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• Today’s experiments have a new level of scope, precision and 

accuracy leading to the discovery of new Hadron structures. 

(evidence for multiquark and exotic configurations.)

• Exploring QCD phase diagram at high baryonic number

and moderate temperatures.

• Experiments with pion beam also allow for cold matter 

studies in the few-GeV region.
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Fig. 1. Left: The conjectured phases of strongly interacting matter and their boundaries and a Critical Point [3, 4, 5, 6] in a diagram of
temperature versus baryochemical potential. Lattice QCD results from [10, 11]. Shaded are indicate the region of µB /T ≤ 2 where the
location of a Critical Point is disfavored. The expectation value of the chiral condensate relative to the vacuum is depicted as orange
gradient. Right: The black symbols are the chemical freeze-out points describing the final state hadron abundances in a statistical
hadronization model [12, 13, 14, 15, 16]. The lila triangle is the point measured from the intermediate invariant-mass slope of dimuons
by the NA60 collaboration [17].

2. The awaited facilities

The important prerequisite for success is the combination of high intensity beams and multi-purpose
detectors with large acceptance, high efficiency, dead time free (free streaming read-out electronics with
high bandwidth online event selection). Table 1 summarises the existing and planned high µB facilities
around the world. The new accelerator facilities are designed to have ever increasing luminosities. To cope
with high beam intensities, substantial progress in detector technologies has been made (mainly driven by the
ALICE upgrade, CBM and sPHENIX). The rate capabilities of existing and planned heavy-ion experiments
are presented in Fig. 2. The interaction rate shown is tied either by the detector capabilities or luminosity.
E.g. at beam energies above

√
sNN = 20 GeV, the reaction rates of STAR are limited to about 2 kHz by the

TPC read-out, and drop down to a few Hz at beam energies below
√

sNN = 7GeV due to the decreasing
luminosity provided by the beams crossing increasing emittance.

Facility SIS18 HIAF Nuclotron J-PARC-HI SIS100 NICA RHIC SPS SPS
Experiment HADES CEE BM@N DHS, D2S CBM MPD STAR NA61 NA60+

/ mCBM / HADES
Start 2012/2018 2023 2019 (Au) > 2025 2025 2021 2010, 2019 2009, 2022 > 2025√

sNN , GeV 2.4 − 2.6 1.8 − 2.7 2 − 3.5 2 − 6.2 2.7 − 5 2.7 − 11 3 − 19.6 4.9 − 17.3 4.9 − 17.3
µB, GeV 880 − 670 880 − 750 850 − 670 850 − 490 780 − 400 750 − 330 720 − 210 560 − 230 560 − 230

Hadrons + + + + + + + + (+)
Dileptons + (+) + + + + +
Charm (+) (+) + + + +

Table 1. Running and planned high µB facilities. The facility and experiment, the anticipated year for data tacking, the range in µB and√
sNN as well as capabilities of measuring hadrons, dileptons and charm are listed.

2.1. CBM and HADES at GSI / FAIR
The Facility for Antiproton and Ion Research (FAIR) accelerator complex (Darmstadt, Germany) is

designed to deliver high-intensity primary beams from protons to uranium to different production targets
and subsequently cool and store selected secondary particles, including exotic nuclei far off stability and
anti-protons, at highest brilliance. Since SIS18 will be the driver for the important experimental program
during FAIR Phase-0 further technical improvements, machine developments and maintenance measures
are continuously conducted. The excavation for the SIS100 tunnel is rapidly advancing [18] and substantial
progress has been made in serial production of major components for SIS100 (e.g. dipoles [19]). The SIS100
commissioning is anticipated to 2024. To recall, the originally proposed FAIR project comprised two main
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The Accelerator Facility
FAIR will be one of the largest and most complex accelerator facilities in the world. The FAIR
accelerator facility will have the unique ability to provide particle beams of all the chemical elements (or
their ions), as well as antiprotons. The particles will be accelerated to almost the speed of light in the
FAIR accelerator facility and made available for scientific experiments. FAIR will generate particle
beams of a previously unparalleled intensity and quality. At the heart of the facility is an underground
ring accelerator with a circumference of 1,100 meters. There are also additional experimental rings and
experimental stations with several kilometers of beam lines in total. The existing accelerator facility of
the GSI Helmholtzzentrum für Schwerionenforschung will serve as the injector for the new FAIR facility.

 

Ring Accelerator SIS100
The SIS100 ring accelerator runs along an underground tunnel whose floor lies as deep as 17 meters
under the earth’s surface. The SIS100 has a circumference of 1,100 meters and can accelerate the ions
of all the natural elements in the periodic table to speeds as high as 99% of the speed of light. The
magnets that keep the ions in their paths are superconducting and are cooled to -269°C by means of
liquid helium. The accelerated particles are either used directly for experiments or for the production of
other particles, so-called secondary particles.

Secondary particles
A key aspect of the FAIR facility is that exotic particles can be produced in a targeted manner. When the
accelerated ions impact a material sample, antiprotons or special isotopes, for example, are produced
at two so-called production targets. The isotopes are then specifically filtered out with the super
fragment separator (Super-FRS), a huge sorting machine over a hundred meters long, and used for
further experiments.

Storage rings
Connected to the SIS100 ring accelerator and the Super-FRS is a complex system of storage rings and
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Introduction: Spacelike and Timelike reactions

Figure: B. Ramstein, AIP Conf. Proc. 1735, 080001 (2016) [HADES]

q2 ≤ 0: CLAS/Jefferson Lab, MAMI,

ELSA, JLab-Hall A, MIT-BATES

ep→ e′N(· · ·); γ∗N → N∗

q2 > 0: HADES,

...., PANDA

π−p→ e+e−n; N∗ → γ∗N → e+e−N

N∗ = ∆(1232)32
+
, N(1440)12

+
, N(1520)32

−
, N(1535)12

−
, .... N(1710)12

+

Gilberto Ramalho (LFTC/UNICSUL) Covariant calculations of Dalitz decays ... May 20, 2021 3 / 28

Two methods of obtaining information on structure of baryons

Why use of  pion beam  :
Allows separation between in-medium propagation and production mechanism, 
because pions are absorbed  at the surface of the nucleus, 
whereas proton absorption occurs throughout the whole nuclear volume.

TFF



Spacelike form factors:
• Structure information: shape,

qqq excitation vs. hybrid, ...

Transition Electromagnetic form factors

Baryon resonances
transition form factors

Timelike form factors:
• Particle production channels

CLAS: Aznauryan et al.,
Phys. Rev. C 80 (2009)

MAID: Drechsel, Kamalov,
Tiator, EPJ A 34 (2009)

This talk:
Connect Timelike and SpacelikeTransition Form Factors (TFF)
Obtain Baryon-Photon coupling evolution with 4 momentum transfer

See Gernot Eichmann and Gilberto 
Ramalho
Phys. Rev. D 98, 093007 (2018)

q2<0 q2>0



Baryon resonances S=0    PDG
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Table 2.1: Two- to four-star baryon resonances below 2 GeV and up to JP = 5
2

± from the PDG [9], labeled by their quantum numbers
isospin I, strangeness S, spin J and parity P . The four-star resonances are shown in bold font and the two-star resonances in gray.
Historically the N and � resonances are labelled by the incoming partial wave L2I,2J in elastic ⇡N scattering, with L = P, P, F, S,D,D

for JP = 1
2

+
. . . 5

2

� from left to right.

dipole transition GM (Q2
), which is dominated by the spin flip of a quark in the nucleon to produce the �, and

the electric and Coulomb quadrupole ratios REM and RSM . The prediction of the �N ! � transition magnetic
moment was among the first successes of the constituent-quark model, which relates it to the magnetic moment
of the proton via µ(�p ! �) = 2

p
2µp/3 [15]. However, the quark-model prediction also underestimates the

experimental value by about 30% and entails REM (Q2
) = RSM (Q2

) = 0 [16, 17]. Dynamical models assign
most of the strength in the quadrupole transitions to the meson cloud that ‘dresses’ the bare �. We will return
to this issue in Sec. 4.7 and also present a different viewpoint on the matter.

Roper resonance. The lowest nucleon-like state is the Roper resonance N(1440) or P11 with JP
= 1/2+,

which has traditionally been a puzzle for quark models. The Roper is unusually broad and not well described
within the non-relativistic constituent-quark model (see [18] and references therein), which predicts the wrong
mass ordering between the Roper and the nucleon’s parity partner N(1535) and the wrong sign of the �p !

N(1440) transition amplitude. Although some of these deficiencies were later remedied by relativistic quark
models [18–22], they have led to longstanding speculations about the true nature of this state being the first
radial excitation of the nucleon or perhaps something more exotic.

The Jefferson Lab/CLAS measurements of single and double-pion electroproduction allowed for the de-
termination of the electroexcitation amplitudes of the Roper resonance in a wide range of Q2. The helicity
amplitudes obtained from the Jefferson Lab and MAID analyses are shown in Fig. 2.1. They exhibit a strong Q2

dependence of the transverse helicity amplitude A1/2 including a zero crossing, which also translates into a zero
of the corresponding Pauli form factor F2(Q2

). Such a behavior is typically expected for radial excitations and
it has been recovered by a number of approaches, from constituent [23] and light-front constituent-quark mod-
els [24] to Dyson-Schwinger calculations [25], effective field theory [26], lattice QCD [27] and AdS/QCD [28].
Although none of them has yet achieved pointwise agreement with the data they all predict the correct signs
and orders of magnitude of the amplitude. Taken together, consensus in favor of the Roper resonance as pre-
dominantly the first radial excitation of the three-quark ground state is accumulating and we will return to this
point in Sec. 3.6.
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Figure 2.1: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [?,
?]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).

3.1 Notation and conventions

Throughout this paper we use natural units, ~ “ c “ 1, with masses, 3-momenta and energies given in GeV,
1fm » 1{0.197327 GeV´1.

We also follow the covariant dimensional representation of 4-vectors aµ aµ “ pa0,aq, where a0 is the time
component and a is the space component. We adopt the convention for the metric tensor

gµ⌫ “ diagp1,´1,´1,´1q “

¨

˚̊
˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹‹‚, (3.1)

and write the Dirac matrices �µ in the Dirac-Pauli representation [?, ?]

�0 “
ˆ

11 0
0 ´11

˙
, �i “

ˆ
0 �i

´�i 0

˙
, �5 “ i�0�1�2�3 “

ˆ
0 11
11 0

˙
, (3.2)

where 11 is the 2 ˆ 2 unitary matrix, and �i are the Pauli matrices

�1 “
ˆ

0 1
1 0

˙
, �2 “

ˆ
0 ´i
i 0

˙
, �3 “

ˆ
1 0
0 ´1

˙
. (3.3)

The commutation relation

t�µ, �⌫u “ 2gµ⌫ (3.4)

holds, and the �5 matrix is given by �5 “ i
24!"↵��⇢�

↵�����⇢, where "0123 “ 1. Also,

�µ⌫ “ i

2
p�µ�⌫ ´ �⌫�µq. (3.5)

Spin 1
2 and 3

2 states are described by Dirac (u) and Rarita-Schwinger (u↵) spinors, respectively, with the
normalizations [?, ?]

ūpp, squpp, sq “ 1, ū↵pp, squ↵pp, sq “ ´1, (3.6)
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Memories of Murray and the Quark Model
George Zweig, Int.J.Mod.Phys.A25:3863-3877,2010

“Murray looked at two pieces of paper, looked at me and said 
‘In our field it is costumary to put theory and experiment 
on the same piece of paper’.
I was mortified but the lesson was valuable”

Zweig quark or the constituent quark

Our approach is phenomenological 



�Baryon wavefunction integrated over spectator quarks variables. 
(Covariant Spectator Model CST) 

�E.M. matrix element is then written in terms of 
an effective vertex composed by an off-mass-shell quark,
and an on-mass-shell quark pair (diquark) with an average mass.

E.M. matrix element 



§ Nucleon “wavefunction” (S wave)  
(symmetry based  only;  not dynamical based)

�A quark + scalar-diquark component

�A quark+ axial vector-diquark component 

§ Delta (1232)  “wavefunction” (S wave) 

� Only quark + axial vector-diquark term contributes

Phenomenological function

ü The Diquark is not pointlike.



Quark E.M. Current

4

FIG. 4: Electromagnetic current to the quark. The first term
is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.

where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
tors ji (i = 1, 2) has an isoscalar and an isovector com-
ponent, respectively fi+ and fi� (functions of Q2, the
4-momentum transfer squared), ji =

1
6fi+ + 1

2fi�⌧3.
The inclusion of the second term in the second equation

in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]

f1±(Q
2) = �q + (1 � �q)

m2
v

m2
v +Q2

+ c±
M2

hQ
2

(M2
h +Q2)2

f2±(Q
2) = ±

⇢
d±

m2
v

m2
v +Q2

+ (1 � d±)
M2

h

M2
h +Q2

�
,

(2.4)

where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z

d4q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon

Quark-photon vertex
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D. Properties of the wave functions under a Lorentz
transformation

The form for the wave functions given in Eq. (2.39)
holds only for the case where the particle is moving along

the z direction [with 4-momentum P¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HþP2
q

;0;0;PÞ].
The generic wave function can be obtained from an arbi-
trary Lorentz transformation !

P0! ¼ !!
"P": (2.46)

Under a Lorentz transformation we obtain

"!P0 ¼!!
" ""P w0

#ðP0Þ ¼!#
$Sð!Þw$ðPÞ

u0ðP0Þ ¼ Sð!ÞuðPÞ D$#ðP0; k0Þ ¼!$
%!#

&D%&ðP;kÞ
S%1ð!ÞðP 0

SÞ$#Sð!Þ ¼!$
%!#

&ðP SÞ%&; (2.47)

where u0 and w0
# represent the states in the arbitrary frame.

For simplicity, the dependence of the spinor states on the
Wigner rotations acting on the polarization vectors has not
been shown explicitly, and ðP SÞ are the projectors of (2.25)
with ðP 0

SÞ the same projectors with P0 ¼ !P, one obtains
the transformation law

Z 0
#ðP0; k0Þ ¼ Sð!Þ!#

$Z$ðP; kÞ (2.48)

for any vector-spinor state Z. Finally, from (2.48) the
transformation laws for the total " wave function follows

#0
"ðP0; k0Þ ¼ Sð!Þ#"ðP; kÞ: (2.49)

In conclusion, we may derive the baryon wave function
in any frame, where the four-momentum P is arbitrary, by
means of a Lorentz transformation ! on the wave function
defined in the baryon rest frame.

