CLAS Excited Baryon Program

Michael Dugger*
Arizona State University

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Nucleon resonances

- As a three-quark system, the nucleon has a specific excitation spectrum comprised of nucleon resonances.
- This nucleon resonance spectrum has been found to have many broad overlapping states, making disentangling the spectrum difficult. : $:$

How well do we know the nucleon resonance spectrum?

Nucleon resonances are rated using the "star" system:
Poor evidence of existence
** Fair evidence of existence
*** Likely evidence of existence, or certain and properties need work
**** Existence is certain and properties well explored

Resonance status for N^{*} and Δ^{*}

Nucleon-				Status as seen in									
	Particle	J^{P}	overall	$N \gamma$	$N \pi$	$\Delta \pi$	$N \sigma$	$N \eta$	ΛK	ΣK	$N \rho$		$N \eta \prime$
	$\rightarrow N$	$1 / 2^{+}$	****										
	$N(1440)$	$1 / 2^{+}$	****	****	****	****	***						
	$N(1520)$	$3 / 2^{-}$	****	****	****	****	**	****					
	$N(1535)$	$1 / 2^{-}$	****	****	***	***	*	***					
	$N(1650)$	$1 / 2^{-}$	****	****	****	***	*	****	*				
	$N(1675)$	$5 / 2^{-}$	****	****	****	****	***	*	*	*			
	$N(1680)$	$5 / 2^{+}$	****	****	****	****	***	*	*	*			
	$N(1700)$	$3 / 2^{-}$	***	**	***	***	*	*			*		
	$N(1710)$	$1 / 2^{+}$	****	****	****	*		**	**	*	*	*	
	$N(1720)$	$3 / 2^{+}$	****	****	****	***	*	*	****	*	*	*	
	$N(1860)$	$5 / 2^{+}$	**	*	**		*	*					
	$N(1875)$	$3 / 2^{-}$	***	**	**	*	**	*	*	*	*	*	
	$N(1880)$	$1 / 2^{+}$	***	**	*	**	*	*	**	**		**	
	$N(1895)$	$1 / 2^{-}$	****	*	*	*	*	***	**	**	*	*	***
	$N(1900)$	$3 / 2^{+}$	****	****	**	**	*	*	**	**		*	**
	$N(1990)$	$7 / 2^{+}$	**	**	**			*	*	*			
	$N(2000)$	$5 / 2^{+}$	**	**	*	**	*	*				*	
	$N(2040)$	$3 / 2^{+}$	*		*								
	$N(2060)$	$5 / 2^{-}$	***	***	**	*	*	*	*	*		*	
	$N(2100)$	$1 / 2^{+}$	***	**	***	**	**	*	*		*	*	**
	$N(2120)$	$3 / 2$	***	***	**	**	**		**	*		*	*
	$N(2190)$	$7 / 2^{-}$	****	****	****	**	**	*	**	*	*	*	
	$N(2220)$	$9 / 2^{+}$	****	**	****			*	*	*			
	$N(2250)$	$9 / 2^{-}$	****	**	****			*	*	*			
	$N(2300)$	$1 / 2^{+}$	**		**								
	$N(2570)$	$5 / 2^{-}$	**		**								
	$N(2600)$	$11 / 2^{-}$	***		***								
	$N(2700)$	$13 / 2^{+}$	**		**								

$27 N^{*}$ states:

- 13 with $* * * *$
- 7 with ${ }^{* * *}$
- 6 with ** *

Particle	J^{P}	overall	$N \gamma$	$N \pi$	$\Delta \pi$	ΣK	$N \rho$	$\Delta \eta$
$\Delta(1232)$	$3 / 2^{+}$	$* * * *$	$* * * *$	$* * * *$				
$\Delta(1600)$	$3 / 2^{+}$	$* * * *$	$* * * *$	$* * *$	$* * *$			
$\Delta(1620)$	$1 / 2^{-}$	$* * * *$	$* * * *$	$* * * *$	$* * *$			
$\Delta(1700)$	$3 / 2^{-}$	$* * * *$	$* * * *$	$* * * *$	$* * * *$	$*$	$*$	
$\Delta(1750)$	$1 / 2^{+}$	$*$	$*$	$*$		$*$		
$\Delta(1900)$	$1 / 2^{-}$	$* * *$	$* * *$	$* * *$	$*$	$* *$	$*$	
$\Delta(1905)$	$5 / 2^{+}$	$* * * *$	$* * * *$	$* * * *$	$* *$	$*$	$*$	$* *$
$\Delta(1910)$	$1 / 2^{+}$	$* * * *$	$* * *$	$* * * *$	$* *$	$* *$		$*$
$\Delta(1920)$	$3 / 2^{+}$	$* * *$	$* * *$	$* * *$	$* * *$	$* *$		$* *$
$\Delta(1930)$	$5 / 2^{-}$	$* * *$	$*$	$* * *$	$*$	$*$		
$\Delta(1940)$	$3 / 2^{-}$	$* *$	$*$	$* *$	$*$			$*$
$\Delta(1950)$	$7 / 2^{+}$	$* * * *$	$* * * *$	$* * * *$	$* *$	$* * *$		
$\Delta(2000)$	$5 / 2^{+}$	$* *$	$*$	$* *$	$*$		$*$	
$\Delta(2150)$	$1 / 2^{-}$	$*$		$*$				
$\Delta(2200)$	$7 / 2^{-}$	$* * *$	$* * *$	$* *$	$* * *$	$* *$		
$\Delta(2300)$	$9 / 2^{+}$	$* *$		$* *$				
$\Delta(2350)$	$5 / 2^{-}$	$*$		$*$				
$\Delta(2390)$	$7 / 2^{+}$	$*$		$*$				
$\Delta(2400)$	$9 / 2^{-}$	$* *$	$* *$	$* *$				
$\Delta(2420)$	$11 / 2^{+}$	$* * * *$	$*$	$* * * *$				
$\Delta(2750)$	$13 / 2^{-}$	$* *$		$* *$				
$\Delta(2950)$	$15 / 2^{+}$	$* *$		$* *$				

$22 \Delta^{*}$ states:

