal{N}^* and Δ^*

pion-induced reactions

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

• channels ν , μ , γ :

The Jülich-Bonn DCC approach for \mathcal{N}^* and Δ^*

pion-induced reactions

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

October 18, 2022

Slide 2111

Thresholds of inelastic channels

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- opening of inelastic channels \Rightarrow branch point and new Riemann sheet

Photoproduction in a semi-phenomenological approach

EPJ A 50, 101 (2015)

 $m = \pi, \eta, K, B = N, \Delta, \Lambda$

$T_{\mu\kappa}$: full hadronic *T*-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$\mathbf{V}_{\mu\gamma}(E,q) = \underbrace{\sum_{N=1}^{\gamma} \sum_{p_{\mu}^{N,p}}^{m} B}_{\mathbf{P}_{\mu}^{P}} + \underbrace{\sum_{N=1}^{N^{*},\Delta^{*}} \sum_{p_{\mu}^{P}}^{m} \sum_{p_{\mu}^{P}}^{N^{*},\Delta^{*}}}_{\mathbf{P}_{\mu}^{P}} + \underbrace{\sum_{n=1}^{\gamma} \sum_{q_{\mu}^{P}}^{m} (q) P_{\mu}^{P}(E)}_{\mathbf{P}_{\mu}^{P}} + \underbrace{\sum_{n=1}^{\gamma} \sum_{q_{\mu}^{P},i}^{m} (q) P_{\mu}^{P}} + \underbrace{\sum_{n=1}^{\gamma} \sum_{q_{\mu}^{P},i}^{m} (q) P_{\mu}^{$$

Simultaneous fit of pion- & photon-induced reactions

Free parameters

- couplings in contact terms: one per PW, couplings to πN , ηN , $(\pi \Delta)$, $K\Lambda$, $K\Sigma$
- t- & u-channel parameters: cut-offs, mostly fixed to values of previous JüBo studies (couplings fixed from SU(3))
- $\Rightarrow~~>$ 900 fit parameters in total, \sim 72,000 data points

Calculations on a supercomputer [JURECA, Jülich Supercomputing Centre, Journal of large-scale research facilities, 2, A62 (2016)]

- large number of fit parameters, many from polynomials
- can be regarded as advantage: prevents the inclusion of superfluous s-channel states to improve fit

Extension to $\mathcal{K}\Sigma$ photoproduction on the proton

JüBo2022 arXiv:2208.00089 [nucl-th], accepted at EPJ A

Selected fit results

Unique opportunities in $\gamma p \to K^+ \Sigma^0$, $K^0 \Sigma^+$:

- coupling of N^* 's, Δ^* 's to strangeness channels: missing resonances not seen in πN scattering?
- **mixed** isospin \rightarrow more information on Δ states
- self-analyzing decay of Y's: recoil polarization from angular distribution of decay products (important for "complete experiment")
- better data quality than in $\pi N \to KY$

Extension to $\mathcal{K}\Sigma$ photoproduction on the proton

JüBo2022 arXiv:2208.00089 [nucl-th], accepted at EPJ A

Simultaneous analysis of $\pi N \to \pi N, \eta N, K\Lambda, K\Sigma$ and $\gamma p \to \pi N, \eta N, K\Lambda, K\Sigma$

- almost 72,000 data points in total, $W_{max} = 2.4 \text{ GeV}$
 - $\gamma p \rightarrow K^+ \Sigma^0$: $d\sigma/d\Omega$, P, Σ , T, $C_{x',z'}$, $O_{x,z}$ = 5,652 • $\gamma p \rightarrow K^0 \Sigma^+$: $d\sigma/d\Omega$, P = 448
- polarizations scaled by new Λ decay constant α_{-} (Ireland PRL 123 (2019), 182301), if applicable

χ² minimization with MINUIT on JURECA [Jülich Supercomputing Centre, JURECA: JLSRF 2, A62 (2016)]

Resonance analysis:

- all 4-star N and Δ states up to J = 9/2 are seen (exception: $N(1895)1/2^{-}$) + some states rated less than 4 stars
- no additional s-channel diagram, but indications for new dyn. gen. poles

Resonance contributions to $K\Sigma$ photoproduction

JüBo2022 arXiv:2208.00089 [nucl-th]

• dominant partial waves: I = 3/2

Exception: P_{13} partial wave (I = 1/2):

N(1720) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1726(8)	185(12)	5.9(1)	82(6)
2017	1689(4)	191(3)	0.6(0.4)	26(58)
PDG 2021	1675 ± 15	250^{+150}_{-100}	-	-

N(1900) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1905(3)	93(4)	1.3(0.3)	-40(18)
2017	1923(2)	217(23)	10(7)	-34(74)
PDG 2021	1920±20	150 ± 50	4±2	110±30

drop in cross section due to N(1900)3/2⁺

"cusp-like structure" only qualitatively explained

Resonance contributions to $K\Sigma$ photoproduction

Data: Jude et al. (BGOOD) PLB 820 (2021)

JüBo2022 arXiv:2208.00089 [nucl-th]

• dominant partial waves: I = 3/2

Exception: P_{13} partial wave (I = 1/2):

N(1720) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1726(8)	185(12)	5.9(1)	82(6)
2017	1689(4)	191(3)	0.6(0.4)	26(58)
PDG 2021	1675 ± 15	250^{+150}_{-100}	-	-