III. FORM FACTORS FOR THE !N ! !
TRANSITION

A. Definitions

The electromagnetic N" transition current is

J! ¼ $w#ðPþÞ%#!ðP; qÞ'5uðP%Þ(I0I; (3.1)

where Pþ (P%) is the momentum of the " (nucleon), I0 (I)
the isospin projection of the " (nucleon), and the operator
%#" can be written in general [93] as

%#!ðP; qÞ ¼ G1q
#'! þG2q

#P! þG3q
#q! %G4g

#!:

(3.2)

Although we have omitted the helicity indices for these
states, the transition current depends on both the helicities
of the final and initial baryons and on the photon helicity.
The variables P and q are, respectively, the average of
baryon momenta and the absorbed (photon) momentum

P ¼ 1

2
ðPþ þ P%Þ q ¼ Pþ % P%: (3.3)

The form factors Gi, i ¼ 1; . . . ; 4 are functions of Q2 ¼
%q2 exclusively. Because of current conservation,
q!%

#! ¼ 0, only three of the four form factors are inde-
pendent. In particular, we can writeG4 in terms of the other
three form factors as

G4 ¼ ðMþmÞG1 þ
M2 %m2

2
G2 %Q2G3; (3.4)

and adopt the structure originally proposed by Jones and
Scadron [93]. Alternatively (see below), we can writeG3 in
terms of the other three

G3 ¼
1

Q2

"
ðMþmÞG1 þ

M2 %m2

2
G2 %G4

#
: (3.5)

The parametrization (3.2) in terms of the form factorsGi

is not the most convenient one for comparison with the
experimental data. More convenient are the magnetic di-
pole (M), electric quadrupole (E), and Coulomb quadru-
pole (C) form factors. These can be defined directly in
terms of helicity amplitudes [16,93]. Note that the form
factor G3 does not enter directly into the expressions for
the helicity amplitudes because )!&

* q! ¼ 0 for all *. But, if
we use the constraint (3.4) to eliminate G4, G3 appears in
these expressions and we obtain

G&
MðQ2Þ ¼ +

$
½ð3MþmÞðMþmÞ þQ2(G1

M

þ ðM2 %m2ÞG2 % 2Q2G3

%
; (3.6)

G&
EðQ2Þ ¼ +

$
ðM2 %m2 %Q2ÞG1

M
þ ðM2 %m2ÞG2

% 2Q2G3

%
; (3.7)

G&
CðQ2Þ ¼ +f4MG1 þ ð3M2 þm2 þQ2ÞG2

þ 2ðM2 %m2 %Q2ÞG3g; (3.8)

where

+ ¼ m

3ðMþmÞ : (3.9)

These three form factors G&
a (a ¼ M, E, C) are, respec-

tively, the magnetic, electric and Coulomb (or scalar)
multipole transition form factors.
As G&

M dominates at low momentum Q2, the following
ratios are useful

REMðQ2Þ ¼ % G&
EðQ2Þ

G&
MðQ2Þ ; (3.10)

and

RSMðQ2Þ ¼ % jqj
2M

G&
CðQ2Þ

G&
MðQ2Þ ; (3.11)
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means of a Lorentz transformation ! on the wave function
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of the final and initial baryons and on the photon helicity.
The variables P and q are, respectively, the average of
baryon momenta and the absorbed (photon) momentum
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These three form factors G&
a (a ¼ M, E, C) are, respec-

tively, the magnetic, electric and Coulomb (or scalar)
multipole transition form factors.
As G&

M dominates at low momentum Q2, the following
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FIG. 2: Results for the γ∗N → ∆ transition. Data shown
are for the γ∗p → ∆+ reaction, from DESY [62], SLAC [63],
CLAS/JLab [64] and MAID analysis [65, 66]. Data for the large
Q2 region from CLAS/JLab are not included [77]. EBAC results
are from Ref. [68].

B. Symmetry between different transitions

Roughly, we can classify the results for the γ∗B → B′

transition form factors according to the magnitudes of
magnetic dipole form factor G∗

M :

large : γ∗N → ∆, γ∗Λ → Σ∗0,

γ∗Σ+ → Σ∗+, γ∗Ξ0 → Ξ∗0,

moderate : γ∗Σ0 → Σ∗0,

small : γ∗Σ− → Σ∗−, γ∗Ξ− → Ξ∗−.

This classification has an implication for the magnitudes
of the decay widths as we will see in the next section.
The observed magnitudes for G∗

M mainly reflect the
dominant valence quark structure, although modified by
the effect of the pion cloud. As mentioned in Sec. III A
based on Table III, except for the deviations due to the
mass differences, we can expect similar results for the
γ∗Σ+ → Σ∗+ and γ∗Ξ0 → Ξ∗0 transitions. The same
holds for the reactions γ∗Σ− → Σ∗− and γ∗Ξ− → Ξ∗−.
We compare the results for these reactions directly in
Fig. 6.
Note in Fig. 6, the closeness between the results for the

two reactions both for the bare (dashed lines) and the
total (solid lines). These results are the consequences
of the following two effects: similarity in the valence
quark structure, and identical contribution from the pion
cloud contributions (see Table V). Concerning the va-
lence quark contributions, the similarity in the results of
the two reactions is a combination of the identical tran-
sition current coefficients (jSi ) and the kinematics. In
fact, although the mass configurations are different for
the γ∗Σ → Σ∗ and γ∗Ξ → Ξ∗ reactions, the transition
three-momentum |q| at Q2 = 0 in the baryon B′ rest
frame, are almost the same, 0.18 GeV and 0.20 GeV re-
spectively.
The difference in magnitude between the two sets,

(γ∗Σ+ → Σ∗+, γ∗Ξ0 → Ξ∗0) and (γ∗Σ− → Σ∗−,

Gb
M (0) Gπ

M (0) G∗
M (0) |G∗

M (0)|exp
γ∗p → ∆+ 1.63 1.32 2.95 3.04± 0.11 [4]

γ∗n → ∆0 1.63 1.32 2.95 3.04± 0.11 [4]

γ∗Λ → Σ∗0 1.68 0.92 2.60 3.35± 0.57 [4]

γ∗Σ+ → Σ∗+ 2.09 0.26 2.35 4.10± 0.57 [5]

γ∗Σ0 → Σ∗0 0.97 0.00 0.97

γ∗Σ− → Σ∗− −0.15 −0.26 −0.42 < 0.8 [8]

γ∗Ξ0 → Ξ∗0 2.19 0.26 2.46

γ∗Ξ− → Ξ∗− −0.17 −0.26 −0.43

TABLE VI: Results for G∗
M (0). Values for |G∗

M (0)|exp are es-
timated by Eq. (4.1) using the experimental values of ΓB′→γB .

γ∗Ξ− → Ξ∗−) in our model, is a consequence of the ap-
proximate SU(3) symmetry. Furthermore, as commented
in Sec. III A, a model with the exact SU(3) symmetry
limit would give no contribution for the last two reac-
tions. In contrast, the small violation of the symmetry,
in particular in the SU(2) sector due to the asymmetry
between the isoscalar and isovector quark form factors
f±(Q2), is the reason why the present model is success-
ful in the description of the neutron electric form fac-
tor [34, 35, 39]. In other approaches the small magnitude
of the G∗

M results for the γ∗Σ− → Σ∗− and γ∗Ξ− → Ξ∗−

reactions, can be a consequence of U -spin symmetry [9].
We can also study the relation between the transitions

γ∗N → ∆ and γ∗Λ → Σ∗0 based on the similarity sug-
gested by the valence quark structure given in Table III.
From Table III, we may conclude that the transition form
factors between the γ∗Λ → Σ∗0 and γ∗N → ∆ reactions

differ by a factor
√

3
4 , if only the valence quark con-

tributions are considered. We examine this in Fig. 7,
by comparing the form factor of γ∗N → ∆ to that of

γ∗Λ → Σ∗0 multiplied by
√

4
3 . However, the results

must be interpreted with care. Focusing on the final
results (total, solid lines), the similarity between the re-
sults for the two reactions is an accidental combination of
a large pion cloud effect and a smaller core contribution
for the γ∗N → ∆ reaction, and the opposite, a smaller
pion cloud effect and a larger core contribution for the
γ∗Λ → Σ∗0 reaction. The symmetry properties should be
better observed in the bare contributions (dashed lines).
In fact, the two dashed lines have a similar shape, but
differ in magnitudes by about 20% near Q2 = 0. This is
a consequence of the differences in the masses and radial
wave functions.
Then, we conclude that the closeness between the total

results for the γ∗N → ∆ and γ∗Λ → Σ∗0 reactions, also
predicted by the U -spin symmetry, is accidental, since
the pion cloud contributions should break the symmetry
appreciably. In fact, for the γ∗N → ∆ reaction, the pion
cloud contribution is 80% of the quark core contribution,
while in the γ∗Λ → Σ∗0 reaction, the pion contribution is
55%. Note that, the U -spin symmetry takes into account

Missing strength of of GM at the origin.
Separation between quark core and pion cloud seems to be supported by 
experiment.

γN→Δ

Model independent feature (Covariant Spectator Theory)

2009CST©
Bare quark core:
• dominates in the large

region.

• agrees with other
calculations (“EBAC”) with pion
couplings switched off.

Q2



Missing strength of GM at the origin is an universal feature, even in
dynamical quark calculations.

γN→Δ

Model independent feature

Eichmann et al., Prog. Part. Nucl. Phys. 91 (2016)

Effect of vicinity of the 
mass of the Delta to 
the pion-nucleon 
threshold.



Bare quark (partonic) and pion cloud (hadronic) components

Timelike: |G∗M | - new model

New model: consider the explicit connection with the

microscoptic pion cloud structure – quarks with structure

(a) Coupling with pion on the air:
related with pion electromagnetic form factor Fπ(q2)

(b) Coupling with intermediate baryon states (octet/decuplet):
parametrized effectively by [G̃D(q2)]2 ∝ 1/Q8

G̃D(q2) =
Λ4
D

(Λ2
D − q2) + Λ2

DΓ2
D(q2)

,

Λ2
D cutoff: parametrize mass scale of intermediate reson. (Λ2

D ≈ 1 GeV2)
ΓD(q2) effective width, constraint to ΓD(0) = 0

Gilberto Ramalho (IIP/UFRN, Natal,Brazil) SL and TL e.m. baryon FF Estoril, October 9, 2015 37 / 55

+ +
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Q8

For low Q2 : add coupling with pion in flight.

Bare quark 
component

Pion cloud 
component

Pion created by the overall baryon 
not from a single quark
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VMD as link to LQCD

VMD

In the current the vector meson mass 
is taken as a function of the running 

pion mass. 

Pion cloud contribution 
negligible for large pion masses

quark model  
calibrated to the 

lattice data

Take the limit of the physical 
pion mass value

experimental data 
well described in 

the large Q2 region. 



• Bare quark model gives good description in the  
high momentum transfer region.

• Use CST quark model to infer meson cloud from 
the data.

• Important role of meson cloud extracted 
dominated by the isovector part, due to the     N 
and          channels.

Consistent with Aznauryan and Burkert, PRC 85 
055202  2012 and PDG

G. Ramalho, M. T. P. , PHYSICAL REVIEW D 95 014003 (2017)

In our first work in Ref. [20] the meson cloud was
different than the one that we are using here. The reason is
that the meson model associated with Fig. 2(b) was,
meanwhile, reparametrized in Ref. [7] to fix the incorrect
position of the rho mass pole given by our first model, as
well as by other popular parametrizations [7]. In addition,
we notice that, in this new parametrization, the γ!N → Δ
transition pion cloud is directly connected to the pion
electromagnetic form factor Fπðq2Þ, which is well estab-
lished experimentally in the timelike region [7].
The parameters used in the formulas (5.22)–(5.24) were

determined by their fit to the γ!N → N!ð1520Þ spacelike

form factors, giving aM ¼ 5.531 GeV−2, λð4Þπ ¼ −1.019,
λMπ ¼ −0.323, λCπ ¼ −1.678, Λ2

4 ¼ 10.2 GeV2, Λ2
M ¼

1.241 GeV2, and Λ2
C ¼ 1.263 GeV2. The results are pre-

sented in Fig. 3 as a function of Q2 ¼ −q2 and compared
with the spacelike data [48–50]. Check Ref. [20] for a more
detailed discussion of the data. In the figure we also show
the valence quark contributions (the dashed line) and the
meson cloud contributions (the dashed-dotted line) based
on the parametrizations described above.
In the Appendix, we discuss the technical aspects of

the regularization of the singularities appearing in the
multipoles of Eqs. (5.22)–(5.24).

VI. RESULTS

We present in this section our predictions for the
γ!N → N!ð1520Þ transition form factors in the timelike
region. Using these results, we also calculate the γN and
eþe−N decay widths.

A. Form factors

The predictions for the absolute values of the form
factorsGM,GE, andGC in the timelike region are presented
in Fig. 4 for the cases W ¼ 1.52, 1.8, and 2.1 GeV. The
valence quark core contributions are given by the thin lines.
They stand very near the horizontal axis and vanish in the
upper limit, q2 ¼ ðW −MÞ2, by kinematic constraints. The
same result was observed in the quadrupole form factors of
the γ!N → Δð1232Þ transition for the physical case, when
W ¼ MΔ ≃ 1.232 GeV [51].
Figure 4 shows that the meson cloud contribution largely

dominates. Only near the ω pole (q2 ≃ 0.6 GeV2) is there a
significant contribution from the quark core for the absolute
value of the form factors GM and GE. This effect is very
concentrated near q2 ≃m2

ω as a consequence of the small ω
width, Γωðm2

ωÞ.
InGC the effect of the ω pole is not observed. This is due

to the cancellation of the isoscalar contributions to the form
factorGC. This cancellation is obtained analytically and can
be confirmed by substituting the form factors G1, G2, G3

given by Eqs. (5.14)–(5.16) into the formula of Eq. (5.10)
for GC. One concludes that only the quark isovector form
factors, f1− and f2−, contribute to GC.
From Fig. 4, one concludes that a fairly good description

of the γ!N → N!ð1520Þ transition can be obtained without
the valence quark core contributions, which are very small.
The almost perfect coincidence, both forGM andGE, of the
lines corresponding to different values of W is also a
consequence of the dominance of the meson cloud com-
ponent since only the valence part depends on W. Only for
GC can one distinguish a slight W dependence, and this is
evident because the valence quark contributions are non-
zero when q2 ¼ 0. The main role of the mass dependence
W in the behavior of the form factors is then to constrain
them for q2 ≤ ðW −MÞ2.
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FIG. 3. Valence quark core plus meson cloud contributions to
the spacelike form factors as a function of Q2 ¼ −q2. Data come
from Ref. [48] (the full circles), Ref. [49] (the empty circles), and
PDG [50] (the square).
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N(1535)

Jµ = ūR

[

F ∗

1

(

γµ −
"qqµ

q2

)

+ F ∗

2

iσµνqν
MN +MR

]

γ5uN

Phenomenology

! F ∗
1 has important valence quark contributions

! F ∗
2 seems to have relevant meson cloud contributions

Spectator: partial description of the transition
Use QM to estimate meson cloud parametrization from the data

N→ N *(1535) JP=1/2- I=1/2
~50% decay to    N
~50% decay to    N

⇡
η

• Bare quark effects dominate F1* 
for large

• Meson cloud effects dominate F2* with
meson cloud extending to high      region.

