Charmed baryons and excited hyperons at Belle

Kiyoshi Tanida <kytanida@gmail.com>

(Japan Atomic Energy Agency)

@The 13th International Workshop on the Physics of

Excited Nucleons (NSTAR2022)

18 Oct. 2022

Flavored Baryons in e⁺e⁻ Collider

 Electron-positron colliders (CLEO, Belle, Babar, BESIII...) are known to be useful for mesons, especially, quarkonia.

 Today, I will demonstrate they are also good for baryons by showing some of the recent results by Belle.

Why e⁺e⁻ colliders?

- Small background
 - $-e^+e^- \rightarrow Q\bar{Q}$ production is flavor blind. Only (charge)² matters.
- Missing mass spectroscopy is possible
 - Absolute branching fraction
 - Study of decays with missing particles (n, ν , ...)
- Fragmentation + decays from bottom and charm
 - Abundant production of charmed baryons and hyperons.
 - Multi-strange baryons ($\Xi \& \Omega$) are also accessible.

Huge statistics, good quality

> 1 M events reconstructed

Resolution:

< 10 MeV FWHM

S/N ~ 10

Belle experiment

- Almost 4π , good momentum resolution ($\Delta p/p \sim 0.1\%$), EM calorimeter, PID & Si Vertex detector
- Finished ~10 years ago, still producing ~20 papers/year

Some of recent (~ 1 year) results

- $\Lambda_c \rightarrow \Sigma^+ \eta^{(\prime)}$ [arXiv:2208.10825]
- CP violation in $\Lambda_c \to \Lambda h^+, \Lambda_c \to \Sigma^0 h^+$ [arXiv:2208.08695]
- $\Omega(2012) \to \Xi(1530)\overline{K}$ [arXiv:2207.03090]
- $\Lambda_c \to \Sigma^+ \gamma, \Xi_c^0 \to \Xi^0 \gamma$ [arXiv:2206.12517, PRD in press]
- Threshold cusp in $\Lambda_c \to pK^-\pi^+$ [arXiv:2209.00050]
- New charm baryon in B decay [arXiv:2206.08822, PRL in press]
- $\Xi_c^0 \to \Lambda_c \pi^-$ [arXiv:2206.08527, PRD in press]
- $\Lambda_c \rightarrow p\eta'$ [JHEP 03 (2022) 090]
- $\Xi_c^0 \to \Lambda K_S^0, \Sigma^0 K_S^0, \Sigma^+ K^-$ [PRD105 (2022) L011102]
- $\Lambda_c \rightarrow p\omega$ [PRD104 (2021) 072008]

Some of recent results (cont.)

- $\Omega(2012)$ in Ω_c decay [PRD104 (2021) 052005]
- $\Xi_c^0 \to \Lambda \overline{K}^{*0}, \Sigma^0 \overline{K}^{*0}, \Sigma^+ K^{*-}$ [JHEP 06 (2021) 160]
- Mass and width of $\Sigma_c^{(*)+}$ [PRD104 (2021) 052003]
- $\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell$ and $\Xi_c^0 \to \Xi^- \pi^+$ [PRL127 (2021) 121803]
- $\Xi_c^0 \to \Xi^0 K^+ K^-$ [PRD103 (2021) 112002]
- $\Lambda_c \to p\eta \text{ and } p\pi^0 \text{ [PRD103 (2021) 072004]}$
- Spin-parity measurement of $\Xi_c(2970)$ [PRD103 (2021) L111101]
- $\Lambda_c \to \eta \Lambda \pi^+$ decay and Λ (1670) [PRD103 (2021) 052005]

More and more are coming!

Topics of the day

1. Charmed baryons

- Spin-parity measurement of Ξ_c (2970)
- New charm baryon in B decay

2. Hyperons

- $-\Lambda_c \rightarrow \Lambda \eta \pi^+$ and $\Lambda(1670)$
- Threshold cusp in $\Lambda_c \to pK^-\pi^+$
- $-\Omega_{c} \rightarrow \Omega(2012)\pi^{+}$
- $-\Omega(2012) \rightarrow \Xi(1530)\overline{K}$

3. Summary

1. Charmed baryons

Introduction – Heavy quark baryons

- Heavy quark in Baryon
 - Bare quark ≒ constituent quark
 - Makes a "static core", light quarks play around
 - → Diquark correlation enhanced?
 - New symmetry heavy quark symmetry
 - → Hyperfine doublet for heavy quark spin.

Nucleon

Charmed baryon

Indistinguishable pairs

Light di-quark with inert charm?