N(1900) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1905(3)	93(4)	1.3(0.3)	-40(18)
2017	1923(2)	217(23)	10(7)	-34(74)
PDG 2021	1920±20	150 ± 50	4±2	110±30

drop in cross section due to N(1900)3/2⁺

"cusp-like structure" only qualitatively explained

Selected results $\gamma p \rightarrow K^0 \Sigma^+$

Selected fit results:

JüBo2022 arXiv:2208.00089 [nucl-th]

- much less data than for K⁺Σ⁰ (448 vs 5,652 data points)
- in parts inconsistent data
 - \rightarrow difficult to achieve a good fit result
- cusp in σ_{tot} at \sim 2 GeV not reproduced (data not included in fit)

Data: open squares: SPAHIR 1999, cyan: SAPHIR 2005, orange: CBELSA/TAPS 2007, black squares: CBELSA/TAPS 2011, open circles: A2 2018, open triangles: A2 2013, black triangles: Hall B 2003, black circles: CLAS 2013

Member of the Helmholtz Association

October 18, 2022

Slide 8111

New data for $\gamma p \rightarrow \eta p$ from CBELSA/TAPS

included in JüBo2022 arXiv:2208.00089 [nucl-th]

T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

			$r^{1/2}r^{1/2}$	
N(1535) 1/2 ⁻	Re E_0	$-2 \text{Im } E_0$	$\frac{\frac{1}{\pi N^{1}} \eta N}{\Gamma_{tot}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1504(0)	74 (1)	50(3)	118(3)
2017	1495(2)	112(1)	51(1)	105(3)
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5
N(1650) 1/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K \Sigma}$
* * * *	[MeV]	[MeV]	[%]	[deg]
2022	1678(3)	127(3)	34(12)	71(45)
2017	1674(3)	130(9)	18(3)	28(5)
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

 $\rightarrow \eta N \mbox{ residue } N(1650)1/2^- \mbox{ much larger (similarly observed by BnGa)}$

 Σ Afzal PRL 125, 152002 (2020): Backward peak in data

 \rightarrow Observation of $\eta'N$ cusp + importance of $N(1895)1/2^-$ (BnGa)

JüBo2022:

- no η' N channel (or cusp), to be included in the future
- no N(1895)1/2⁻ (not needed)

backward peak from N(1720) & N(1900)3/2+

New data for $\gamma p \rightarrow \eta p$ from CBELSA/TAPS

included in JüBo2022 arXiv:2208.00089 [nucl-th]

T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

			$r^{1/2}r^{1/2}$	
N(1535) 1/2 ⁻	Re E_0	$-2 \text{Im } E_0$	$\frac{\Gamma \pi N^{\Gamma} \eta N}{\Gamma_{tot}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1504(0)	74 (1)	50(3)	118(3)
2017	1495(2)	112(1)	51(1)	105(3)
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5
N(1650) 1/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K \Sigma}$
* * * *	[MeV]	[MeV]	[%]	[deg]
2022	1678(3)	127(3)	34(12)	71(45)
2017	1674(3)	130(9)	18(3)	28(5)
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

 $\rightarrow \eta N \mbox{ residue } N(1650)1/2^- \mbox{ much larger (similarly observed by BnGa)}$

 Σ Afzal PRL 125, 152002 (2020): Backward peak in data

 \rightarrow Observation of $\eta'N$ cusp + importance of $N(1895)1/2^-$ (BnGa)

JüBo2022:

- no η' N channel (or cusp), to be included in the future
- no $N(1895)1/2^-$ (not needed)
- backward peak from N(1720) & N(1900)3/2+ (turquoise lines: both states off)

Inclusion of the ωN channel: $\pi N \rightarrow \omega N$ channel

Wang et al. 2208.03061 [nucl-th]

- Preparation of the study of $\gamma N
 ightarrow \omega N$ (abundant high quality data)
- importance of ω in nuclear matter [H. Shen et al. 1998 NPA]
- Scattering length $a_{\omega N} \rightarrow$ whether or not there are in-medium bound states

Selected fit results: Total cross section, backward/forward differential cross section

Data: Kraemer et al. 1964 PR, Danburg et al. 1970 PRD, Binnie et al. 1973 PRD, Keyne et al. 1976 PRD, Karami et al. 1979 NPB

Inclusion of the ωN channel: $\pi N \rightarrow \omega N$ channel

Wang et al. 2208.03061 [nucl-th]

- Preparation of the study of $\gamma N
 ightarrow \omega N$ (abundant high quality data)
- importance of ω in nuclear matter [H. Shen et al. 1998 NPA]
- Scattering length $a_{\omega N} \rightarrow$ whether or not there are in-medium bound states

Summary

Jülich-Bonn dynamical coupled-channel analysis:

Extraction of the N^* and Δ^* spectrum in a simultaneous analysis of pion- and photon-induced reactions:

- $\pi N \to \pi N$, ηN , $K\Lambda$ and $K\Sigma$ lagrangian based description, unitarity & analyticity respected

- $\gamma N \to \pi N$, ηN , $K\Lambda$ and $K\Sigma$ in a semi-phenomenological approach hadronic final state interaction: JüBo DCC analysis

 \rightarrow analysis of almost 72,000 data points

- $\pi N \rightarrow \omega N$ channel included, prerequisite for ω photoproduction
- Electroproduction: Jülich-Bonn-Washington approach Mai et al. PRC 103 (2021), PRC 106 (2022)
 - JüBo photoproduction amplitude as input at Q^2 =0
 - New interactive web interface: https://jbw.phys.gwu.edu (multipoles, observables, data)

 \rightarrow Talk by Maxim Mai on Wednesday

Thank you for your attention!