• Use CST quark model to infer meson 
cloud from the data.

Again good agreement of bare
quark core with EBAC analysis.

Q2

(effect from the    N channel?).η

Q2

TFFs

1 Introduction

The present work is a concise review of the recent theoretical and experimental results about the electromagnetic
structure of the baryons and baryon excitations. Our main focus is the nucleon excitations, since are the systems
that have been studied in more detail with increasing precision. Nevertheless, we present also a summary of
the recent results for baryons with strange and heavy quarks.
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Figure 1.1: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [9,
10]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).
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Figure 1.2: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [9,
10]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).

The present structure is based on the preliminary reading of the Refs. [1, 2, 3, 4]. More references can be
found in biblo.bib in the BiBTeX format.

Along this work we use the PDG 2020 [5] as reference to experimental results. In the cases there was
modification in the lastest version of PDG we mention the current PDG 2002 publication [6].
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Extension to the Timelike region

(a)                   (b)

Timelike: |G∗M | - new model

New model: consider the explicit connection with the

microscoptic pion cloud structure – quarks with structure

(a) Coupling with pion on the air:
related with pion electromagnetic form factor Fπ(q2)

(b) Coupling with intermediate baryon states (octet/decuplet):
parametrized effectively by [G̃D(q2)]2 ∝ 1/Q8

G̃D(q2) =
Λ4
D

(Λ2
D − q2) + Λ2

DΓ2
D(q2)

,

Λ2
D cutoff: parametrize mass scale of intermediate reson. (Λ2

D ≈ 1 GeV2)
ΓD(q2) effective width, constraint to ΓD(0) = 0

Gilberto Ramalho (IIP/UFRN, Natal,Brazil) SL and TL e.m. baryon FF Estoril, October 9, 2015 37 / 55

+ +
(a)                   (b)

The residue of the pion from factor Fπ(q2)  at the timelike pole 
is proportional to the                              decay

Diagram (a) related with pion electromagnetic form factor Fπ(q2) 

⇢ ! ⇡⇡
⇢

Fπ(q2) 



Crossing the boundaries

γN→Δ
Ramalho, Pena, Weil, Van Hees, Mosel, Phys.Rev. C93 (2016)

time
like

spacelike

space
like

(1232) Dalitz decay �

Timelike: |G∗M | - new model (3)

Fρ(q
2) =

m2
ρ

m2
ρ − q2 − 1

π
Γ0
ρ

mπ
q2 log q2

m2
π
+ i

Γ0
ρ

mπ
q2
−→ Fπ(q

2)

Fiting the |Fπ(q2)|2 data

Fπ(q
2) =

α

α− q2 − 1
πβq

2 log q2

m2
π
+ iβq2

α = 0.696 GeV2

β = 0.178 -0.5 0 0.5 1
q2  (GeV2)
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Parametrization of pion Form Factor

Extension to Timelike

Parametrization of 
pion Form Factor



Timelike region (1232) Dalitz decay �

∆ Dalitz decay: ΓγN(W ) and Γe+e−N(W )

Width function Γγ∗N (q;W ) with q =
√

q2

y± = (W ±M)2 − q2

F. Dohrmann et al, ERJA 45, 401 (2010)

Γγ∗N (q;W ) =
α

16

(W +M)2

M2W 3

√
y+y−y−|GT (q

2,W )|2

|GT (q
2;M∆)|2 = |G∗

M (q2;W )|2 + 3|G∗
E(q

2;W )|2 +
q2

2W 2
|G∗

C(q
2;W )|2
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∆ Dalitz decay: ΓγN(W ) and Γe+e−N(W )

Width function Γγ∗N (q;W ) with q =
√

q2

y± = (W ±M)2 − q2

F. Dohrmann et al, ERJA 45, 401 (2010)

Γγ∗N (q;W ) =
α

16

(W +M)2

M2W 3

√
y+y−y−|GT (q

2,W )|2

|GT (q
2;M∆)|2 = |G∗

M (q2;W )|2 + 3|G∗
E(q

2;W )|2 +
q2

2W 2
|G∗

C(q
2;W )|2

Then
ΓγN (W ) ≡ Γγ∗N (0;W )

Γe+e−N (W ) =
2α

3π

∫ W−M

2me

Γγ∗N (q;W )
dq

q

threshold: 2me (γ∗ → e+e−); upper limit q2 = (W −M)2

|G∗
M |2 model⇒ model for ΓγN and Γe+e−N

Gilberto Ramalho (IIP/UFRN, Natal,Brazil) SL and TL e.m. baryon FF Estoril, October 9, 2015 42 / 55

In this work we start with the quark model described in
Ref. [20] for the N!ð1520Þ resonance and extend it to the
region q2 > 0. In addition to the contribution from the
bare core, we take also a meson cloud contribution. This
contribution is modeled within the lines of our previous
study of the Δð1232Þ in the timelike region, i.e., with the
pion-photon coupling parametrized by the pion form factor
data [7].
Three conclusions emerged in the context of our model:

(i) the γ!N → N!ð1520Þ timelike transition form factors are
dominated by the meson cloud contributions; (ii) in the
range q2 ¼ 0–1 GeV2, the constant form factor model
(also known as QED approximation) usually taken in
the literature underestimates the electromagnetic coupling
of the N!ð1520Þ with consequences for the differential
Dalitz decay width; (iii) in addition to the Δð1232Þ
resonance, the N!ð1520Þ has a role in dilepton decay
reactions at intermediate energies.
This article is organized as follows. In Sec. II we describe

the methodology used to extend a valence quark model
fixed in the spacelike region to the timelike region. Next,
in Sec. III, we discuss the relation between the γ!N →
N!ð1520Þ form factors and the formulas for the photon
and Dalitz decay widths of the N!ð1520Þ. The formalism of
the covariant spectator quark model used here is presented
briefly in Sec. IV. In Sec. V we discuss the formulas used to
calculate the γ!N → N!ð1520Þ form factors. The results for
the form factors in the timelike region and the N!ð1520Þ
decay widths are presented in Sec. VI. Outlook and
conclusions are presented in Sec. VII.

II. METHODOLOGY

In the covariant spectator quark model, the application
of impulse approximation to the interaction of a photon
with a baryon, seen as a three quark qqq state, justifies that
one integrates out the relative internal momentum in the
spectator diquark subsystem [21,25,26]. After this internal
momentum integration, in the process of the covariant
integration over the global momentum of the interacting
diquark, one may keep only the main contribution, which is
originated by the on-mass-shell pole of the diquark—while
the remaining quark that interacts with the photon is taken
to be off mass shell [25]. This last integration on the on-
shell diquark internal momenta amounts to having the qqq
system as a quark-diquark system, and to treating the
diquark with an effective average mass mD [21,25,26]. It is
also an ingredient of the model that the electromagnetic
quark current is represented by a parametrization of vector
meson dominance [21,26,34,35]. In addition to the con-
tributions from the core of valence quarks, the covariant
spectator quark model can include also a covariant para-
metrization of the meson cloud effects that are important in
the low momentum transfer region and that depend on the
baryons participating in the reaction [6,7,22,23,31,36–38].

Here, the extension of the model to the timelike regime
requires two important modifications:

(i) The nucleon and the N!ð1520Þ quark core wave
functions have to be calculated in timelike kinematic
conditions, depending on an arbitrary massW which
can differ from the resonance mass, labeled MR.

(ii) The electromagnetic quark current has also to be
extended to the timelike regime. That is done by
introducing finite mass widths for the ρ and ω
mesons.

For the γ!N → Δð1232Þ transition in the timelike region,
we have already found that themeson cloud contributions are
important, in comparison to the valence quark contributions
[7]. It isworthwhile now to testwhether the same phenomena
occurs for the N!ð1520Þ resonance, which carries, in
particular, a different isospin. In our model the valence
quark contributions for themagnetic and electric form factors
vanish at the photon point (q2 ¼ 0) due to the orthogonality
of the initial and final state wave functions [20]. Other
valence quark models estimate them as nonzero contribu-
tions (a discussion can be found in Ref. [20]). Since, in our
model, the valence quark contributions for the electric
and magnetic transition form factors vanish at q2 ¼ 0,
their extension to the q2 > 0 region gives nonzero but
small contributions for those transition form factors.
Nevertheless, our model can provide a good approximation
for the N!ð1520Þ resonance in the timelike region based
on the meson cloud contributions, which dominate in the
timelike region. Moreover, the form factors show a depend-
ence on q2 with consequences for the analysis of reactions in
the timelike region, where the electromagnetic couplings are
often fixed at their value atq2 ¼ 0 (theQEDapproximation).

III. N!ð1520Þ DALITZ DECAY

The N!ð1520Þ resonance is a JP ¼ 3
2
− state, with isospin

I ¼ 1
2. The N

!ð1520Þ Dalitz decay into the nucleon can be
expressed in terms of the decay width [39]

Γγ!Nðq;WÞ¼ 3α
16

ðW−MÞ2

M2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
yþjGTðq2;WÞj2; ð3:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α is the fine-structure constant,

y& ¼ ðW &MÞ2 − q2; ð3:2Þ

and jGTðq2;WÞj2 is a combination of the electromagnetic
transition form factors given by

jGTðq2;WÞj2 ¼ 3jGMðq2;WÞj2 þ jGEðq2;WÞj2

þ q2

2W2
jGCðq2;WÞj2: ð3:3Þ

In the previous equation GM, GE, and GC are, respectively,
the magnetic dipole, electric, and Coulomb quadrupole

G. RAMALHO and M. T. PEÑA PHYSICAL REVIEW D 95, 014003 (2017)
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Radiative decay widths N*(1520)

Devenish (1976) normalization of transition form factors

Result Consistent with PDG value for    N decay width.
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Dielectron Dalitz decay widths N*(1520)

Neutron and Proton light dilepton decay width
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Decay widths N*(1535)   

Different results for proton and neutron electromagnetic widths
due to iso-scalar term in the eta meson cloud.

Timelike results give information on the neutron.

VI. RESULTS FOR THE RADIATIVE
AND DALITZ DECAY WIDTHS

We present in this section the observables associated
with the timelike region. First, we present our results for the
radiative decay widths (ΓγN). Next we discuss our results
for the dilepton decay rates d

dqΓeþe−Nðq;WÞ. We also show
the results for the Dalitz decay widths (Γeþe−N), as function
of W. We consider the proton and neutron cases.

A. Radiative decay widths

The radiative decay widths for the proton and neutron are
determined by the function Γγ$Nðq;WÞ as defined by
Eq. (5.1) in the limit q2 ¼ 0, when the virtual photon
became real.
The results for ΓγN are presented in Fig. 12, for the

proton and neutron cases. Our results differ significantly
from the results of a model with constant form factors.
Notice that the result for ΓγN is related to jGTð0;WÞj2.

The results of the function jGTð0;WÞj are presented
in Fig. 13. From the figure it is clear that the constant

form factor, i.e., a W independent form factor, is a bad
approximation.
The results for ΓγNðWÞ for the physical point (W ¼ MR)

compare well with experimental values presented in
Table III. The data presented in Fig. 12 are PDG results
based on the amplitudes A1=2ð0Þ (fourth column of
Table III). The uncertainties in the widths are the conse-
quence of limits on A1=2ð0Þ [proportional to GEð0Þ]. Note
that there is some overlap between the data results for the
proton and neutron, meaning that the data are compatible
with an identical result for both decays (exact isospin
symmetry).
In our model, the isospin symmetry is clearly broken in

the Nð1535Þ → γN decay. The good agreement between
model and data is a consequence of the accurate description
of the transition form factor GE at q2 ¼ 0, for both isospin
channels.

B. Dalitz decay rates

The dilepton decay rate d
dqΓeþe−Nðq;WÞ can be calcu-

lated combining Eq. (5.3) with Eq. (5.1). The results for
W ¼ 1.2, 1.4 and 1.535 GeVare presented in Fig. 14 for the
proton (left panel) and neutron (right panel) cases. The
upper limit in q is determined by q ¼ W −MN, as before.
From Fig. 14, we can conclude that the more relevant

kinematic regions, for both channels, is the low-q region or
near the pseudothreshold for large W, where there is a
substantial enhancement of the decay rate. In the figure,
one can also notice that the magnitude of the decay rates
near q2 ¼ 0 is larger for the proton.

C. Dalitz decay widths

The function Γeþe−NðWÞ is determined by the integral of
the dilepton decay rate according to Eq. (5.4). The results
for the proton and neutron cases are presented in Fig. 15.
In the figure we can notice a dominance of the

proton decay width up to W ¼ 1.4 GeV and very close
values for proton and neutron cases near W ¼ 1.5 GeV.
Above 1.5 GeV, close to the ρ meson mass pole
(W ¼ MN þmρ ≃ 1.7 GeV) the effect of the correspond-
ing pole starts to manifest. The main effect is the enhance-
ment of Γeþe−NðWÞ. We have a glimpse of this effect in the
graph for the neutron decay (dashed line).
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FIG. 12. Radiative decay width as a function of W for the
proton and neutron cases. The data (W ¼ MR) are determined
from the PDG data for the amplitude A1=2ð0Þ.
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FIG. 13. Effective form factor function jGTð0; WÞj for the
proton and neutron cases.

TABLE III. Nð1535Þ → γN decay widths. The estimate repre-
sents the PDG result calculated from the amplitude A1=2ð0Þ. The
results for the PDG limits are obtained from the branching ratios.