- 8 with $* * * *$
- 4 with $* * *$
- 6 with **
- 4 with *

Resonance status for N^{*} and Δ^{*}

Nucleon－				Status as seen in									
	Particle	J^{P}	overall	$N \gamma$	$N \pi$	$\Delta \pi$	$N \sigma$	$N \eta$	ΛK	ΣK	$N \rho$		$N \eta \prime$
	$\rightarrow N$	$1 / 2^{+}$	＊＊＊＊										
	$N(1440)$	$1 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊	＊＊＊						
	$N(1520)$	$3 / 2^{-}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊	＊＊＊＊					
	$N(1535)$	$1 / 2^{-}$	＊＊	＊＊＊＊	＊＊＊＊	＊＊＊	＊	＊＊＊＊					
	$N(1650)$	$1 / 2^{-}$	＊＊＊＊	＊＊	＊＊＊＊	＊＊＊	＊	＊＊	＊				
	$N(1675)$	5／2－	＊＊＊	＊	＊＊＊＊	＊＊＊＊	＊＊＊	＊	＊	＊			
	$N(1680)$	$5 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊	＊	＊	＊			
	$N(1700)$	$3 / 2^{-}$	＊＊＊	＊＊	＊＊＊	＊＊＊	＊	＊			＊		
	$N(1710)$	$1 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊	＊		＊＊	＊＊	＊	＊	＊	
	$N(1720)$	$3 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊	＊	＊	＊＊＊＊	＊	＊	＊	
	$N(1860)$	$5 / 2^{+}$	＊＊	＊	＊＊		＊	＊					
	$N(1875)$	$3 / 2^{-}$	＊＊＊	＊＊	＊＊	＊	＊＊	＊	＊	＊	＊	＊	
	$N(1880)$	$1 / 2^{+}$	＊＊＊	＊＊	＊	＊＊	＊	＊	＊＊	＊＊		＊＊	
	$N(1895)$	$1 / 2^{-}$	＊＊＊＊	＊＊	＊	＊	＊	＊＊＊＊	＊＊	＊＊	＊	＊	＊＊＊＊
	$N(1900)$	$3 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊＊	＊＊	＊	＊	＊＊	＊＊		＊	＊＊
	$N(1990)$	$7 / 2^{+}$	＊＊	＊＊	＊＊			＊	＊	＊			
	$N(2000)$	$5 / 2^{+}$	＊＊	＊＊	＊	＊＊	＊	＊				＊	
	$N(2040)$	$3 / 2^{+}$	＊		＊								
	$N(2060)$	$5 / 2^{-}$	＊＊＊	＊＊＊	＊＊	＊	＊	＊	＊	＊	＊	＊	
	$N(2100)$	$1 / 2^{+}$	＊＊＊	＊＊	＊＊＊	＊＊	＊＊	＊	＊		＊	＊	＊＊
	$N(2120)$	$3 / 2-$	＊＊＊	＊＊＊	＊＊	＊＊	＊＊		＊＊	＊		＊	＊
	$N(2190)$	$7 / 2^{-}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊	＊	＊＊	＊	＊	＊	
	$N(2220)$	$9 / 2^{+}$	＊＊＊＊	＊＊	＊＊＊＊			＊	＊	＊			
	$N(2250)$	$9 / 2^{-}$	＊＊＊＊	＊＊	＊＊＊＊			＊	＊	＊			
	$N(2300)$	$1 / 2^{+}$	＊＊		＊＊								
	$N(2570)$	$5 / 2^{-}$	＊＊		＊＊								
	$N(2600)$	11／2 ${ }^{-}$	＊＊＊		＊＊＊								
	$N(2700)$	$13 / 2^{+}$	＊＊		＊＊								

$27 N^{*}$ states：
－ 13 with＊＊＊＊
－ 7 with ${ }^{* * *}$

$26 N^{*}$ states：	
\cdots •	10 with ${ }^{* * * *}$
N．	5 with＊＊＊
I	8 with＊＊
	3 with＊

Particle	J^{P}	overall	$N \gamma$	$N \pi$	$\Delta \pi$	ΣK	$N \rho$	$\Delta \eta$
$\Delta(1232)$	$3 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊＊＊＊				
$\Delta(1600)$	$3 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊＊＊	＊＊＊＊			
$\Delta(1620)$	$1 / 2^{-}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊＊＊			
$\Delta(1700)$	$3 / 2^{-}$		＊＊＊＊	＊＊＊＊	＊＊＊＊	＊	＊	
$\Delta(1750)$	$1 / 2^{+}$	＊	＊	＊		＊		
$\Delta(1900)$	$1 / 2^{-}$	＊＊＊	＊＊＊	＊＊＊	＊	＊＊	＊	
$\Delta(1905)$	$5 / 2^{+}$	＊＊＊＊	＊＊＊＊	＊＊＊＊	＊＊	＊	＊	＊＊
$\Delta(1910)$	$1 / 2^{+}$	＊＊＊＊	＊＊＊	＊＊＊＊		＊＊		＊
$\Delta(1920)$	$3 / 2^{+}$	＊＊＊	＊＊＊	＊＊＊	＊＊＊	＊＊		＊＊
$\Delta(1930)$	$5 / 2^{-}$	＊＊＊	＊	＊＊＊	＊	＊		
$\Delta(1940)$	$3 / 2^{-}$	＊＊	＊	＊＊	＊			＊
$\Delta(1950)$	$7 / 2^{+}$		＊＊＊＊	＊＊＊＊		＊＊＊		
$\Delta(2000)$	$5 / 2^{+}$	＊＊	＊	＊＊	＊		＊	
$\Delta(2150)$	$1 / 2^{-}$	＊		＊				
$\Delta(2200)$	$7 / 2^{-}$	＊＊＊	＊＊＊	＊＊	＊＊＊	＊＊		
$\Delta(2300)$	$9 / 2^{+}$			＊＊				
$\Delta(2350)$	$5 / 2^{-}$	＊		＊				
$\Delta(2390)$	$7 / 2^{+}$	＊		＊				
$\Delta(2400)$	$9 / 2^{-}$	＊＊	＊＊	＊＊				
$\Delta(2420)$	$11 / 2^{+}$	水水水	＊	＊＊＊＊				
$\Delta(2750)$	$13 / 2^{-}$	水						
$\Delta(2950)$	$15 / 2^{+}$	＊＊		＊＊				

$22 \Delta^{*}$ states：
－ 8 with $* * * *$
－ 4 with $* * *$
－ 6 with＊＊
－ 4 with＊
$22 \Delta^{*}$ states：

－ 7 with $* * * *$
3 with $* * *$
7 with＊＊
－ 5 with＊

Resonance status for N^{*} and Δ^{*}

Resonance status for Ξ^{*}

State, J^{P}
Predicted masses (MeV)