Introduction – Heavy quark baryons

- Heavy quark in Baryon
 - Bare quark ≒ constituent quark
 - Makes a "static core", light quarks play around
 Diquark correlation enhanced?
 - New symmetry heavy quark symmetry
 - → Hyperfine doublet for heavy quark spin.
- How analog states appear?
 - Comparison with strange baryons is interesting
 - $-\Lambda(1405) \rightarrow ?$, Roper resonance $\rightarrow ?$
 - Helps to understand the nature of those states.
- Missing resonances?
- New exotic states? E.g., DN bound state, pentaquarks,

Spin-parity of $\Xi_c(2970)$

- Relatively low excitation energy
 - Good statistics & S/N ratio

Belle, PRD**94**, 052011 (2016)

- Wide variety of theoretical predictions
- Important decay mode: $\Xi_c(2970) \rightarrow \Xi_c^*(2645)\pi$

SPIN: Angular correlation of

$$\Xi_{c}(2970) \rightarrow \Xi_{c}^{*}(2645)\pi_{1} \rightarrow \Xi_{c}\pi_{1}\pi_{2}$$

• Consistent with $1+3\cos^2\theta \rightarrow J = 1/2$

[see also: Arifi, Hosaka, Nagahiro, and Tanida, PRD101, 111502(R)(2020)]

PARITY: Decay to Ξ_c^* and $\Xi_c^{'}$

• R = $\frac{\Gamma(\Xi_c(2970)\to\Xi_c^*\pi)}{\Gamma(\Xi_c(2970)\to\Xi_c'\pi)}$ is expected to be small for negative parity:

$$-\Xi_c(2970) \to \Xi_c'\pi$$
 is in S-wave, while $\Xi_c(2970) \to \Xi_c^*\pi$ is in D-wave.

For positive parity, calculable based on HQS

Parity	+	+
Diquark spin s_ℓ	0	1
R	1.06	0.26

- We got $R = 1.67 \pm 0.29 (\text{stat.})^{+0.15}_{-0.09} (\text{syst.}) \pm 0.25 (\text{IS})$
 - Consistent with P=+ and brown-muck spin s_e =0 only.

Discussion

- We got $J^P=1/2^+$. What can we say from this?
- This is the same as the infamous Roper resonance,
 N(1440), the first excited state of nucleon.
 - Excitation energy (~500 MeV) is also the same.
- Difficult to explain Roper in quark model
 - Single quark excitation: 1st excited state should be a negative parity state (ex. N(1530)).
 - Surprisingly, difficult even in Lattice QCD.
 - The present measurement may give a hint.

New charm baryon in B decay

• A search in B⁰ decay to $\Sigma_c(2455)^{0,++}\pi^{\pm}\bar{p}$

[arXiv:2206.08822, PRL, in press]

Known resonances [$\Lambda_{\rm c}$ (2880) & $\Lambda_{\rm c}$ (2940)] are unlikely by 4.2 σ

 $M = 2913.8 \pm 5.6 \pm 3.8 \text{ MeV/c}^2$ $\Gamma = 52 \pm 20 \pm 19 \text{ MeV}$

2. Hyperons

especially from charmed baryon decays

Hyperons from charmed baryon decays

New source for hyperon spectroscopy

- New states?
- Branching ratios

[Belle, PLB **524** (2002) 33-43]

[Belle, PRL **122** (2019) 072501]

 $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

 $\Xi(1620)$

(a)

500

Peak structure in $\Lambda_c \to pK^-\pi^+$

What's this?

- The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than Λ , Σ resonances in this region
 - $-\Lambda(1670)$: 25-50 MeV
 - $-\Sigma(1660)$: 40-200 MeV
 - $-\Sigma(1670)$: 40-80 MeV
 - $-\Lambda(1690)$: ~60 MeV
- No such narrow states are theoretically predicted in this region – new exotic resonance?
- Is it seen in other channels? E.g., $\Lambda \eta \pi$

$\Lambda\eta\pi^{+}$ Invariant mass

Dalitz plot

Resonances: $\Sigma(1385) \& \Lambda(1670)$

• For each M($\Lambda\eta$)/M($\Lambda\pi^+$) bin, count Λ_c in the $\Lambda\eta\pi^+$ mass spectrum

- Non- Λ_c background is excluded [Belle, PRD103 (2021) 052005]

Results (1) – Branching ratios

Decay modes	$B(\text{Decay Mode})/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$
$\Lambda_c^+ \to \eta \Lambda \pi^+$	$0.293 \pm 0.003 \pm 0.014$
$\Lambda_c^+ o \eta \Sigma^0 \pi^+$ New	$0.120 \pm 0.006 \pm 0.006$
$\Lambda_c^+ \to \Lambda(1670)\pi^+;$ New $\Lambda(1670) \to \eta\Lambda$	$(5.54 \pm 0.29 \pm 0.72) \times 10^{-2}$
$\Lambda_c^+ \to \eta \Sigma (1385)^+$	$0.192 \pm 0.006 \pm 0.016$