A1=2ð0Þ [GeV−1=2] ΓγN [MeV]

Data Model Estimate PDG limits Model

p 0.105& 0.015 0.101 0.49& 0.14 0.19–0.53 0.503
n −0.075& 0.020 −0.074 0.25& 0.13 0.013–0.44 0.240

COVARIANT MODEL FOR THE DALITZ DECAY OF THE … PHYS. REV. D 101, 114008 (2020)
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JP=1/2- I=1/2
~50% decay to    N
~50% decay to    N

⇡
η

VI. RESULTS FOR THE RADIATIVE
AND DALITZ DECAY WIDTHS

We present in this section the observables associated
with the timelike region. First, we present our results for the
radiative decay widths (ΓγN). Next we discuss our results
for the dilepton decay rates d

dqΓeþe−Nðq;WÞ. We also show
the results for the Dalitz decay widths (Γeþe−N), as function
of W. We consider the proton and neutron cases.

A. Radiative decay widths

The radiative decay widths for the proton and neutron are
determined by the function Γγ$Nðq;WÞ as defined by
Eq. (5.1) in the limit q2 ¼ 0, when the virtual photon
became real.
The results for ΓγN are presented in Fig. 12, for the

proton and neutron cases. Our results differ significantly
from the results of a model with constant form factors.
Notice that the result for ΓγN is related to jGTð0;WÞj2.

The results of the function jGTð0;WÞj are presented
in Fig. 13. From the figure it is clear that the constant

form factor, i.e., a W independent form factor, is a bad
approximation.
The results for ΓγNðWÞ for the physical point (W ¼ MR)

compare well with experimental values presented in
Table III. The data presented in Fig. 12 are PDG results
based on the amplitudes A1=2ð0Þ (fourth column of
Table III). The uncertainties in the widths are the conse-
quence of limits on A1=2ð0Þ [proportional to GEð0Þ]. Note
that there is some overlap between the data results for the
proton and neutron, meaning that the data are compatible
with an identical result for both decays (exact isospin
symmetry).
In our model, the isospin symmetry is clearly broken in

the Nð1535Þ → γN decay. The good agreement between
model and data is a consequence of the accurate description
of the transition form factor GE at q2 ¼ 0, for both isospin
channels.

B. Dalitz decay rates

The dilepton decay rate d
dqΓeþe−Nðq;WÞ can be calcu-

lated combining Eq. (5.3) with Eq. (5.1). The results for
W ¼ 1.2, 1.4 and 1.535 GeVare presented in Fig. 14 for the
proton (left panel) and neutron (right panel) cases. The
upper limit in q is determined by q ¼ W −MN, as before.
From Fig. 14, we can conclude that the more relevant

kinematic regions, for both channels, is the low-q region or
near the pseudothreshold for large W, where there is a
substantial enhancement of the decay rate. In the figure,
one can also notice that the magnitude of the decay rates
near q2 ¼ 0 is larger for the proton.

C. Dalitz decay widths

The function Γeþe−NðWÞ is determined by the integral of
the dilepton decay rate according to Eq. (5.4). The results
for the proton and neutron cases are presented in Fig. 15.
In the figure we can notice a dominance of the

proton decay width up to W ¼ 1.4 GeV and very close
values for proton and neutron cases near W ¼ 1.5 GeV.
Above 1.5 GeV, close to the ρ meson mass pole
(W ¼ MN þmρ ≃ 1.7 GeV) the effect of the correspond-
ing pole starts to manifest. The main effect is the enhance-
ment of Γeþe−NðWÞ. We have a glimpse of this effect in the
graph for the neutron decay (dashed line).
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TABLE III. Nð1535Þ → γN decay widths. The estimate repre-
sents the PDG result calculated from the amplitude A1=2ð0Þ. The
results for the PDG limits are obtained from the branching ratios.
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The dominance of the Dalitz decay width for proton
decay over the results for neutron decay is explained by the
dominance of the dilepton decay rates near q ¼ 0, as can be
confirmed by Fig. 14 (right panel versus left panel). For
larger values of q (and larger W) the magnitude of the
neutron dilepton decay rates increases more in comparison
to the proton dilepton decay rates (see Fig. 14). When we
integrate on q to obtain Γeþe−NðWÞ, the impact of the large
q region on the dilepton decay rate is larger, and the neutron
Dalitz decay width is enhanced.
Since we aim at the range of the HADES experiments,

we do not go beyond W ≃ 1.55 GeV. The values of the
function Γeþe−NðWÞ, at W ¼ MR are given in Table IV.
From the table we can conclude that the results for proton
and neutron decays are very close, Γeþe−NðMRÞ ≃ 6–7 keV.
This result contrasts with what occurs in the radiative

decay, ΓγNðMRÞ, where the widths for the two isospin
channels differ much more.
In a model where we reduce the isoscalar component

Að0Þ by about 0.05, which as discussed in Sec. III E
[Að0Þ → Að0Þ − 0.05 ≃ 0.075] is still well within the
experimental limits, the results for Γeþe−NðWÞ are almost
indistinguishable in the two channels.
The timelike data about the neutron decays is very

important because they provide information about the
neutron structure which is not available at the moment
from spacelike experiments. For this reason pion-induced
reactions at HADES [6,7] are fundamental to pin down the
electromagnetic structure of the neutron and complement
the information from the spacelike region.
In Fig. 16, we compare the Nð1535Þ Dalitz widths with

estimates for other light mass resonances, based on the
covariant spectator quark model. We show the results for
the Δð1232Þ32

þ, where the pion cloud contributes with
about 45% to the transition form factors at the photon point
[3], and also the results for Nð1520Þ32

− [5].
Figure 16 shows that the Δð1232Þ32

þ dominates within
the range of W considered, although the Δð1232Þ Dalitz
decay at the pole is measured for smaller values of W.
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FIG. 14. Dilepton decay rates d
dqΓeþe−Nðq;WÞ for the cases W ¼ 1.2, 1.4 and 1.535 GeV. The upper limit in q is W −MN .

TABLE IV. Nð1535Þ → γN Dalitz decay widths, estimated by
the present model.

Γeþe−N (keV)

p 5.7
n 7.2
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FIG. 15. Dalitz decay widths as a function of W for the proton
and neutron.
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FIG. 16. Comparison between Dalitz decay widths Γeþe−NðWÞ
for different resonances. Models are from Refs. [3,5]. The
diamonds indicate the Dalitz decay widths at the physical point
(W ¼ MR).
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The dominance of the Dalitz decay width for proton
decay over the results for neutron decay is explained by the
dominance of the dilepton decay rates near q ¼ 0, as can be
confirmed by Fig. 14 (right panel versus left panel). For
larger values of q (and larger W) the magnitude of the
neutron dilepton decay rates increases more in comparison
to the proton dilepton decay rates (see Fig. 14). When we
integrate on q to obtain Γeþe−NðWÞ, the impact of the large
q region on the dilepton decay rate is larger, and the neutron
Dalitz decay width is enhanced.
Since we aim at the range of the HADES experiments,

we do not go beyond W ≃ 1.55 GeV. The values of the
function Γeþe−NðWÞ, at W ¼ MR are given in Table IV.
From the table we can conclude that the results for proton
and neutron decays are very close, Γeþe−NðMRÞ ≃ 6–7 keV.
This result contrasts with what occurs in the radiative

decay, ΓγNðMRÞ, where the widths for the two isospin
channels differ much more.
In a model where we reduce the isoscalar component

Að0Þ by about 0.05, which as discussed in Sec. III E
[Að0Þ → Að0Þ − 0.05 ≃ 0.075] is still well within the
experimental limits, the results for Γeþe−NðWÞ are almost
indistinguishable in the two channels.
The timelike data about the neutron decays is very

important because they provide information about the
neutron structure which is not available at the moment
from spacelike experiments. For this reason pion-induced
reactions at HADES [6,7] are fundamental to pin down the
electromagnetic structure of the neutron and complement
the information from the spacelike region.
In Fig. 16, we compare the Nð1535Þ Dalitz widths with

estimates for other light mass resonances, based on the
covariant spectator quark model. We show the results for
the Δð1232Þ32

þ, where the pion cloud contributes with
about 45% to the transition form factors at the photon point
[3], and also the results for Nð1520Þ32

− [5].
Figure 16 shows that the Δð1232Þ32

þ dominates within
the range of W considered, although the Δð1232Þ Dalitz
decay at the pole is measured for smaller values of W.
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Fig. 10 At the right: Calculation of |G∗

M
| in timelike region in terms of W [30]. At the

left: ∆(1232) Dalitz decay cross-sections from HADES [77]. See discussion in the main text.

case the functions are represented in terms of q2 = −Q2, in order to facilitate
the discussion in the timelike regime. The new parametrization improves the
previous one, because it clearly separates the contributions from the photon
coupling with the pion from the photon coupling with intermediate baryon
states (see Fig. 9).

The motivation to the use of the parametrization (16) is based on the
diagrammatic representation of Fig. 9, and in the results of the study of the
octet to decuplet transition from Ref. [32]. In that work a microscopic meson
cloud contribution based on the cloudy bag model [73] was used in combination
with the covariant spectator quark model for the quark core. It was found that
in the case of the γ∗N → ∆(1232) transition each diagram contribute with
about 50% to the pion cloud effect.

In the new representation only a part (50%) of the contribution is then
linked with the photon coupling with the pion, as expected in a realistic de-
scription. The second term, which describes the coupling with intermediate
baryons is now represented phenomenologically, using an effective generaliza-
tion of G2

D to the timelike region, where the pole q2 = Λ2
D is regularized [29,

30].

The present representation of Gπ
M is particularly useful for studies in

the timelike region, in particular to the study of the ∆(1232) Dalitz decay:
∆→ γ∗N → e+e−N , where the final state has a dilepton pair [30,74]. Those
processes have been studied at HADES [74,75,76,77]. This topic was discussed
also in the presentation of B. Ramstein [78].

In timelike region one can calculate the G∗
M form factor, which is complex,

in terms of the running mass W that can differ from the mass of the pole M∆.
The results of |G∗

M | for different values of W are presented in the left panel of
Fig. 10. For kinematic reason the functions are limited by q2 ≤ (W −M)2 [29,
30]. The model for |G∗

M | was used to estimate the∆(1232) Dalitz cross-sections
and it was compared with the results from HADES [77]. The results are pre-
sented in the right panel of Fig. 10. The covariant spectator quark model

(1232) Dalitz decay �

Dalitz decay branching ratio extracted 4.19 x 10-5�

proton-proton collisions @1.25 GeV

γ∗N → ∆: timelike region – ∆ Dalitz decay – PDG

HADES is planning to measure Dalitz decay widths of hyperons
Σ∗0 → e+e−Λ, Σ∗+ → e+e−Σ+, ...

HADES EPJA 57, 139 (2021); GR PRD 102, 054016 (2020)

Gilberto Ramalho (OMEG/SSU) Covariant quark model calculations... Jeju, Korea, July 11, 2022 19 / 47

Entry  in PDG

Signature of form factors q2 dependence

True CST prediction:
Red line



Dilepton mass spectrum N*(1520) + N*(1535) 
Dalitz decay

True CST prediction: Red line

HADES Collaboration 
“First measurement of massive virtual photon emission from N* baryon 
resonances”  e-Print: 2205.15914 [nucl-ex]
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FIG. 2. (a) d�/dMe+e� for the ⇡�+CH2 reaction integrated
in the HADES acceptance over the missing mass range [900-
1030] MeV/c2. Full triangles: total yields, full squares: after
subtraction of the ⇡0 Dalitz decay contribution (⇡0[�e+e�]).
The curves display the simulations for point-like baryon Dalitz
decay (”QED reference”, orange dashed-dotted curve), ⇡0

Dalitz decay (black dotted curve) and the sum (black solid
curve). (b) d�/dMe+e� for the quasi-free ⇡�p! ne+e�

reaction integrated over the missing mass range [900-1030]
MeV/c2after normalisation by the number of e↵ective protons
and acceptance corrections. Gray triangles up (blue triangles
down): e+e� yields deduced from the ⇡�p ! ⇢n PWA con-
tribution [36] using VMD2 (VMD1). Orange dashed-dotted
curve: QED reference (d�/dMe+e�)QED, gray dashed area:
VMD2 model with d-wave contribution varied from 0 (full
curve) to 10% (dashed curve), blue colored area (cyan curve):
same for VMD1 models with constructive (incoherent) sum of
⇢ and � contributions, long dash-dot-dot-dashed blue curve:
⇢ contribution to the VMD1 model. Calculations using the
timelike Form-Factor model (red solid curve) and the La-
grangian model (green long dashed curve) are also shown. (c)
Ratios (d�/dMe+e�)/(d�/dMe+e�)QED. The same marker
and curve styles apply as in panel (b). Symbols with vertical
and horizontal bars show the data with total and systematic
point-to-point errors, respectively and curves display simula-
tions with absolute normalisation in all panels.

Our results are also compared to the microscopic calcu-
lation of [46] based on an e↵ective Lagrangian approach,
taking into account various resonant and non-resonant
amplitudes in a coherent way using the N?N⇢ couplings

derived from the PWA [36]. A salient feature of this
model is the application of the two-component VMD1
model to all baryon-photon couplings. Choosing a rel-
ative phase of 90� between the resonant � and ⇢ am-
plitudes, a good description of the e+e� production is
achieved, as shown by the green long dashed curve in
Figs. 2b and c. The calculation was performed for the free
⇡�p! ne+e� reaction which might explain the peak-like
structure at large invariant masses. One has however to
consider that these calculations have not yet been con-
fronted with the measured two-pion production. More-
over, this model accommodates a strong contribution of
non-resonant Born terms in the dilepton production, in
contrast to the PWA analysis of the ⇡�p ! n⇢ channel
[36], where the main contributions are due to N(1520)
and (to a smaller extent) to N(1535) excitation in the
s-channel.
Simulations based on the eTFF model [47, 48] for

these resonances also give a satisfactory description of
the data, which demonstrates that the dominant meson
cloud contribution is taken into account in a realistic
way. As the evolution of the e↵ective eTFF is mainly
driven by the pion electromagnetic form factor, this cal-
culation provides an independent VMD approach for the
⇡�p! ne+e� reaction.
The measured e+e� cross section for Me+e� ⇡ 500

MeV/c2 is more than two orders of magnitude larger than
the calculations of [51], which were based on a very low
o↵-shell ⇢ cross section and strong destructive interfer-
ences with o↵-shell ! production. The calculations of
[52], which were performed for

p
s larger than 1.6 GeV,

also predicted large negative interferences between ⇢ and
!, though with a larger ⇢ yield.
The ”QED reference” model was used to extrapolate

the experimental di↵erential cross section at small in-
variant masses (Me+e� < 100 MeV/c2). In this way, a
total cross section for the free ⇡�p! ne+e� reaction of
� = (2.97 ± 0.07data ± 0.21acc ± 0.31Zeff )µb can be de-
duced, where the errors are due to uncertainties of the
measurement, the acceptance correction and the e↵ective
number of protons, respectively. The ratio of the inte-
grated experimental and ”QED reference” cross sections,
which can be attributed to an e↵ective eTFF, amounts
to 1.35 ± 0.03 (data) ± 0.02 (acceptance).
Angular distributions. Further information on the

nature of the timelike electromagnetic transitions in the
⇡�p! ne+e� reaction can be obtained from the angu-
lar distributions. A convenient parameterization of the
di↵erential cross sections d4�/d⇥�⇤dMe+e�d cos⇥ d� /
|A|2 is provided by the density matrix formalism [46, 53,
54] with the relevant dependencies of the mod-squared
amplitude at given value of Me+e� and polar angle (⇥�⇤)
of the virtual photon in the center-of-mass frame:

|A|2 / 8k2
⇥
1� ⇢11 + (3⇢11 � 1) cos2 ⇥.