$\Xi \frac{1}{2}^{+}$	1305								
Ξ^{3}									
$\Xi^{*} \frac{1}{2}^{-}$	1505	1755	1810	1835	2225	2285	2300	2320	2380
$\Xi^{*} \frac{3}{2}^{-}$	1785	1880	1895	2240	2305	2330	2340	2385	
$\Xi^{*} \frac{5}{2}^{-}$	1900	2345	2350	2385					
$\Xi^{*} \frac{7}{2}^{-}$	2355								
$\Xi^{*} \frac{1}{2}^{+}$	1840	2040	2100	2130	2150	2230	2345		
$\Xi^{*} \frac{3}{2}^{+}$	2045	2065	2115	2165	2170	2210	2230	2275	
$\Xi^{*} \frac{5}{2}^{+}$	2045	2165	2230	2230	2240				
$\Xi^{*} \frac{7}{2}^{+}$	2180	2240							

- List of Cascade Baryons predicted by Capstick and Isgur with mass less than $2.4 \mathrm{GeV} / \mathrm{c}^{2}$

Resonance status for Ξ^{*}

State，J^{P}		Predicted masses（ MeV ）						
E $\frac{1}{2}^{+}$	1305							
$\Xi \frac{3}{2}^{+}$	1505							
ミ＊$\frac{1}{2}^{-}$	1755	1810	1835	2225	2285	2300	2320	2380
三＊$\frac{3}{2}^{-}$	1785	1880	1895	2240	2305	2330	2340	2385
ミ＊${ }^{-}{ }^{-}$	1900	2345	2350	2385				
E＊$\frac{7}{2}^{-}$	2355							
ミ＊$\frac{1}{2}^{+}$	1840	2040	2100	2130	2150	2230	2345	
ミ＊$\frac{3}{2}^{+}$	2045	2065	2115	2165	2170	2210	2230	2275
三＊$\frac{5}{2}^{+}$	2045	2165	2230	2230	2240			
E＊$\frac{7}{2}^{+}$	2180	2240						

－List of Cascade Baryons predicted by Capstick and Isgur with mass less than $2.4 \mathrm{GeV} / \mathrm{c}^{2}$

PDG		
	Overall	
Particle	J^{P}	Status
$\Xi(1318)$	$1 / 2^{+}$	${ }^{* * * *}$
$\Xi(1530)$	$3 / 2^{+}$	$* * * *$
$\Xi(1620)$		$* *$
$\Xi(1690)$		$+^{* * *}$
$\Xi(1820)$	$3 / 2^{-}$	${ }^{* * *}$
$\Xi(1950)$		${ }^{* *}$
$\Xi(2030)$	$5 / 2^{?}$	${ }^{* * *}$
$\Xi(2120)$		$*$
$\Xi(2250)$		$* *$
$\Xi(2370)$		$* *$
$\Xi(2500)$		$*$

Resonance status for Ξ^{*}

State，J^{P}

E $\frac{1}{2}^{+}$	1305							
$\Xi \frac{3}{2}^{+}$	1505							
$\Xi * \frac{1}{2}^{-}$	1755	1810	1835	2225	2285	2300	2320	2380
ミ＊${ }^{-}{ }^{-}$	1785	1880	1895	2240	2305	2330	2340	2385
ミ＊$\frac{5}{2}^{-}$	1900	2345	2350	2385				
E＊${ }^{-}{ }^{-}$	2355							
$\Xi * \frac{1}{2}^{+}$	1840	2040	2100	2130	2150	2230	2345	
ミ＊$\frac{3}{2}^{+}$	2045	2065	2115	2165	2170	2210	2230	2275
三＊$\frac{5}{2}^{+}$	2045	2165	2230	2230	2240			
ミ＊$\frac{7}{2}^{+}$	2180	2240						

－List of Cascade Baryons predicted by Capstick and Isgur with mass less than $2.4 \mathrm{GeV} / \mathrm{c}^{2}$

PDG		
	Overall	
Particle	J^{P}	Status
$\Xi(1318)$	$1 / 2^{+}$	$* * * *$
$\Xi(1530)$	$3 / 2^{+}$	$* * * *$
$\Xi(1620)$		$* *$
$\Xi(1690)$		${ }^{* * *}$
$\Xi(1820)$	$3 / 2^{-}$	${ }^{* * *}$
$\Xi(1950)$		${ }^{* *}$
$\Xi(2030)$	$5 / 2^{?}$	${ }^{* * *}$
$\Xi(2120)$		$*$
$\Xi(2250)$		${ }^{* *}$
$\Xi(2370)$		$* *$
$\Xi(2500)$		$*$

State	ΛK	ΣK	$\Xi \pi$
$\Xi(1530)$			100%
$\Xi(1690)$	seen	seen	seen
$\Xi(1820)$	large	small	small
$\Xi(1950)$	seen	seen？	seen
$\Xi(2030)$	20%	80%	small

Resonance status for Ξ^{*}

State，J^{P}

E $\frac{1}{2}^{+}$	1305							
$\Xi \frac{3}{2}^{+}$	1505							
$\Xi * \frac{1}{2}^{-}$	1755	1810	1835	2225	2285	2300	2320	2380
ミ＊${ }^{-}{ }^{-}$	1785	1880	1895	2240	2305	2330	2340	2385
ミ＊$\frac{5}{2}^{-}$	1900	2345	2350	2385				
E＊${ }^{-}{ }^{-}$	2355							
$\Xi * \frac{1}{2}^{+}$	1840	2040	2100	2130	2150	2230	2345	
ミ＊$\frac{3}{2}^{+}$	2045	2065	2115	2165	2170	2210	2230	2275
三＊$\frac{5}{2}^{+}$	2045	2165	2230	2230	2240			
ミ＊$\frac{7}{2}^{+}$	2180	2240						

－List of Cascade Baryons predicted by Capstick and Isgur with mass less than $2.4 \mathrm{GeV} / \mathrm{c}^{2}$

PDG		
	Overall	
Particle	J^{P}	Status
$\Xi(1318)$	$1 / 2^{+}$	$* * * *$
$\Xi(1530)$	$3 / 2^{+}$	$* * * *$
$\Xi(1620)$		$*$
$\Xi(1690)$		${ }^{* * *}$
$\Xi(1820)$	$3 / 2^{-}$	${ }^{* * *}$
$\Xi(1950)$		${ }^{* *}$
$\Xi(2030)$	$5 / 2^{?}$	$* *$
$\Xi(2120)$		$*$
$\Xi(2250)$		$* *$
$\Xi(2370)$		${ }^{* *}$
$\Xi(2500)$		$*$

State	ΛK	ΣK	$\Xi \pi$
$\Xi(1530)$			100%
$\Xi(1690)$	seen	seen	seen
$\Xi(1820)$	large	small	small
$\Xi(1950)$	seen	seen？	seen
$\Xi(2030)$	20%	80%	small

So, where are the resonances?

- Masses, widths, and coupling constants not well known for many resonances

So, where are the resonances?