- $\Lambda(1670)\pi^+$, $\Sigma^0\eta\pi^+$ modes: first measurements
- Ληπ⁺ and Σ(1385)⁺η: consistent with PDG & more precise
 - $\Lambda \eta \pi^+$: $(1.84 \pm 0.26)\%/(6.28 \pm 0.32)\%$
 - $\Sigma(1385)^+\eta$: $(0.91\pm0.20)\%/(6.28\pm0.32)\%$

Results (2) – Mass & width

Resonances	Mass $[\text{MeV}/c^2]$	Width [MeV]
$\Lambda(1670)$ New	$1674.3 \pm 0.8 \pm 4.9$	$36.1 \pm 2.4 \pm 4.8$
$\Sigma(1385)^{+}$	$1384.8 \pm 0.3 \pm 1.4$	$38.1 \pm 1.5 \pm 2.1$

- $\Sigma(1385)^+$: consistent with PDG within uncertainty
- $\Lambda(1670)$: determined from peaking structure for the first time with a good accuracy.

Peak structure in $\Lambda_c \to pK^-\pi^+$

Fit to Breit-Wigner

 Not very good especially near the peak.

Best χ²/DOF:
 308/243

[arXiv:2209.00050, submitted to PRL]

Fit to Flatte

$$\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$$

f(m): non-relativistic Flatte

$$\frac{1}{m - m_f + \frac{i}{2} \left(\Gamma' + \bar{g}_{\Lambda \eta} k \right)}$$

- Improved near the peak
- Best χ^2/DOF : 257/243
 - Better than BW by 7σ

Threshold cusp

- The fit explains the peak as a threshold cusp with nearby $\Lambda(1670)$
 - → First identification of a threshold cusp from the spectrum shape
- Obtained $\Lambda(1670)$ parameters are consistent with those measured in $\Lambda_c \to \Lambda \eta \pi^+$

	Present result	$\Lambda\eta\pi^+$ mode
Mass	1674.4	1674.3±0.8±4.9
Width	$50.3 \pm 2.9^{+4.2}_{-4.0}$	$36.1\pm2.4\pm4.8$

- How about other near-threshold exotic hadrons?
 - They may be actually threshold cusps!

$\Omega(2012)$

- Discovered in $\Upsilon(1-3S)$ decay.
- How about other channels?
 - E.g., $\Omega_c \rightarrow \Omega(2012)\pi^+$?

[Belle, PRL121 (2018) 052003]

$\Omega_{\rm c} \rightarrow \Omega(2012)\pi^+$

• Decay mode: $\Omega_c \to (\Omega^* \pi^+) \to \Xi K \pi^+$

$\Omega(2012) \rightarrow \Xi(1530)\overline{K}$

- Quark model: 1P orbital excited states expected in this mass region: J^P=1/2⁻ and 3/2⁻
- The narrow width favors a $J^P=3/2^-$ state, of which decay to ΞK is D-wave and thus suppressed.
- However, there are claims that
 it could be a \(\mathbb{E}(1530)K\) hadronic molecule
 [PRD 98 (2018) 054009, PRD 98 (2018) 056013, ...]
- If this is the case, $\Xi(1530)K$ would be the main decay mode

BELLE

Previous study

[Belle, PRD 100 (2019) 032006]

What's the difference?

- Choice of $\Xi(1530)$
 - Phase space is very limited
 - Lighter mass region has larger phase space
 - The region chosen is now completely off-peak

New result

Signal seen!

New result (cont.)

• Branching ratio: 3 body ($\Xi K\pi$) vs 2 body (ΞK)

$$R = 0.97 \pm 0.24 \pm 0.07$$

- Consistent with molecular model
- Effective coupling=(partial width)/(phase space)

$$\Xi K\pi$$
: $(41.1 \pm 35.8 \pm 6.0) \times 10^{-2}$

$$\Xi K: (1.7 \pm 0.3 \pm 0.3) \times 10^{-2}$$

 \rightarrow coupling to $\Xi K\pi$ is much stronger (assuming no non-resonant contribution)

Summary & prospects

- Belle is still producing lots of interesting results
 ~10 baryon papers every year
- Topics of the day
 - Spin-parity measurement of $\Xi_c(2970)$
 - Evidence for a new charmed baryon, Λ_c (2910)
 - $-\Lambda(1670)$ and a cusp at the $\Lambda\eta$ threshold
 - Ω(2012): Ξ(1530)K molecule?
 - More results are coming!
- Taking more data with Belle II
 - → See J. Yelton's talk (earlier today in parallel 1)