+
p
2Re⇢10 sin 2⇥ cos�+Re⇢1�1 sin

2 ⇥ cos 2�
⇤
. (3)

@1.49 GeV

Simulations based on the CST model 
(red line) for these resonances also give 
a satisfactory description of
the data.

Below 200 MeV/c2 , data agrees with a 
pointlike baryon-photon vertex (QED 
orange line) .

At larger invariant masses, data  is  
more than 5 times larger than the 
pointlike result, showing a strong effect 
of the transition form factor.



Extension to Strangeness in the timelike region

2

in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy

2

in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
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tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.
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plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
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for that reason that the relations (1) and (2) are partic-
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account the phases associated (imaginary components)
of the form factors GM and GE .
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Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
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character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
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the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.
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plied to the study of baryons systems including the the
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cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
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character of the form factors and their relative phases in
the timelike region. Our results are compared with data
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tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
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cluding the Ω−) [30–36].
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tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
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is taken into account [30, 35]. In the case of the decuplet
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that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy

5

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Λ

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

ΛΣ
0
 (v1)

FIG. 1: Timelike form factor G for the Λ (right) and ΛΣ̄0 (left). Data from [3, 4, 7, 9].

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Σ
+

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Σ
0

FIG. 2: Timelike form factor G for the Σ+ (left) and Σ0 (right). Data from [3, 4, 7, 8].

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Ξ
0

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Ξ
−

FIG. 3: Timelike form factor G for the Ξ0 (left) and Ξ− (right). Data from [3, 4, 8].

5

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Λ

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

ΛΣ
0
 (v1)

FIG. 1: Timelike form factor G for the Λ (right) and ΛΣ̄0 (left). Data from [3, 4, 7, 9].

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Σ
+

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Σ
0

FIG. 2: Timelike form factor G for the Σ+ (left) and Σ0 (right). Data from [3, 4, 7, 8].

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Ξ
0

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Ξ
−

FIG. 3: Timelike form factor G for the Ξ0 (left) and Ξ− (right). Data from [3, 4, 8].

5

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Λ

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

ΛΣ
0
 (v1)

FIG. 1: Timelike form factor G for the Λ (right) and ΛΣ̄0 (left). Data from [3, 4, 7, 9].

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Σ
+

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Σ
0

FIG. 2: Timelike form factor G for the Σ+ (left) and Σ0 (right). Data from [3, 4, 7, 8].

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Ξ
0

5 10 15 20 25 30
q2 [GeV2]

10-4

10-3

10-2

10-1

100

|G
(q

2 )|

Ξ
−

FIG. 3: Timelike form factor G for the Ξ0 (left) and Ξ− (right). Data from [3, 4, 8].

Full line:
Dashed lines:

G(q2) = G(2M2 � q2)

G(q2) = G(4M2 � q2)

G(q2) = G(�q2)

2

in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
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Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL
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Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
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and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy

Data from 
Babar,CLEO,BESIII
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Guidance for determination of onset of ”reflection” symmetry 



Asymptotic behavior reached at energies higher than
reflection property
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in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
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4M2

B

.
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σBorn(q
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1 +
1

2τ
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|G(q2)|2, (1)
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β =
√

1− 1
τ
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β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
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|G(q2)|2 =

(
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2τ
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|GM (q2)|2 +
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|GE(q

2)|2
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2τ + 1
. (2)
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from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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B
〈

G
exp

Gmod

〉

Λ 2.19

Σ+ 0.65

Σ0 1.08

Ξ− 1.08

Ξ0 0.60

1.12

TABLE I: Comparison between the ratios between the experi-
mental value (Gexp) and the model estimate of G (Gmod) for the
different baryons, for q2 ! 14.2 and 17.4 GeV2 [11, 12]. The last
line indicates the average of all baryons.
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FIG. 4: Σ+ form factors. Comparison between the results for
|GM | and |GE | for a model with an exact quark current (Model)
and the results where we consider only the leading order term in
Q2 for the quark current (Large Q2).

Discussion

In the literature, there are a few estimates of hy-
peron form factors based on vector meson dominance [20,
22]. The first calculation (1977) [20] was performed
with no adjustable parameters, before the first mea-
surements (Orsay 1990) [53]. Those estimates differ
from the recent measurements by an order of magni-
tude [11, 12]. An improved VMD estimate (1993) [22]
gave results closer to the Λ data under the condition
GM = GE [11, 14]. There are also recent estimates
for the Λ and Σ0 form factors based on phenomenolog-
ical parametrizations of the baryon-antibaryon interac-
tion [23], asymptotic parametrizations and vector meson
dominance parametrizations of the form factors [25–27].

In our model, the SUF (2) symmetry is broken at the
quark level since we use different parametrizations for the
isoscalar and isovector quark form factors. The depen-
dence on the isovector component is more relevant for
the case of the neutron for which there are almost no
data available [3, 54, 55], and for the e+e− → ΛΣ̄0 and

q2 (GeV2) Σ+ Σ0 Σ−

10 40.5 16.8 10.7

15 15.1 6.09 4.12

20 7.68 3.01 2.19

25 4.58 1.76 1.36

30 3.03 1.15 0.923

35 2.14 0.803 0.667

40 1.60 0.592 0.503

45 1.24 0.453 0.393

50 0.980 0.358 0.315

55 0.799 0.290 0.260

60 0.663 0.239 0.216

TABLE II: Estimates for the Σ effective form factor G, in units
10−3.

q2 (GeV2) Λ Ξ0 Ξ−

10 13.4 41.4 24.9

15 4.90 13.6 7.99

20 2.43 6.41 3.75

25 1.43 3.65 2.13

30 0.927 2.33 1.36

35 0.648 1.61 0.933

40 0.476 1.17 0.679

45 0.365 0.893 0.514

50 0.288 0.700 0.402

55 0.233 0.564 0.323

60 0.192 0.463 0.264

TABLE III: Estimates for the Λ and Ξ effective form factor G, in
units 10−3.

e+e− → Σ0Λ̄ reactions, which we discuss at the end of
the present section.

We now discuss the difference in magnitude between
the electric and magnetic form factors of the octet baryon
members. The absolute value of the magnetic form factor
|GM | is represented in Figs. 1 to 3 by the thin solid line,
which is, with no exception, just a bit above the central
(thick solid line). Those results mean that the magnetic
form factor is larger than the electric form factor (|GE | <
|GM |) for Λ, Σ+, Σ0, Ξ0 and Ξ−. This conclusion is a
consequence of the definition of |G(q2)|2 given by Eq. (2).

If we express |GE | in terms of the ratio αG = |GE |
|GM | , we

obtain |G|2 = |G2
M |

(

1 + α2
G
−1

1+2τ

)

. Since the thick solid

line is the result for the full |G(q2)| function, and the thin
solid line is the result from assuming |G(q2)| = |GM (q2)|,
we conclude that although |GE | < |GM |, the two form
factors have similar magnitudes.

Our model can also be applied for the ΛΣ̄0 and Λ̄Σ0

form factors (e+e− → ΛΣ̄0 and e+e− → Λ̄Σ0 reactions).

Perturbative QCD limit is way above the region 
where reflection symmetry starts to be valid (100 GeV2 versus 10 GeV2)

Guidance for determination of onset of perturbative QCD falloffs:
GM ∝ 1/q4 and GE ∝ 1/q4.



With a CST phenomenological ansatz for the baryon wave functions we described

different excited states of the nucleon, with a variety of spin and orbital motion.

1 Evidence of separation of partonic and hadronic 
(pion cloud) effects from the      (1232)

2 Made consistent with LQCD in the large pion mass regime, enabling extraction of
“pion cloud” effects indirectly from data.

3 Spacelike e.m. transition FFs for:  
N*(1440), N*(1520), N*(1535), …, baryon octet, etc.

4 Extension to timelike e.m. transition FFs and
predictions for dilepton mass spectrum and decay widths.

5 Descriptions consistent with experimental data at high Q2.

�

Summary
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Crossing the boundaries to explore baryon resonances
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CST© Covariant Spectator Theory 

• Formulation in Minkowski space.

• Motivation is partial cancellation

• Manifestly covariant, although only three-dimensional loop integrations.

single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1

6
fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ðuds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
"
3

2
jA1 þ 1

2

3% (

1þ (
jS1 % 2

(

1þ (

MB

MN
jS2

#
;

(19)

~%0B ¼ BðQ2Þ (
$"

3

2
jA2 %

1

2

1% 3(

1þ (
jS2

#
MB

MN
% 2

1

1þ (
jS1

%
;

(20)

TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1

6 ðfiþ þ 3fi%Þ
n 1

6 ðfiþ þ fi%Þ 1
6 ðfiþ % 3fi%Þ

%0 1
6 fiþ

1
18 ðfiþ % 4fi0Þ

&þ 1
18 ðfiþ þ 3fi% % 4fi0Þ 1

6 ðfiþ þ 3fi%Þ
&0 1

36 ð2fiþ % 8fi0Þ 1
6 fiþ

&% 1
18 ðfiþ % 3fi% % 4fi0Þ 1

6 ðfiþ % 3fi%Þ
'0 1

18 ð2fiþ þ 6fi% % 2fi0Þ % 1
3 fi0

'% 1
18 ð2fiþ % 6fi% % 2fi0Þ % 1

3 fi0

G. RAMALHO AND K. TSUSHIMA PHYSICAL REVIEW D 84, 054014 (2011)

054014-4

• Provides wave functions from covariant vertex  with simple transformation 

properties under Lorentz boosts, appropriate angular momentum structures and 

smooth non-relativistic limit. 
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FIG. 4: Electromagnetic current to the quark. The first term
is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.

where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
tors ji (i = 1, 2) has an isoscalar and an isovector com-
ponent, respectively fi+ and fi� (functions of Q2, the
4-momentum transfer squared), ji =

1
6fi+ + 1

2fi�⌧3.
The inclusion of the second term in the second equation

in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]

f1±(Q
2) = �q + (1 � �q)

m2
v

m2
v +Q2

+ c±
M2

hQ
2

(M2
h +Q2)2

f2±(Q
2) = ±

⇢
d±

m2
v

m2
v +Q2

+ (1 � d±)
M2

h

M2
h +Q2

�
,

(2.4)

where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z

d4q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.
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an e↵ective heavy vector meson, ± are quark anoma-
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elastic electromagnetic form factors. The parameter �q
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inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
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the u and d quarks.
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eterization of the current, as represented in Fig. 4, is
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where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.
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alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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Fig. 7 At the right: comparison with EBAC estimate of bare core [34]. At the left:
extrapolation to the lattice QCD regime with mπ = 490 MeV. Lattice data from Ref. [71].

Since the experimental value is G∗
M (0) ! 3.02 [49], one can conclude that

near Q2 = 0, the model underestimate the data in about 37%. Note that this
estimate provide only an upper limit, and that in the numerical calculations,
one can have even larger underestimations [7,31].

From the previous discussion, we can conclude that the covariant spectator
quark model provides a natural explanation for the underestimation of the data
at low Q2, when we consider only the valence quark degrees of freedom. In
order to explain the missing strength, one needs to take into account explicit
contributions of the pion cloud effects, as concluded from the use of dynamical
baryon-meson reaction models [2,7,34,35,36].

Before explaining how one can parametrize the pion cloud effects, one needs
to discuss how we can parametrize the of the nucleon and the ∆(1232) wave
functions. As discussed in Sect. 2, the structure of the nucleon can be described
within the covariant spectator quark model, considering an SU(6) structure
for the S-state wave function, and a parametrization for the quark current
(1) [6]. As for the nucleon, we consider also an S-state structure associated
with a radial wave function ψ∆ [7,8,11]. The question is, how to determine the
function ψ∆, since, contrarily to the nucleon elastic form factors, the radial
wave function cannot be adjusted directly to the empirical data, because the
data is strongly contaminated by pion cloud effects.

One are then left with two options: i) calibrate the data by some estimate
from the valence quark core contributions to the transition form factors; ii)
calibrate the model by lattice QCD simulations for large pion masses, where
the meson cloud effects are suppressed.

The first option can be implemented using the estimate of the quark core
contributions performed with the assistance of the Sato-Lee/EBAC model,
nowadays known as Argonne-Osaka model [33,34,37,46]. The second option
requires an intermediate step, the extension of the covariant spectator quark
model from the physical regime to the lattice QCD regime. This extension
can be performed taking advantage of the definition of the quark currents
in terms of the hadron masses (vector mesons and nucleon mass) and also

Connection to Lattice QCD
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Fig. 4. Electric and Coulomb quadrupole form factors for the γ ∗N → "(1232)

transition. At the top: MAID2007 parametrization [8]. At the bottom: improved 
parametrization consistent with the Siegert’s theorem [11]. Data from Ref. [17]. See 
details in Ref. [11].

MAID-SG parametrization). In this case, one can see the conver-
gence of G E to κ GC at the pseudo-threshold. The γ ∗N → "(1232)

transition form factors and their relation with the Siegert’s theo-
rem are discussed in detail in Ref. [11].

6. Summary and conclusions

In the present article we discuss the implications of the con-
straints in the γ ∗N → N(1535) helicity amplitudes, when the 
nucleon and the resonance N(1535) are both at rest (pseudo-
threshold limit). In this limit the transverse (A1/2) and the longi-
tudinal (S1/2) amplitudes are related by the Siegert’s theorem (2). 
We concluded, that the Siegert’s theorem is the consequence of the 
orthogonality between the nucleon and resonance states.