- Masses, widths, and coupling constants not well known for many resonances
- Many models exist to "predict" the nucleon resonance spectrum - quark model, Goldstone-boson exchange, diquark and collective models, instantoninduced interactions, flux-tube models, lattice QCD - BUT...

So, where are the resonances?

- Masses, widths, and coupling constants not well known for many resonances
- Many models exist to "predict" the nucleon resonance spectrum - quark model, Goldstone-boson exchange, diquark and collective models, instantoninduced interactions, flux-tube models, lattice QCD - BUT...
- THE BIG PUZZLE: Most models predict many more resonance states
 than have been observed.

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Helicity amplitudes for $\gamma+p \rightarrow p+p$ seudoscalar

- 8 helicity states: 4 initial, 2 final $\rightarrow 4 \cdot 2=8$
- Amplitudes are complex but parity symmetry reduces independent numbers to 8
- Overall phase unobservable $\rightarrow 7$ independent numbers
- HOWEVER, not all possible observables are linearly independent and it turns out that there must be a minimum of 8 observables / experiments

$$
A=\left[\begin{array}{cc}
\text { Initial helicity } \\
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \frac{\text { U. }}{2}
$$

$$
\begin{aligned}
& \text { helicity }+1 \text { photons }\left(\varepsilon_{+}\right) \text {: } \\
& \frac{1}{2}\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
H & H
\end{array}\right]\left(A_{-\mu,-\lambda}=-e^{(\lambda-\mu) \pi} A_{\mu, \lambda}\right) \\
& \left.A_{\varepsilon_{+}}=\frac{\frac{1}{2}}{\frac{-1}{2}}\left[\begin{array}{cc}
H_{1} & H_{2} \\
H_{3} & H_{4}
\end{array}\right] \begin{array}{l}
\left(A_{-\mu,-\lambda}=-e^{\prime}\right. \\
\text { Parity symmetry } \rightarrow
\end{array} A_{\mu, \lambda}\right) A_{\varepsilon_{-}}=\frac{\frac{1}{2}}{\frac{-1}{2}}\left[\begin{array}{cc}
H_{4} & -H_{3} \\
-H_{2} & H_{1}
\end{array}\right] \\
& \text { helicity -1 photons (ع.): } \\
& \frac{-1}{2} \quad \frac{-3}{2}
\end{aligned}
$$

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

Spin observable	Helicity representation
$\check{\Omega}^{1} \equiv \mathcal{I}(\theta)$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}+\left\|H_{4}\right\|^{2}\right)$
$\check{\Omega}^{4} \equiv \Sigma^{\Sigma}$	$\operatorname{Re}\left(-H_{1} H_{4}^{*}+H_{2} H_{3}^{*}\right)$
$\check{\Omega}^{10} \equiv-\check{T}$	$\operatorname{Im}\left(H_{1} H_{2}^{*}+H_{3} H_{4}^{*}\right)$
$\stackrel{\Sigma}{ }^{12} \equiv \dot{P}$	$\operatorname{Im}\left(-H_{1} H_{3}^{*}-H_{2} H_{4}^{*}\right)$
$\check{\Omega}^{3} \equiv \check{G}$	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{3} H_{2}^{*}\right)$
$\check{\Omega}^{5} \equiv \stackrel{H}{H}$	$\operatorname{Im}\left(-H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$
$\dot{\Omega}^{9} \equiv \dot{E}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}-\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$
$\stackrel{\Omega}{11}^{11} \equiv \stackrel{\check{F}}{ }$	$\operatorname{Re}\left(-H_{2} H_{1}^{*}-H_{4} H_{3}^{*}\right)$
$\check{\Omega}^{14} \equiv \check{O}_{\underline{x}}$	$\operatorname{Im}\left(-H_{2} H_{1}^{*}+H_{4} H_{3}^{*}\right)$
	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$
$\stackrel{\Omega}{16}^{16} \equiv-\check{C}_{x}$	$\mathrm{Re}\left(H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$
$\check{\Omega}^{2} \equiv-\check{C}_{z}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}-\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$
$\check{\Omega}^{6} \equiv-\check{T}_{\underline{x}}$	$\mathrm{Re}\left(-H_{1} H_{4}^{*}-\mathrm{H}_{2} H_{3}^{*}\right)$
$\grave{\Omega}^{13} \equiv-\overleftarrow{T}_{z}$	$\mathrm{Re}\left(-H_{1} H_{2}^{*}+H_{4} H_{3}^{*}\right)$
$\dot{\Omega}^{8} \equiv \check{L}_{\underline{x}}$	$\mathrm{Re}\left(\mathrm{H}_{2} \mathrm{H}_{4}^{*}-\mathrm{H}_{1} H_{3}^{*}\right)$
$\stackrel{\Omega}{15}^{15} \equiv L_{z}$	$\frac{1}{2}\left(-\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

Spin observable	Helicity representation	Differential cross section
$\check{\Omega}^{1} \equiv \mathcal{I}(\theta)$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}+\left\|H_{4}\right\|^{2}\right)$	
$\mathrm{S}^{4} \equiv \mathrm{\Sigma}$	$\mathrm{Re}\left(-H_{1} H_{4}^{*}+\mathrm{H}_{2} H_{3}^{*}\right)$	Beam polarization Σ
$\dot{\Omega}^{10} \equiv-\check{T}$	$\operatorname{Im}\left(H_{1} H_{2}^{*}+H_{3} H_{4}^{*}\right)$	
$\stackrel{\Omega}{ }^{12} \equiv \stackrel{\check{P}}{ }$	$\operatorname{Im}\left(-H_{1} H_{3}^{*}-H_{2} H_{4}^{*}\right)$	
$\check{\Omega}^{3} \equiv \check{G}$	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{3} H_{2}^{*}\right)$	
$\check{\Omega}^{5} \equiv \stackrel{H}{H}$	$\operatorname{Im}\left(-H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$	
$\check{\Omega}^{9} \equiv \dot{E}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}-\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\stackrel{\Omega}{11}^{11} \equiv \stackrel{\check{F}}{ }$	$\mathrm{Re}\left(-\mathrm{H}_{2} \mathrm{H}_{1}^{*}-\mathrm{H}_{4} \mathrm{H}_{3}^{*}\right)$	
$\check{\Omega}^{14} \equiv \check{O}_{x}$	$\operatorname{Im}\left(-H_{2} H_{1}^{*}+H_{4} H_{3}^{*}\right)$	
	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$	
$\dot{\Omega}^{16} \equiv-\dot{C}_{x}$	$\operatorname{Re}\left(\mathrm{H}_{2} \mathrm{H}_{4}^{*}+\mathrm{H}_{1} H_{3}^{*}\right)$	
$\check{\Omega}^{2} \equiv-\check{C}_{z}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}-\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\check{\Omega}^{6} \equiv-\check{T}_{\underline{x}}$	$\operatorname{Re}\left(-H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$	
$\grave{\Omega}^{13} \equiv-\overleftarrow{T}_{z}$	$\operatorname{Re}\left(-H_{1} H_{2}^{*}+H_{4} H_{3}^{*}\right)$	
$\check{\Omega}^{8} \equiv \check{L}_{x}$	$\mathrm{Re}\left(H_{2} H_{4}^{*}-H_{1} H_{3}^{*}\right)$	
$\check{\Omega}^{15} \equiv \check{L}_{z}$	$\frac{1}{2}\left(-\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