From the analysis of the structure of the current and the tran-
sition form factors, we conclude also, that, the amplitudes A1/2
and S1/2/|q| are both finite and non-zero in the pseudo-threshold 

limit [recall Eq. (16) with F̃1 = O(1)]. Based on this result, we ex-
plain why the MAID2007 parametrization for the amplitudes A1/2
and S1/2 violates the Siegert’s theorem, and propose an alterna-
tive parametrization, consistent with both the Siegert’s theorem 
and the data. The new parametrization is similar to the MAID2007 
parametrization for both amplitudes when Q 2 > 1.5 GeV2, but 
deviates from MAID2007 for smaller values of Q 2. In the new 
parametrization, the amplitude S1/2 differs more significantly from 
the MAID2007 parametrization for Q 2 < 0, and vanishes at the 
pseudo-threshold as expected (S1/2 ∝ |q|).

We concluded also, that, the Dirac and Pauli form factors are 
free of singularities at the pseudo-threshold as expected from the 
Siegert’s theorem, expressed under the condition A1/2 − λS1/2/
|q| = O(|q|2), near the pseudo-threshold.

The methods proposed in this article to study the structure of 
the helicity amplitudes and the structure of the transition form 
factors in the γ ∗N → N(1535) transition, can be extended for the 
transitions γ ∗N → "(1232), γ ∗N → N(1520) [11] and others.

Acknowledgements

The author thanks Lothar Tiator for the useful discussions. This 
work was supported by the Brazilian Ministry of Science, Technol-
ogy and Innovation (MCTI-Brazil).

References

[1] I.G. Aznauryan, et al., Int. J. Mod. Phys. E 22 (2013) 1330015.
[2] I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67 (2012) 1.
[3] J.D. Bjorken, J.D. Walecka, Ann. Phys. 38 (1966) 35.
[4] R.C.E. Devenish, T.S. Eisenschitz, J.G. Korner, Phys. Rev. D 14 (1976) 3063.
[5] D. Drechsel, L. Tiator, J. Phys. G 18 (1992) 449.
[6] E. Amaldi, S. Fubini, G. Furlan, Pion-Electroproduction: Electroproduction at 

Low Energy and Hadron Form Factor, Springer, Berlin, Heidelberg, 1979.
[7] L. Tiator, S. Kamalov, AIP Conf. Proc. 904 (2007) 191.
[8] D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34 (2007) 69.
[9] L. Tiator, Proceedings of the Workshop “Nucleon Resonances: From Photopro-

duction to High Photon Virtualities”.
[10] L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. Spec. Top.

198 (2011) 141;
L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Chin. Phys. C 33 (2009) 
1069.

[11] G. Ramalho, arXiv:1602.03832 [hep-ph], accepted for publication at Phys. 
Rev. D.

[12] G. Ramalho, M.T. Peña, Phys. Rev. D 84 (2011) 033007.
[13] G. Ramalho, K. Tsushima, Phys. Rev. D 84 (2011) 051301.
[14] Comparative to the Refs. [12,13] the form factors are modified by a sign.
[15] G. Ramalho, D. Jido, K. Tsushima, Phys. Rev. D 85 (2012) 093014.
[16] H.F. Jones, M.D. Scadron, Ann. Phys. 81 (1973) 1.
[17] V. Mokeev, https://userweb.jlab.org/~mokeev/resonance_electrocouplings/.

G.Ramalho Phys. Lett. B 759 (2016) 126

Δ(1232) 

Q2
0 = �(MR �MN )2 ; | ~Q| = 0



Crossing the boundaries to explore baryon resonances

Siegert’s theorem and with the empirical data of the γ!N →
Δð1232Þ quadrupole form factors.
We conclude first that the relations (3)–(4) implies that

Siegert’s theorem is violated by terms Rpt ¼ Oð1=N2
cÞ,

which may be a sizable error in the case Nc ¼ 3. Since the
relations (3)–(4) are extrapolated from large Nc, they can
have relative deviations of the order 1=N2

c. We then use
the constraints of Siegert’s theorem to modify the relation
for GE. We obtain parametrizations for the quadrupole
form factors that violate Siegert’s theorem only by terms
Rpt ¼ Oð1=N4

cÞ. This result is thus compatible with
Siegert’s theorem apart from the higher-order corrections
in 1=N2

c.
We look also for additional contributions for the tran-

sition form factors GE and GC, namely the contributions
from the valence quarks from the nucleon and Δð1232Þ
systems. As mentioned, those contributions are small in the
context of quark models but combined with the para-
metrizations of the pion cloud contributions they can
reduce the gap between theory and data. An interesting
propriety of the valence quark contributions for the electro-
magnetic form factors is that they vanish in the pseudo-
threshold limit, as consequence of the orthogonality
between the nucleon and Δð1232Þ wave functions. As a
consequence, the test of Siegert’s theorem condition
Rpt ¼ 0 needs to be tested only for the pion cloud
contribution of the transitions form factors.
At the end, we combine valence and pion cloud con-

tributions using a model compatible with Siegert’s theorem
apart from the higher-order corrections in 1=N2

c. The results
are then compared with the empirical data for GE and GC,
showing a fair description of the overall data.

II. PION CLOUD CONTRIBUTIONS

We can test the quality of the relations (3)–(4) comparing
those functions with the data based on some parametriza-
tion for GEn. To represent the electric form factor of the
neutron, we consider the Galster parametrization [22]

GEnðQ2Þ ¼ −μn
aτN

1þ dτN
GD; ð5Þ

where μn ¼ −1.913 is the neutron magnetic moment,
τN ¼ Q2

4M2, GD ¼ 1=ð1þQ2=0.71Þ2 is the dipole factor,
and a, d are two dimensionless parameters.
The quadrupole form factors obtained with the param-

eters a ¼ 0.9 and d ¼ 2.8 [11] are presented in Fig. 1. For a
better test of Siegert’s theorem we multiply the functionGC
and the data for GC by κ. The calculations are compared
with the data from Mainz [13], MIT-Bates [23], and
Jefferson Lab [24] for finite square momentum transfer,
Q2, and the world average from the Particle Data Group for
Q2 ¼ 0 [25]. The data are compiled in Ref. [26].

It is clear in Fig. 1 that, the difference between the
parametrizations for GE and κGC is not zero in the
pseudothreshold limit, when Q2 ≃ −0.1 GeV2. This result
implies that Siegert’s theorem is violated, becauseRpt ≠ 0.
The explicit calculation of the deviation using GEnðQ2

ptÞ≃
− 1

6 r
2
nQ2

pt, gives

Rpt ≃ −
!
M
MΔ

"
3=2 r2n

12
ffiffiffi
2

p Q2
pt: ð6Þ

Since Q2
pt ¼ −ðMΔ −MÞ2 and MΔ −M ¼ Oð1=NcÞ, we

can conclude that Rpt ¼ Oð1=N2
cÞ. Although a result

Oð1=N2
cÞ may be seen as a small quantity, the numerical

value is still sizable, as we can see in the graph for
R ¼ GE − κGC at the pseudothreshold (Rpt).

III. VALENCE QUARK CONTRIBUTIONS

Before discussing how to improve the pion cloud para-
metrization of the quadrupole form factors GE and GC, we
may question if Siegert’s theorem can in fact be verified for
the valence quark sector.
We look then for the results obtained within valence

quark models. We consider, in particular, the covariant
spectator quark model developed in Refs. [3,16,27–29] for
the nucleon and Δð1232Þ systems. The basic assumptions
of the model are that (i) in the electromagnetic interaction
the photon couples with the single quark (impulse approxi-
mation) while the other two quarks can be interpreted as an
effective diquark, (ii) the quarks have their own internal
structure (dressed by gluons and quark-antiquark states),
and (iii) the radial quark-diquark wave functions are
calibrated in terms of momentum range parameters that
can be estimated by physical or lattice QCD data.
Concerning the nucleon and Δð1232Þ systems the model

is quite successful in the description of the data. The
parameters associated with the quark structure (quark
electromagnetic form factors) were first fixed by the
nucleon elastic form factor data [28]. After that the model
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FIG. 1. γ!N → Δ quadrupole form factors estimated by the
pion cloud parametrization of Eqs. (3)–(4). Data from Ref. [26].
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Siegert’s theorem and with the empirical data of the γ!N →
Δð1232Þ quadrupole form factors.
We conclude first that the relations (3)–(4) implies that

Siegert’s theorem is violated by terms Rpt ¼ Oð1=N2
cÞ,

which may be a sizable error in the case Nc ¼ 3. Since the
relations (3)–(4) are extrapolated from large Nc, they can
have relative deviations of the order 1=N2

c. We then use
the constraints of Siegert’s theorem to modify the relation
for GE. We obtain parametrizations for the quadrupole
form factors that violate Siegert’s theorem only by terms
Rpt ¼ Oð1=N4

cÞ. This result is thus compatible with
Siegert’s theorem apart from the higher-order corrections
in 1=N2

c.
We look also for additional contributions for the tran-

sition form factors GE and GC, namely the contributions
from the valence quarks from the nucleon and Δð1232Þ
systems. As mentioned, those contributions are small in the
context of quark models but combined with the para-
metrizations of the pion cloud contributions they can
reduce the gap between theory and data. An interesting
propriety of the valence quark contributions for the electro-
magnetic form factors is that they vanish in the pseudo-
threshold limit, as consequence of the orthogonality
between the nucleon and Δð1232Þ wave functions. As a
consequence, the test of Siegert’s theorem condition
Rpt ¼ 0 needs to be tested only for the pion cloud
contribution of the transitions form factors.
At the end, we combine valence and pion cloud con-

tributions using a model compatible with Siegert’s theorem
apart from the higher-order corrections in 1=N2

c. The results
are then compared with the empirical data for GE and GC,
showing a fair description of the overall data.

II. PION CLOUD CONTRIBUTIONS

We can test the quality of the relations (3)–(4) comparing
those functions with the data based on some parametriza-
tion for GEn. To represent the electric form factor of the
neutron, we consider the Galster parametrization [22]

GEnðQ2Þ ¼ −μn
aτN

1þ dτN
GD; ð5Þ

where μn ¼ −1.913 is the neutron magnetic moment,
τN ¼ Q2

4M2, GD ¼ 1=ð1þQ2=0.71Þ2 is the dipole factor,
and a, d are two dimensionless parameters.
The quadrupole form factors obtained with the param-

eters a ¼ 0.9 and d ¼ 2.8 [11] are presented in Fig. 1. For a
better test of Siegert’s theorem we multiply the functionGC
and the data for GC by κ. The calculations are compared
with the data from Mainz [13], MIT-Bates [23], and
Jefferson Lab [24] for finite square momentum transfer,
Q2, and the world average from the Particle Data Group for
Q2 ¼ 0 [25]. The data are compiled in Ref. [26].

It is clear in Fig. 1 that, the difference between the
parametrizations for GE and κGC is not zero in the
pseudothreshold limit, when Q2 ≃ −0.1 GeV2. This result
implies that Siegert’s theorem is violated, becauseRpt ≠ 0.
The explicit calculation of the deviation using GEnðQ2
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pt, gives
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Since Q2
pt ¼ −ðMΔ −MÞ2 and MΔ −M ¼ Oð1=NcÞ, we

can conclude that Rpt ¼ Oð1=N2
cÞ. Although a result

Oð1=N2
cÞ may be seen as a small quantity, the numerical

value is still sizable, as we can see in the graph for
R ¼ GE − κGC at the pseudothreshold (Rpt).

III. VALENCE QUARK CONTRIBUTIONS

Before discussing how to improve the pion cloud para-
metrization of the quadrupole form factors GE and GC, we
may question if Siegert’s theorem can in fact be verified for
the valence quark sector.
We look then for the results obtained within valence

quark models. We consider, in particular, the covariant
spectator quark model developed in Refs. [3,16,27–29] for
the nucleon and Δð1232Þ systems. The basic assumptions
of the model are that (i) in the electromagnetic interaction
the photon couples with the single quark (impulse approxi-
mation) while the other two quarks can be interpreted as an
effective diquark, (ii) the quarks have their own internal
structure (dressed by gluons and quark-antiquark states),
and (iii) the radial quark-diquark wave functions are
calibrated in terms of momentum range parameters that
can be estimated by physical or lattice QCD data.
Concerning the nucleon and Δð1232Þ systems the model

is quite successful in the description of the data. The
parameters associated with the quark structure (quark
electromagnetic form factors) were first fixed by the
nucleon elastic form factor data [28]. After that the model
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Recall that κ = M∆−M
2M∆

.