Spin observable	Helicity representation	Differential cross section
$\check{\Omega}^{1} \equiv \mathcal{I}(\theta)$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}+\left\|H_{4}\right\|^{2}\right)$	
$\check{\Omega}^{4} \equiv \check{\Sigma}$	$\mathrm{Re}\left(-\mathrm{H}_{1} H_{4}^{*}+\mathrm{H}_{2} H_{3}^{*}\right)$	Beam polarization Σ
$\dot{\Omega}^{10} \equiv-\check{T}$	$\operatorname{Im}\left(H_{1} H_{2}^{*}+H_{3} H_{4}^{*}\right)$	
$\stackrel{\Omega}{ }^{12} \equiv \stackrel{\check{P}}{ }$	$\operatorname{Im}\left(-H_{1} H_{3}^{*}-H_{2} H_{4}^{*}\right)$	Target asymmetry T
$\check{\Omega}^{3} \equiv \check{G}$	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{3} H_{2}^{*}\right)$	
$\stackrel{\Omega}{ }^{5} \equiv \dot{H}$	$\operatorname{Im}\left(-H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$	
$\check{\Omega}^{9} \equiv \underline{E}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}-\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\stackrel{\Omega}{ }^{11} \equiv \stackrel{\check{F}}{ }$	$\mathrm{Re}\left(-\mathrm{H}_{2} \mathrm{H}_{1}^{*}-\mathrm{H}_{4} \mathrm{H}_{3}^{*}\right)$	
$\check{\Omega}^{14} \equiv \check{O}_{x}$	$\operatorname{Im}\left(-H_{2} H_{1}^{*}+H_{4} H_{3}^{*}\right)$	
	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$	
$\stackrel{\Omega}{16}^{16} \equiv-\stackrel{C}{C}$	$\operatorname{Re}\left(H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$	
$\check{\Omega}^{2} \equiv-\dot{C}_{z}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}-\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\check{\Omega}^{6} \equiv-\check{T}_{x}$	$\operatorname{Re}\left(-H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$	
$\grave{\Omega}^{13} \equiv-\overleftarrow{T}_{z}$	$\operatorname{Re}\left(-H_{1} H_{2}^{*}+H_{4} H_{3}^{*}\right)$	
$\check{\Omega}^{8} \equiv \check{L}_{x}$	$\mathrm{Re}\left(H_{2} H_{4}^{*}-H_{1} H_{3}^{*}\right)$	
$\dot{\Omega}^{15} \equiv \check{L}_{z}$	$\frac{1}{2}\left(-\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

Spin observable	Helicity representation	Differential cross section
$\check{\Omega}^{1} \equiv \mathcal{I}(\theta)$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}+\left\|H_{4}\right\|^{2}\right)$	
$\check{\Omega}^{4} \equiv \check{\Sigma}$	$\mathrm{Re}\left(-H_{1} H_{4}^{*}+H_{2} H_{3}^{*}\right)$	Beam polarization Σ
$\dot{\Omega}^{10} \equiv-\check{T}$	$\operatorname{Im}\left(H_{1} H_{2}^{*}+H_{3} H_{4}^{*}\right)$	
$\check{\Omega}^{12} \equiv \check{P}$	$\operatorname{Im}\left(-H_{1} H_{3}^{*}-H_{2} H_{4}^{*}\right)$	Target asymmetry T
$\check{\Omega}^{3} \equiv \check{G}$	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{3} H_{2}^{*}\right)$	
$\check{\Omega}^{5} \equiv \stackrel{H}{H}$	$\operatorname{Im}\left(-H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$	Recoil polarization P
$\check{\Omega}^{9} \equiv \dot{E}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}-\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\widetilde{\Omega}^{11} \equiv \check{F}$	$\mathrm{Re}\left(-H_{2} H_{1}^{*}-H_{4} H_{3}^{*}\right)$	
$\check{\Omega}^{14} \equiv \check{O}_{x}$	$\operatorname{Im}\left(-H_{2} H_{1}^{*}+H_{4} H_{3}^{*}\right)$	
	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$	
$\stackrel{\Omega}{16}^{16} \equiv-\stackrel{C}{C}$	$\operatorname{Re}\left(H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$	
$\check{\Omega}^{2} \equiv-\dot{C}_{z}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}-\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\check{\Omega}^{6} \equiv-\check{T}_{\underline{x}}$	$\operatorname{Re}\left(-H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$	
$\dot{\Omega}^{13} \equiv-\check{T}_{z}$	$\operatorname{Re}\left(-H_{1} H_{2}^{*}+H_{4} H_{3}^{*}\right)$	
$\grave{\Omega}^{8} \equiv \check{L}_{x}$	$\mathrm{Re}\left(H_{2} H_{4}^{*}-H_{1} H_{3}^{*}\right)$	
$\dot{\Omega}^{15} \equiv \check{L}_{z}$	$\frac{1}{2}\left(-\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

Spin observable	Helicity representation	Differential cross section
$\overline{\Sigma^{1}} \equiv \underline{\mathcal{L}}(\theta)$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}+\left\|H_{4}\right\|^{2}\right)$	
$\widetilde{\Omega}^{4} \equiv \check{\Sigma}$	$\operatorname{Re}\left(-H_{1} H_{4}^{*}+H_{2} H_{3}^{*}\right)$	Beam polarization Σ
$\check{\Omega}^{10} \equiv-\check{T}$	$\operatorname{Im}\left(H_{1} H_{2}^{*}+H_{3} H_{4}^{*}\right)$	
$\check{\Omega}^{12} \equiv \dot{P}$	$\operatorname{Im}\left(-H_{1} H_{3}^{*}-H_{2} H_{4}^{*}\right)$	Target asymmetry T
$\hat{\Omega}^{3} \equiv \underline{G}$	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{3} H_{2}^{*}\right)$	Recoil polarization P
$\grave{\Omega}^{5} \equiv \stackrel{H}{H}$	$\operatorname{Im}\left(-H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$	
$\grave{\Omega}^{9} \equiv \dot{E}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}-\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\check{\Omega}^{11} \equiv \tilde{F}$	$\mathrm{Re}\left(-\mathrm{H}_{2} \mathrm{H}_{1}^{*}-\mathrm{H}_{4} H_{3}^{*}\right)$	Double polarization observables
$\check{\Omega}^{14} \equiv \check{O}_{x}$	$\operatorname{Im}\left(-H_{2} H_{1}^{*}+H_{4} H_{3}^{*}\right)$	
$\mathrm{S}^{7} \equiv-O_{z}$	$\operatorname{Im}\left(H_{1} H_{4}^{*}-H_{2} H_{3}^{*}\right)$	
$\check{\Omega}^{16} \equiv-\dot{C}_{x}$	$\operatorname{Re}\left(H_{2} H_{4}^{*}+H_{1} H_{3}^{*}\right)$	
$\check{S}^{2} \equiv-\dot{C}_{z}$	$\frac{1}{2}\left(\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}-\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right)$	
$\check{\Omega}^{6} \equiv-\check{T}_{x}$	$\mathrm{Re}\left(-H_{1} H_{4}^{*}-\mathrm{H}_{2} H_{3}^{*}\right)$	
$\grave{S}^{13} \equiv-\bar{T}_{z}$	$\mathrm{Re}\left(-H_{1} H_{2}^{*}+H_{4} H_{3}^{*}\right)$	
$\check{\Omega}^{8} \equiv \check{L}_{x}$	$\mathrm{Re}\left(H_{2} H_{4}^{*}-H_{1} H_{3}^{*}\right)$	
$\grave{\Omega}^{15} \equiv L_{z}$	$\frac{1}{2}\left(-\left\|H_{1}\right\|^{2}+\left\|H_{2}\right\|^{2}+\left\|H_{3}\right\|^{2}-\left\|H_{4}\right\|^{2}\right.$	

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

Linkage between helicity amplitudes and the observables for single pseudoscalar photoproduction

So, finding missing resonances requires lots of different observables.

Cross sections are not enough!

N1/4S

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Experimental facilities:

- The Thomas Jefferson National Accelerator Facility $($ Jefferson Laboratory $=\mathrm{JLab})$.
- Continuous Electron Beam Accelerator Facility (CEBAF)

- Racetrack design
- Energies up to 6 GeV (prior to upgrade)

Lest we forget:

- CLAS was very good for detecting charged particles
- CLAS had a rather large acceptance $\psi_{\text {asu }}$

Bremsstrahlung photon tagger (also deceased)

- Jefferson Lab Hall B bremsstrahlung photon tagger had:
- $E_{\gamma}=20-95 \%$ of E_{0}
- E_{γ} up to $\sim 5.5 \mathrm{GeV}$

Bremsstrahlung photon tagger (also deceased)

- Jefferson Lab Hall B bremsstrahlung photon tagger had:
- $E_{\gamma}=20-95 \%$ of E_{0}
- E_{γ} up to $\sim 5.5 \mathrm{GeV}$
- Circular polarized photons with longitudinally polarized electrons

Bremsstrahlung photon tagger (also deceased)

- Jefferson Lab Hall B bremsstrahlung photon tagger had:
- $E_{\gamma}=20-95 \%$ of E_{0}
- E_{γ} up to $\sim 5.5 \mathrm{GeV}$
- Circular polarized photons with longitudinally polarized electrons
- Oriented diamond crystal for linearly polarized photons

Circular beam polarization

Circular polarization from 100\% polarized electron beam

- Incident electron beam polarization > 85\%
- Circular photon beam from longitudinallypolarized electrons
H. Olsen and L.C. Maximon, Phys. Rev. 114, 887 (1959)

ASU

Linearly polarized photons

*ASU

- Coherent bremsstrahlung from $50-\mu$ oriented diamond
- Two linear polarization states (vertical \& horizontal)
- Analytical QED coherent bremsstrahlung calculation fit to actual spectrum (Livingston/Glasgow)
- Vertical 1.3 GeV edge shown

FROST target

The FroST target and its components:
A: Primary heat exchanger
B: 1 K heat shield
C: Holding coil

- Butanol composition: $\mathrm{C}_{4} \mathbf{H}_{\mathbf{9}} \mathbf{O H}$
 - C and O are even-even nuclei \rightarrow No polarization of the bound nucleons

D: 20 K heat shield
E: Outer vacuum can (Rohacell extension)
F: CH2 target
G: Carbon target
H: Butanol target
J: Target insert
K : Mixing chamber
L: Microwave waveguide M: Kapton coldseal

Performance Specs:
Base Temp: 28 mK w/o beam, 30 mK with

Cooling Power: $800 \mu \mathrm{~W} @ 50 \mathrm{mK}, 10 \mathrm{~mW} @ 100 \mathrm{mK}$, and $60 \mathrm{~mW} @ 300 \mathrm{mK}$
Polarization: +82\%, -90\%
1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol) Roughly 1% polarization loss per day.
> - Carbon target used to represent bound nucleon contribution of butanol

HD-ICE target

D polarization during g14/E06-101

- Deuteron target

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Pion photoproduction

$\psi_{\text {asu }}$

Isospin combinations for

 reactions involving π^{0} and π^{+}- Differing isospin compositions for N^{*} and Δ^{+}for the $\pi^{0} p$ and $\pi^{+} n$ final states
- The $\pi^{0} p$ and $\pi^{+} n$ final states can help distinguish between the Δ and N^{*}

$$
\begin{gathered}
\Delta^{+} \\
\pi^{0}+p: \sqrt{2 / 3}\left|I=\frac{3}{2}, I_{3}=\frac{1}{2}\right\rangle-\sqrt{1 / 3}\left|I=\frac{1}{2}, I_{3}=\frac{1}{2}\right\rangle \\
\pi^{+}+n: \sqrt{1 / 3}\left|I=\frac{3}{2}, I_{3}=\frac{1}{2}\right\rangle+\sqrt{2 / 3}\left|I=\frac{1}{2}, I_{3}=\frac{1}{2}\right\rangle
\end{gathered}
$$

Isospin photo-couplings

- Using both proton and neutron targets allows decomposition of iso-singlet and iso-vector photo-couplings C^{0}, C^{1}