(solid circles and diamonds). The results for GC are
multiplied by κ for convenience. In the figure one can
notice the convergence of the two lines at the lowest
Q2 point (pseudothreshold) proving the consistency with
Siegert’s theorem. To this success contribute the pion
cloud parametrizations for the form factors GE and GC

discussed next, as well as the valence quark contributions
discussed later. The inclusion of the valence quark con-
tributions compensates the underestimation associated
with the pion cloud parametrizations [26, 32, 33, 36].
The structure of the internal structure of the baryons

can be interpreted as a combination of the large Nc limit,
with SU(6) quark models with two-body exchange cur-
rents [29, 31]. The SU(6) symmetry breaking induces an
asymmetric distribution of charge in the nucleon which
generates non-zero results for the neutron electric form
factor as shown in constituent quark models such as the
Isgur-Karl model [17, 42] and others [3, 27, 28]. Us-
ing the SU(6) symmetry breaking one can show that
the γ∗N → ∆(1232) quadrupole moments are propor-
tional to the neutron square charge radius (r2n) [16, 26–
28, 30, 43, 44].
Using the low Q2 expansion of the neutron electric

form factor, GEn " − 1
6r

2
nQ

2, we can represent the Q2 de-
pendence of the quadrupole form factors in the form [26–
31]:

Gπ
E(Q

2) =

(

M

M∆

)3/2 M2
∆ −M2

2
√
2

G̃En(Q2)

1 + Q2

2M∆(M∆−M)

,

(2)

Gπ
C(Q

2) =

(

M

M∆

)1/2 √
2M∆MG̃En(Q

2), (3)

where G̃En = GEn/Q2. The previous relations were de-
rived directly from the large Nc limit [26], apart the de-
nominator of the factor G̃En in Eq. (2). This denomi-
nator is included in the present work in order to satisfy

Siegert’s theorem (1), exactly. Note that in the limit
Q2 → 0 the extra factor reduces to the unit, and we
recover the original result from large Nc limit [26]. At

the pseudothreshold: 1 + Q2

2M∆(M∆−M) = M∆+M
2M∆

, which

leads directly to Eq. (1). Since in the large Nc limit
M∆ − M = O(1/Nc), and M∆ = O(Nc), the present
form for Gπ

E corresponds to a correction O(1/N2
c ) rela-

tive to the original form of Gπ
E presented in Ref. [26], at

the pseudothreshold.
In a previous work [32], a similar expression was con-

sidered for Gπ
E , which describes Siegert’s theorem with

an error of the order 1/N4
c . The new expression for Gπ

E
improves the previous result with the exact description
of Siegert’s theorem (all orders of 1/Nc). Compared to
the form presented in Ref. [32], we include a correction
O(1/N4

c ) at the pseudothreshold [45].
To describe the neutron electric form factor we con-

sider the Galster parametrization [46]:

GEn(Q
2) = −µn

aτN
1 + dτN

GD, (4)

where µn = −1.913 is the neutron magnetic moment,

τN = Q2

4M2 , GD = 1/(1+Q2/0.71)2 is the dipole form fac-
tor, and a, d are two dimensionless parameters. In Fig. 1,
we use a = 0.9 and d = 2.8, a parametrization that de-
scribes very well the neutron electric form factor data. In
a separated work we study alternative parametrizations
for GEn [47].
The theoretical estimates presented in Fig. 1 are com-

pared with data from Mainz [21, 38], MIT-Bates [39] and
Jefferson Lab [40] for finite Q2, and the world average
from the Particle Data Group at Q2 = 0 [41] (empty
diamonds and circles). The new data at Q2 = 0.06,
0.13 GeV2 for GE and Q2 = 0.04, 0.06, 0.13 GeV2

for GC are from JLab/Hall A [33] (solid diamonds and
circles). To convert the new data for the electromag-

netic ratios REM ≡ − GE

GM
and RSM ≡ − |q|

2M∆

GC

GM
into

GE and GC , we use the MAID2007 parametrization for
GM : GM = 3

√
1 + τ(1 + a1Q2)e−a4Q

2

GD, where τ =
Q2

(M∆+M)2 , a1 = 0.01 GeV−2 and a4 = 0.23 GeV−2 [35].
The larger errorbars associated with the new data are
mainly the consequence of the different model descrip-
tions of the background [33].
The pion cloud contributions for the γ∗N → ∆(1232)

quadrupole form factors given by Eqs. (2)-(3) can be
complemented by small valence quark contributions to
the respective form factors (around 10%, near Q2 = 0).
As discussed in Ref. [32], those contributions are nat-
urally consistent with Siegert’s theorem. The valence
quark contributions to the γ∗N → ∆(1232) quadrupole
form factors are produced by the high angular momen-
tum components in the nucleon and/or ∆(1232) wave
functions. As a consequence of the orthogonality between
the nucleon and ∆(1232) states, the valence quark con-
tributions to the quadrupole form factors vanish at the
pseudothreshold and the Siegert’s theorem condition is
trivially satisfied [10, 13, 32]. The validity of Siegert’s

G. Ramalho Eur.Phys.J. A54 (2018) no.5, 75G. Ramalho Phys. Rev. D94,114001,(2016)

O(1/N4
c )

Coimbra, 2019



Dominance of iso-vector channel concurs to our model of the 
meson cloud: pion only  

PDG data at the photon point:

3

adjustable parameters, since the quark current was deter-
mined in the study of the nucleon electromagnetic form
factors [28] and the radial wave functions are correlated
with the nucleon radial wave functions.

To complement the effect of the valence quark contri-
butions we consider in Sec. III additional contributions
associated with the meson cloud effects.

γ∗N → N(1535) form factors

The γ∗N → N(1535) transition current can be ex-
pressed using units of elementary charge (e), in the form

Jµ = ūR

[

F ∗
1

(

γµ −
#qqµ

q2

)

+ F ∗
2

iσµνqµ
MR +MN

]

γ5uN ,

(2.10)

where uR and uN are the resonance and nucleon spinors,
respectively. Equation (2.10) defines the elementary form
factors, Dirac (F ∗

1 ) and Pauli (F ∗
2 ) [18, 20, 22].

In the semirelativistic limit, we obtain the following
results [20]:

F ∗
1 (Q

2) =
1

2
(3jS1 + jA1 )IR (2.11)

F ∗
2 (Q

2) = −
1

2
(3jS2 − jA2 )IR. (2.12)

For a detailed discussion of the results check Refs. [20,
21]. The numerical results are presented in Fig. 1.

γ∗N → N(1520) form factors

The γ∗N → N(1520) transition current can be ex-
pressed, in units e, as [23, 24]:

Jµ = ūα [G1 q
αγµ +G2 q

αPµ +G3 q
αqµ −G4g

µν ]uN ,

(2.13)

where uα is the Rarita-Schwinger of the R state, uN is
the nucleon spinor, P = 1

2 (PR + PN ), and the dots in-
dicate gauge terms that are not relevant to the present
discussion. The functions Gi (i = 1, 2, 3) are the elemen-
tary form factors of the transition. The function G4 is a
linear combination of the first three form factors.

Details about the general γ∗N → N(1520) transition
form factors and their relations with the helicity ampli-
tudes are presented in Appendix A. Here we consider the
results in the semirelativistic approximation.

The results for the elementary form factors in the
semirelativistic approximation are [20]:

G1 = −
3

2
√
2

[(

jA1 +
1

3
jS1

)

+

(

jA2 +
1

3
jS2

)]

IR
|q|

,

G2 = +
3

2
√
2M

[

jA2 +
1

3

1− 3τ

1 + τ
jS2 +

4

3
jS1

]

IR
|q|

,

G3 = 0. (2.14)

A1/2(0) F ∗

2 (0) A(0)/B(0)

p 0.150±0.015 0.97±0.14 0.14±0.12

n −0.075±0.020 −0.69±0.19 0.83±0.12

TABLE I: γ∗N → N(1535) transition. Amplitude A1/2(0)

and results for F ∗

2 (0). A1/2(0) is in units 10−3GeV−1/2.

A1/2 A3/2 |A|2

p −0.025±0.005 0.140±0.005 20.2±1.4

n −0.050±0.005 −0.120±0.005 15.7±1.3

TABLE II: N(1520) → γN amplitudes in units 10−3 GeV−1/2

(case Q2 = 0). |A|2 ≡ A2

1/2 +A2

3/2 is in units 10−3 GeV−1.

Based on the expression for G4, given by Eq. (A1) we
conclude that G4 = 0. This result is very important
because it implies that there is no contribution of the
valence quark core to G4, in the context of the covariant
spectator quark model.

For the purpose of the discussion, we note that G1 and
G2 are proportional to IR

|q| and are therefore well defined

at the photon point, according with Eq. (2.8).
The multipole form factors are obtained using the re-

lations [20]

GM = −RQ2
−
G1

MR
, (2.15)

GE = −R
[

4Gmc
4 −Q2

−
G1

MR

]

, (2.16)

GC = −R
[

4MRG1 + (3M2
R +M2

N +Q2)G2

]

,

(2.17)

where R = 1
3

MN

MR−MN
. The relations (2.15)-(2.17) are

converted to the Devenish representation [2], and differ

from the results from Refs. [20, 23, 24] by the factor
√

2
3 .

In Eq. (2.16) we include a term in Gmc
4 , which can

be interpreted as the meson cloud contribution to the
function G4 and it is discussed in Sec. III B.

AV
3/2 ⇡ 0.13 ;AS

3/2 ⇡ 0.01 (GeV �1/2)

N→ N *(1520)



Iso-vector + iso-scalar channels included into our model of the 
meson cloud: pion and eta cloud.

PDG data at the photon point:
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Extension to Timelike
Kinematics (γ∗N → N ′) R ≡ N ′

R rest frame
PR = (W, 0, 0, 0); PN = (EN , 0, 0,−|q|); q = (ω, 0, 0, |q|)

Timelike q2 > 0

ω =
W 2 −M2 + q2

2W

|q|2 =
[(W +M)− q2][(W −M)2 − q2]

4W 2

EN =
W 2 +M2 − q2

2W

Spacelike −q2 = Q2 > 0

ω =
W 2 −M2 −Q2

2W

|q|2 =
[(W +M) +Q2][(W −M)2 +Q2]

4W 2

EN =
W 2 +M2 +Q2

2W

TL: q2 ≤ (W −M)2 W ≥M

Gilberto Ramalho (IIP/UFRN, Natal,Brazil) SL and TL e.m. baryon FF Estoril, October 9, 2015 12 / 55Transition form factors in the timelike region are restricted to a given 
kinematic region that depends on the varying resonance mass W.



Extension to Timelike

Away from that peak it is the bare quark contribution that
dominates. The flatness of the W ¼ 2.2 GeV curve for
q2 > 1 GeV2 is the net result of the falloff of the pion
cloud and the rise of the quark core terms. In addition, the
figure shows that the dependence on W yields different
magnitudes at the peak, and we recall that this dependence
originates from the bare quark core contribution alone.
This bare quark core contribution is mainly the conse-
quence of the VMD parametrization of the quark current
where there is an interplay between the effect of the ρ pole
and a term that behaves as a constant for intermediate
values of q2 (see Appendix A).
Wewill discuss now the results for the widths Γγ"Nðq;WÞ

of the Δ Dalitz decay, and for the Δ mass distribu-
tion gΔðWÞ.

A. Δ Dalitz decay

The width associated with the Δ decay into γ"N can be
determined from the Δ → γ"N form factors for the Δ mass
W. Assuming the dominance of the magnetic dipole form
factors over the other two transition form factors, we can
write [4,5,34]

Γγ"Nðq;WÞ ¼ α
16

ðW þMÞ2

M2W3

×
ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
y−jG"

Mðq2;WÞj; ð5:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α≃ 1=137 is the fine-structure constant

and y& ¼ ðW &MÞ2 − q2.
At the photon point (q2 ¼ 0), in particular, we obtain the

ΓγN in the limit q2 ¼ 0 from Eq. (5.1) [5,18,35]

ΓγNðWÞ ¼ Γγ"Nð0;WÞ: ð5:2Þ

We can also calculate the derivative of the Dalitz decay
width Γeþe−Nðq;WÞ from the function Γγ"Nðq;WÞ using the
relation [5,18,34,35]

Γ0
eþe−Nðq;WÞ≡ dΓeþe−N

dq
ðq;WÞ

¼ 2α
3πq

Γγ"Nðq;WÞ: ð5:3Þ

The Dalitz decay width Γeþe−Nðq;WÞ is given by

Γeþe−NðWÞ ¼
Z

W−M

2me

Γ0
eþe−Nðq;WÞdq; ð5:4Þ

where me is the electron mass. Note that the integration
holds for the interval 4m2

e ≤ q2 ≤ ðW −MÞ2, where the
lower limit is the minimum value necessary to produce an
eþe− pair, and ðW −MÞ2 is the maximum value available
in the Δ → γ"N decay for a given W value.
The results for dΓeþe−N

dq ðq;WÞ for several mass values W
(1.232, 1.6 and 2.2 GeV) are presented in Fig. 5. These
results are also compared to the calculation given by the
constant form factor model, from which they deviate
considerably.
Also, the Δ decay width can be decomposed at tree level

into three independent channels

ΓtotðWÞ ¼ ΓπNðWÞ þ ΓγNðWÞ þ Γeþe−NðWÞ; ð5:5Þ

given by the decays Δ → πN, Δ → γN and Δ → eþe−N.
The two last terms are described respectively by Eqs. (5.2)
and (5.4). The ΓπN term can be parametrized as in [36,43]

ΓπNðWÞ ¼ MΔ
W

"
qπðWÞ
qπðMΔÞ

#
3 κ2 þ q2πðMΔÞ
κ2 þ q2πðWÞ

Γ0
πN; ð5:6Þ

where Γ0
πN is the Δ → πN partial width for the physical Δ,

qπðWÞ is the pion momentum for a Δ decay with mass W,
and κ a cutoff parameter. Following Refs. [37,38] we took
κ ¼ 0.197 GeV. The present parametrization differs from
other forms used in the literature [5,35] and from our
previous work [4].

FIG. 4. Results for jG"
MðQ2Þj for W ¼ 1.232 GeV,

W ¼ 1.6 GeV,W ¼ 1.8 GeV andW ¼ 2.2 GeV. The thick lines
indicate the final result. The thin lines indicate the contribution of
the core.

FIG. 5. Results for dΓeþe−N
dq ðq;WÞ for three different values of

energies W. The solid line is the result of our model. The dotted
line is the result of the constant form factor model.

ROLE OF THE PION ELECTROMAGNETIC FORM FACTOR … PHYSICAL REVIEW D 93, 033004 (2016)

033004-5

• Extension to higher W shows
effect of the rho mass pole

• In that pole region small
bare quark contribution (thin lines)

γN→Δ



Crossing the boundaries N*(1520) Dalitz decay
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Crossing the boundaries N*(1520) Dalitz decay
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Crossing the boundaries N*(1535) Dalitz decay

.