Example:

$$
\begin{array}{ll}
\gamma p \rightarrow n \pi^{+}: & \pm \sqrt{\frac{2}{3}}\left[C^{0} \Theta \sqrt{\frac{1}{3}} C^{1}\right] N^{*}+\frac{\sqrt{2}}{3} C \Delta^{*} \\
\gamma n \rightarrow p \pi: & \mp \sqrt{\frac{2}{3}}\left[C^{0} \oplus \sqrt{\frac{1}{3}} C^{1}\right] N^{*}+\frac{\sqrt{2}}{3} C \Delta^{*}
\end{array}
$$

Observable: σ Reaction: $\gamma \boldsymbol{n} \rightarrow \boldsymbol{p} \boldsymbol{\pi}$

- First-ever determination of the excited neutron multipoles for: $N(1440) 1 / 2^{+}, N(1535) 1 / 2^{-}$, $N(1650) 1 / 2-$, and $N(1720) 3 / 2^{+}$

Observable: Σ

Reactions: $\gamma \boldsymbol{p} \rightarrow \boldsymbol{p} \boldsymbol{\pi}^{\boldsymbol{\theta}}$ and $\gamma \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\pi}^{+}$

Configuration:

- Linear photon polarization
- No target polarization
- No recoil polarization

Experiments:

- g8b \rightarrow proton reactions
- g13 \rightarrow neutron reactions

Photon		Target			Recoil			Target + Recoil			
	-	-	-	-	x^{\prime}	y^{\prime}	z^{\prime}	x^{\prime}	x^{\prime}	z^{\prime}	z^{\prime}
	-	x	y	z	-	-	-	x	z	x	z
unpolarized	σ_{0}	0	T	0	0	P	0	$T_{x^{\prime}}$	$-\mathrm{L}_{x^{\prime}}$	$T_{z^{\prime}}$	$L_{z^{\prime}}$
linear pol.	$-\Sigma$	H	$(-\mathrm{P})$	$-G$	$O_{x^{\prime}}$	$(-\mathrm{T})$	$O_{z^{\prime}}$	$\left(-\mathrm{L}_{z^{\prime}}\right)$	$\left(\mathrm{T}_{z^{\prime}}\right)$	$\left(-\mathrm{L}_{x^{\prime}}\right)$	$\left(-\mathrm{T}_{x^{\prime}}\right)$
circular pol.	0	F	0	$-E$	$-C_{x^{\prime}}$	0	$-C_{z^{\prime}}$	0	0	0	0

Σ for $\gamma p \rightarrow p \pi^{0}$

Σ for $\gamma p \rightarrow n \pi^{+}$

RED: SAID fit

- Data for both reactions more than doubled the world database

Σ for $\gamma p \rightarrow n \pi^{+}$

- Largest change from fits to prior Σ data for pions found in resonance couplings of $\Delta(1700) 3 / 2^{-}$and $\Delta(1905) 5 / 2^{+}$

Observable: G

Reactions: $\gamma \boldsymbol{p} \rightarrow \boldsymbol{p} \boldsymbol{\pi}^{\boldsymbol{0}}$ and $\gamma \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\pi}^{+}$

Configuration:

- Linear photon polarization
- Longitudinal target polarization
- No recoil polarization

Experiment:

- g9b: FROST

Photon		Target			Recoil			Target + Recoil			
	-	- x	$\begin{aligned} & - \\ & y \end{aligned}$	$\underset{z}{\downarrow}$	x^{\prime}	y^{\prime}	z^{\prime}	$\begin{aligned} & \hline x^{\prime} \\ & x \end{aligned}$	x^{\prime} z	z^{\prime} x	$\begin{aligned} & \hline z^{\prime} \\ & z \end{aligned}$
unpolarized linear pol. circular pol.	$\begin{gathered} \sigma_{0} \\ -\Sigma \\ 0 \end{gathered}$	0 H F	$\begin{gathered} T \\ (-\mathrm{P}) \\ 0 \\ \hline \end{gathered}$	$\underbrace{0}_{-E}$	$\begin{gathered} 0 \\ O_{x^{\prime}} \\ -C_{x^{\prime}} \end{gathered}$	$\begin{gathered} P \\ (-\mathrm{T}) \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ O_{z^{\prime}} \\ -C_{z^{\prime}} \end{gathered}$	$\begin{gathered} T_{x^{\prime}} \\ \left(-\mathrm{L}_{z^{\prime}}\right) \\ 0 \end{gathered}$	$\begin{gathered} -\mathrm{L}_{x^{\prime}} \\ \left(\mathrm{T}_{z^{\prime}}\right) \\ 0 \end{gathered}$	$\begin{gathered} T_{z^{\prime}} \\ \left(-\mathrm{L}_{x^{\prime}}\right) \\ 0 \end{gathered}$	$\begin{gathered} L_{z^{\prime}} \\ \left(-\mathrm{T}_{x^{\prime}}\right) \\ 0 \end{gathered}$

\boldsymbol{G} for $\gamma p \rightarrow p \boldsymbol{\pi}^{0}$

G9b: FROST

\boldsymbol{G} for $\gamma \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\pi}^{+}$

G9b: FROST

Bonn-Gatchina analysis (dotted) sees important contribution from $N(2190) 7 / 2^{-}$and $\Delta(2200) 7 / 2^{-}$

Observables: \boldsymbol{T} and \boldsymbol{F} Reaction: $\gamma \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\pi}^{+}$

Configuration:

- Circular photon polarization
- Transverse target polarization
- Unpolarized photon (by adding circular beams)
- No recoil polarization

Experiment:

- g9b: FROST

$$
1 E_{l}=1875, \mathbf{W}=2097 \mathrm{MeV}_{E} \quad \mathrm{E}_{l}=1925, \mathbf{W}=2119 \mathrm{MeV} \mathrm{E}_{l}=1975, \mathrm{~W}=2141 \mathrm{MeV}
$$

$$
\text { Preliminary } \quad \text { Preliminary } \quad \text { Preliminary } \quad \text { - }
$$

- Early stage results

CLAS results agree well with previous data

- Early stage results - Predictions get worse at higher energies

Observable: E

Reactions: $\gamma \boldsymbol{p} \rightarrow n \pi^{+}, p \pi^{0}$ and $\gamma n \rightarrow p \pi^{-}$

Configuration:

- Circular photon polarization
- Longitudinal Target polarization
- No recoil polarization

Experiments:

- g9a: FROST \rightarrow proton reactions
- g14: HDICE \rightarrow neutron reactions