N(1535) - Dalitz decay

Γγ∗N (q,W ) =
α

2W 3

√
y+y−y+B‖GT (q2,W )|2,

|GT (q2,W )|2 = |GE(q2,W )|2 +
q2

2W 2
|GC(q2,W )|2

dΓe+e−N

dq
(q,W ) =

2α

3πq3
(2µ2 + q2)

√
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4µ2
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G. Ramalho and K.Tsushima, PRD 84, 054014 (2011)

Extension to Strangeness in the Spacelike region with a 
global fit to lattice data and physical magnetic moments

Extend the parametrization of the 
e.m. current to the valence quark 
d.o.f of the whole  baryon octet.

single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1

6
fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ðuds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
"
3

2
jA1 þ 1

2

3% (

1þ (
jS1 % 2

(

1þ (

MB

MN
jS2

#
;

(19)

~%0B ¼ BðQ2Þ (
$"

3

2
jA2 %

1

2

1% 3(

1þ (
jS2

#
MB

MN
% 2

1

1þ (
jS1

%
;

(20)

TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1

6 ðfiþ þ 3fi%Þ
n 1

6 ðfiþ þ fi%Þ 1
6 ðfiþ % 3fi%Þ

%0 1
6 fiþ

1
18 ðfiþ % 4fi0Þ

&þ 1
18 ðfiþ þ 3fi% % 4fi0Þ 1

6 ðfiþ þ 3fi%Þ
&0 1

36 ð2fiþ % 8fi0Þ 1
6 fiþ

&% 1
18 ðfiþ % 3fi% % 4fi0Þ 1

6 ðfiþ % 3fi%Þ
'0 1

18 ð2fiþ þ 6fi% % 2fi0Þ % 1
3 fi0

'% 1
18 ð2fiþ % 6fi% % 2fi0Þ % 1

3 fi0
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single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1

6
fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ð uds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
"
3

2
jA1 þ 1

2

3% (

1þ (
jS1 % 2

(

1þ (

MB

MN
jS2

#
;

(19)

~%0B ¼ BðQ2Þ (
$"

3

2
jA2 %

1

2

1% 3(

1þ (
jS2

#
MB

MN
% 2

1

1þ (
jS1

%
;

(20)

TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1

6 ðfiþ þ 3fi%Þ
n 1

6 ðfiþ þ fi%Þ 1
6 ðfiþ % 3fi%Þ

%0 1
6 fiþ

1
18 ðfiþ % 4fi0Þ

&þ 1
18 ðfiþ þ 3fi% % 4fi0Þ 1

6 ðfiþ þ 3fi%Þ
&0 1

36 ð2fiþ % 8fi0Þ 1
6 fiþ

&% 1
18 ðfiþ % 3fi% % 4fi0Þ 1

6 ðfiþ % 3fi%Þ
'0 1

18 ð2fiþ þ 6fi% % 2fi0Þ % 1
3 fi0

'% 1
18 ð2fiþ % 6fi% % 2fi0Þ % 1

3 fi0
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Parameters for valence quark degrees of 
freedom and the pion cloud dressing 
determined by a global fit to 
octet baryon lattice data for the 
e.m. form factors
and physical magnetic moments. 

system at the physical point, given by the last column in
Table V (!2 per data point ¼ 1:93). Then, we can con-
clude that the nucleon data are described better than the
lattice data (!2 per data point of 2.9 and 5.2 for the sets
m" ¼ 354 and 495 MeV, respectively).

Since we cannot isolate the pion cloud contributions
from the valence quark contributions in the experimental
data, we analyze the pion cloud effects by comparing the
individual components of the nucleon form factors with the
full result. The results for the nucleon are presented in
Fig. 11, where the form factors are renormalized by the

dipole form factor GD ¼ ð1þ Q2

0:71Þ%2. The exception is the

neutron electric form factor. In the figure, the contributions
of the pion cloud are represented by the bands that fill the
difference between the valence quark contributions
(ZBGX0B) and the full result (GXB, solid line).

Observing the pion cloud contributions for the nucleon
electromagnetic form factors in Fig. 11, we conclude that
the contributions are similar for both the proton and neu-
tron magnetic form factors. In both cases contributions
amount to 10–14% in the region of Q2 ¼ 0–0:5 GeV2,

and fall to less than 5% around Q2 ¼ 2 GeV2, and even
become less than 1% for Q2 > 5 GeV2.
The analysis for the electric form factors is more deli-

cate. For the proton there are & 12% contributions from
the pion cloud near Q2 ¼ 0, and they fall to 1% near
Q2 ¼ 1 GeV2, and stabilize to 5% negative contributions
for Q2 & 5 GeV2. In the larger Q2 region one must be
careful, since GE approaches zero and the ratio is not
meaningful. For Q2 ¼ 10 GeV2 the valence quark contri-
butions are larger than 90%. As for the neutron near
Q2 ¼ 0, where GEnð0Þ ¼ 0, the pion cloud contributions
dominate. Near Q2 ¼ 1 GeV2, the pion cloud effects are
about 10% and drop to less than 4% forQ2 ¼ 4 GeV2, and
even smaller for larger Q2. For Q2 ¼ 10 GeV2 the valence
quark contributions dominate to give more than 98%.
The slow falloff of the pion cloud contributions for

the electric form factors compared with those for the
magnetic ones is due to the enhancement of the F2 con-
tributions forGE by the prefactorQ

2, and the function form
for the pion cloud contributions. Since the pion cloud
contributions are regulated by the cutoff !2 ¼ 1:24 GeV
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FIG. 6 (color online). "þ bare electromagnetic form factors determined by the global fit. The lines are the lattice regime (solid line)
and the physical regime (dashed line). The lattice data are from Ref. [52].
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Lattice data: 
H.W. Lin and K. Orginos, 
Phys. Rev. D 79, 074507 (2009).

Two examples:

from the experimental result for GMð0Þ, and also from the
lattice data. We recall again that this can be a consequence
of the difficulty in describing the ! lattice data. [See
Figs. 9 and 10.]

E. Electric charge and magnetic dipole radii

The electric charge squared radius for a charged particle
is usually defined as4

hr2Ei ¼ $ 6

GEBð0Þ
dGEB

dQ2

!!!!!!!!Q2¼0
: (71)

For a neutral particle the same expression can be used but
setting GEBð0Þ ! 1. The definition (71) has advantages for
comparing the radii of particles with different charges such
as p and "$, and one can relate the corresponding baryon
electric charge radii. As for the magnetic dipole squared
radius, the most common definition5 is

hr2Mi ¼ $ 6

GMBð0Þ
dGMB

dQ2

!!!!!!!!Q2¼0
: (72)

We assume in this case thatGMBð0Þ is not zero, neither very
small. The results for the electric charge squared radii and
the magnetic squared radii are, respectively, presented in
Tables VI and VII (see columns hr2Ei and hr2Mi).
Experimental values [51,66–71] are also included in
Table VI for hr2Ei, and in the caption of Table VII for hr2Mi.
Since in the present approach we can identify the va-

lence quark (bare) contributions and the pion cloud
contributions in the form factor GXB (X ¼ E, M), we
follow Eq. (67) and decompose GXB into

GXBðQ2Þ ¼ Gb
XBðQ2Þ þG!

XBðQ2Þ; (73)

where Gb
XBðQ2Þ ¼ ZBGX0BðQ2Þ and G!

XBðQ2Þ ¼
ZB"GXBðQ2Þ, are, respectively, the bare and pion cloud
contributions. Based on the decomposition (73) and the
definitions of radii (71) and (72), we can write

hr2Ei ¼ hr2Eib þ hr2Ei!; (74)

hr2Mi ¼ hr2Mib þ hr2Mi!; (75)
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FIG. 8 (color online). "$ bare electromagnetic form factors determined by the global fit. The lines are the lattice regime (solid line)
and the physical regime (dashed line). The lattice data are from Ref. [52].

4Some authors [65] exclude the factor GEBð0Þ from the hr2Ei
definition.

5Some authors [65] define hr2Mi without the factor GMBð0Þ, but
use

hr2Mi
GMBð0Þ to compare the values of different baryons.
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Red line: lattice
Blue line: physical regime



Asymptotic behavior

2

in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy

6

B
〈

G
exp

Gmod

〉

Λ 2.19

Σ+ 0.65

Σ0 1.08

Ξ− 1.08

Ξ0 0.60

1.12

TABLE I: Comparison between the ratios between the experi-
mental value (Gexp) and the model estimate of G (Gmod) for the
different baryons, for q2 ! 14.2 and 17.4 GeV2 [11, 12]. The last
line indicates the average of all baryons.
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FIG. 4: Σ+ form factors. Comparison between the results for
|GM | and |GE | for a model with an exact quark current (Model)
and the results where we consider only the leading order term in
Q2 for the quark current (Large Q2).

Discussion

In the literature, there are a few estimates of hy-
peron form factors based on vector meson dominance [20,
22]. The first calculation (1977) [20] was performed
with no adjustable parameters, before the first mea-
surements (Orsay 1990) [53]. Those estimates differ
from the recent measurements by an order of magni-
tude [11, 12]. An improved VMD estimate (1993) [22]
gave results closer to the Λ data under the condition
GM = GE [11, 14]. There are also recent estimates
for the Λ and Σ0 form factors based on phenomenolog-
ical parametrizations of the baryon-antibaryon interac-
tion [23], asymptotic parametrizations and vector meson
dominance parametrizations of the form factors [25–27].

In our model, the SUF (2) symmetry is broken at the
quark level since we use different parametrizations for the
isoscalar and isovector quark form factors. The depen-
dence on the isovector component is more relevant for
the case of the neutron for which there are almost no
data available [3, 54, 55], and for the e+e− → ΛΣ̄0 and

q2 (GeV2) Σ+ Σ0 Σ−

10 40.5 16.8 10.7

15 15.1 6.09 4.12

20 7.68 3.01 2.19

25 4.58 1.76 1.36

30 3.03 1.15 0.923

35 2.14 0.803 0.667

40 1.60 0.592 0.503

45 1.24 0.453 0.393

50 0.980 0.358 0.315

55 0.799 0.290 0.260

60 0.663 0.239 0.216

TABLE II: Estimates for the Σ effective form factor G, in units
10−3.

q2 (GeV2) Λ Ξ0 Ξ−

10 13.4 41.4 24.9

15 4.90 13.6 7.99

20 2.43 6.41 3.75

25 1.43 3.65 2.13

30 0.927 2.33 1.36

35 0.648 1.61 0.933

40 0.476 1.17 0.679

45 0.365 0.893 0.514

50 0.288 0.700 0.402

55 0.233 0.564 0.323

60 0.192 0.463 0.264

TABLE III: Estimates for the Λ and Ξ effective form factor G, in
units 10−3.

e+e− → Σ0Λ̄ reactions, which we discuss at the end of
the present section.

We now discuss the difference in magnitude between
the electric and magnetic form factors of the octet baryon
members. The absolute value of the magnetic form factor
|GM | is represented in Figs. 1 to 3 by the thin solid line,
which is, with no exception, just a bit above the central
(thick solid line). Those results mean that the magnetic
form factor is larger than the electric form factor (|GE | <
|GM |) for Λ, Σ+, Σ0, Ξ0 and Ξ−. This conclusion is a
consequence of the definition of |G(q2)|2 given by Eq. (2).

If we express |GE | in terms of the ratio αG = |GE |
|GM | , we

obtain |G|2 = |G2
M |

(

1 + α2
G
−1

1+2τ

)

. Since the thick solid

line is the result for the full |G(q2)| function, and the thin
solid line is the result from assuming |G(q2)| = |GM (q2)|,
we conclude that although |GE | < |GM |, the two form
factors have similar magnitudes.

Our model can also be applied for the ΛΣ̄0 and Λ̄Σ0

form factors (e+e− → ΛΣ̄0 and e+e− → Λ̄Σ0 reactions).

Perturbative QCD limit is way above the 
region where refletion symmetry starts to 
be valid
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Figure 1.6: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [?,
?]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).

also introduce components that are intrinsically relativistic as ”p waves” in the relativistic JP “ 1{2` nucleon
state. In lattice QCD calculations the identification of these components is less direct and has to be recur
to the Lüscher method for finite volume e↵ects for comparison of e↵ective field theory with coupled channels
results.

Finally, even with these advances in QCD based dynamics, a comprehensive and quantitative understanding
of all observed baryon properties is not yet closed: how elementary degrees of freedom, quarks and gluons, are
not observed due to color confinement remains a theoretical challenge.

2.2.1 The early quark model

In the very early history of the quark model, Fermi and Yang [?] introduced the (wrong) hypothesis that the
pion was formed by a nucleon and an anti-nucleon, under a force di↵erent from ordinary nuclear forces, and of
such short range character that it could not be seen in scattering. This idea was around for some time leading
to the so-called Sakata model (picturing meson and baryon resonances as made up of ”elementary” protons,
neutrons and ⇤s and their antiparticles) but it led to an unsatisfactory asymmetric treatment of the strange
baryons ⇤, ⌃ and ⌅. The compositeness of hadrons ceased being an issue in 1962 [?] with Gell-Mann’s field
theoretic based paper where equal-time relations were abstracted, and a mathematical classification scheme of
baryons emerged from the condition of ”unitary symmetry” (meaning the conservation of strangeness-changing
vector currents). In such classification scheme, stable and unstable baryons (N , ⇤, ⌃ and ⌅) form a degenerate
octet in the limit of ”unitary symmetry”, suggesting that this symmetry could be broken. Gell-Mann pointed
out that of all the groups that could be generated by the vector weak currents, SUp3q is the smallest naturally
giving rise to the rules |�I| “ 1{2, |�S| “ 1 and |�Q| “ 0, 1. And similarly to local Up1q gauge invariance
which necessary generates the existence of a massless photon, local gauge invariance for SUC(3) colour generates
eight massless gluons- the carriers of the (strong) colour force. Thus QCD was launched.

By then one still hoped that the discovered meson resonances were composite states of one another related
by unitarity (mechanism called bootstrap). In a paralel route to the one of Gell-Mann, George Zweig came
up with the concept of ”constituent quarks” (”aces”, in his original language) to explain the puzzling � meson
decay into the l “ 1 KK̄ channel and the suppression of the l “ 0 ⇡⇢ decay channel. There was no symmetry
to impose this suppression. While Gell-Mann focused on symmetries and elementary quarks, Zweig tinkered
with dynamics and e↵ective, dressed or ”constituent” quarks: He assumed that when a meson aā decays into
two other mesons, as the separation between the elements of the aā pair increases, two new ”aces” b and b̄ pop
out separately of the vacuum and each one recombines with a quark from the previous two ”aces”, completing

6



Single Quark Transition Model [GR, PRD 90, 033010 (2014)]

Input: N(1520), N(1535); Output: N(1650), N(1700),∆(1620),∆(1700)
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——- Good predictions for the amplitudes N(1650),∆(1620)
No large Q2 data for the other cases
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are part of a large supermultiplet
(SU(6) spin-flavor with O(3) symmetry)  D13(J=3/2-)   S11(J=1/2-)     (I=1/2)

S11 S31D13 D33D13 S11

Bare quark CST description 
expected to work well 
in high Q2 region!

Predictive power: 
S. Capstick and W. Roberts, 
Prog. Part. Nucl. Phys. 45, 
S241 (2000);
V. D. Burkert et al. 
Phys. Rev. C 67, 035204 (2003).



Covariant Spectator quark-diquark model for baryons enables description of
different states, with a variety of spin and orbital motion.

Several applications: Δ(1232), N*(1440), N*(1535), N*(1520), DIS, dilepton mass
spectrum, hyperons of the baryon octet.

Consistent with experimental data at high Q2.

Made consistent with LQCD in the large pion mass regime informing on “pion
cloud” effects, and high q2 behavior of time-like FFs.

VMD and “pion cloud” sustained extension to the timelike region of the TFF of the
Δ(1232),  N*(1520), N*(1535), ...

Summary