Photon		Target			Recoil			Target + Recoil			
	-	-	-	\downarrow	x^{\prime}	y^{\prime}	z^{\prime}	x^{\prime}	x^{\prime}	z^{\prime}	z^{\prime}
	-	x	y	z	-	-	-	x	z	x	z
unpolarized	σ_{0}	0	T	0	0	P	0	$T_{x^{\prime}}$	$-\mathrm{L}_{x^{\prime}}$	$T_{z^{\prime}}$	$L_{z^{\prime}}$
linear pol.	$-\Sigma$	H	$(-\mathrm{P})$	$-G$	$O_{x^{\prime}}$	$(-\mathrm{T})$	$O_{z^{\prime}}$	$\left(-\mathrm{L}_{z^{\prime}}\right)$	$\left(\mathrm{T}_{z^{\prime}}\right)$	$\left(-\mathrm{L}_{x^{\prime}}\right)$	$\left(-\mathrm{T}_{x^{\prime}}\right)$
circular pol.	0	F	0	$-E$	$-C_{x^{\prime}}$	0	$-C_{z^{\prime}}$	0	0	0	0

\boldsymbol{E} for $\gamma \boldsymbol{p} \rightarrow \boldsymbol{p} \boldsymbol{\pi}^{0}$

ш

- Sample of results taken from analysis note
- Blue lines: SAID
- Magenta lines: MAID

Selected results of FROST Experiment $\vec{\gamma} \vec{p} \rightarrow \pi^{+} n$

- FROST experiment produced 900 data points of the double-polarization observable \mathbf{E} in π^{+}photoproduction with circularly polarized beam on longitudinally polarized protons for $W=1240-2260 \mathrm{MeV}$.
- Significant improvements of the description of the data in SAID, Jülich, and BnGa partial-wave analyses after fitting.
- New evidence found in this data for a $\Delta(2200) 7 / 2^{-}$resonance (BnGa analysis).
S. Strauch et al. (CLAS Collaboration), Phys. Lett. B 750, 53 (2015) and A.V. Anisovich et al., arXiv:1503.05774. g14 beam-target helicity asymmetries for $\gamma n \rightarrow \pi^{-} p$ and N^{*} states excited from the neutron
- $1^{\text {st }}$ double-polarized \vec{n} data PRL 118 (2017) 242002

- E\&M interaction is not isospin symmetric
- $\gamma n N^{*}$ and $\gamma p N^{*}$ couplings are different \Leftrightarrow probes of dynamics in N^{*} excitation
- eg. SAID Partial Wave Analysis (PWA):
$A_{\gamma n}{ }^{1 / 2}[\mathrm{~N}(2190) 7 / 2-] \rightarrow-16 \pm 5\left(10^{-3} \mathrm{GeV}^{-1 / 2}\right)$ $A_{\gamma n}{ }^{3 / 2}[\mathrm{~N}(2190) 7 / 2-] \rightarrow-35 \pm 5\left(10^{-3} \mathrm{GeV}^{-1 / 2}\right)$
- very little previous spindependent $\gamma \mathrm{n}$ data exists
- for invariant masses (W) over 1800 MeV , predictions from previous Partial Wave Analyses (PWA) fail badly
- $\vec{\gamma} \vec{n}$ data probes N^{*} states

"Isospin filters"

- The $\eta p, \omega p$ and $K^{+} \Lambda$ systems have isospin $1 / 2$ and limit onestep excited states of the proton to be isospin $1 / 2$. The final states $\eta p, \omega p$, and $K^{+} \Lambda$ act as isospin filters to the resonance spectrum.

Σ for η

G8b

- Fit to Julich Bonn model (black line) with presence of $N(1900) 3 / 2^{-}$ (solid) and without (dashed)
- The inclusion of the $N(1900) 3 / 2+$ was found to be important by Bonn-Gatchina for $K \Lambda$ and $K \Sigma$ photoproduction

- Fit to Bonn-Gatchina model (blue lines) indicates presence of $N(1895) 1 / 2^{-}, N(2100) 1 / 2^{+}$, $N(2120) 3 / 2^{-}$and strong presence of $N(1900) 1 / 2^{-}$

Σ for ω

$4>$

Arizona State
UNIVERSITY

Σ for ω

P. Roy, et al., (CLAS Collaboration), Phys. Rev. C 97, 055202 (2018)

Beam asymmetries for $\gamma \boldsymbol{n} \rightarrow \boldsymbol{K}^{+} \Sigma^{-}$

Red: Full solution (Bonn-Gatchina)
Black: Contribution of $N(1720) 3 / 2^{+}$removed
Green: Contribution of $\Delta(1900) 1 / 2^{2}$ removed

Observable: T, F, P and \boldsymbol{H} Reaction: $\gamma \boldsymbol{p} \rightarrow \boldsymbol{p} \omega$

Configuration:

- Circular photon polarization
- Transverse target polarization
- Unpolarized photon (by adding circular beams)
- No recoil polarization

Experiment:

- g9b: FROST

Photon		Target			Recoil			Target + Recoil			
	-	\downarrow	$\begin{aligned} & \downarrow \\ & y \end{aligned}$	$\begin{aligned} & - \\ & z \end{aligned}$	x^{\prime}	y^{\prime}	z^{\prime}	$\begin{gathered} \hline x^{\prime} \\ x \end{gathered}$	$\overline{x^{\prime}}$	$\begin{gathered} \hline z^{\prime} \\ x \end{gathered}$	$\begin{aligned} & \hline z^{\prime} \\ & z \end{aligned}$
unpolarized	σ_{0}	0	T	0	0	P	0	$T_{x^{\prime}}$	$-\mathrm{L}_{x}$ '	$T_{z^{\prime}}$	L_{z},
linear pol.	- Σ	H	(-P)	$-G$	$O_{x^{\prime}}$	(-T)	$O_{z^{\prime}}$	(-L z^{\prime})	($\mathrm{T}_{z^{\prime}}$)	$\left(-\mathrm{L}_{x^{\prime}}\right)$	$\left(-\mathrm{T}_{x^{\prime}}\right)$
circular pol.	0	F	0	$-E$	$-C_{x^{\prime}}$	0	$-C_{z^{\prime}}$	0	0	0	0

Target Asymmetry T in $\gamma \vec{p} \rightarrow p \omega$ (CLAS g9b)

> Polarized Cross Section $\begin{aligned} \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}= & \sigma_{0}\left\{1-\delta_{l} \Sigma \cos 2 \phi\right. \\ & +\Lambda_{x}\left(-\delta_{l} H \sin 2 \phi+\delta_{\odot} F\right) \\ & -\Lambda_{y}\left(-T+\delta_{1} P \cos 2 \phi\right) \\ & \left.-\Lambda_{z}\left(-\delta_{l} G \sin 2 \phi+\delta_{\odot} E\right)\right\}\end{aligned}$

P. Roy et al. [CLAS Collaboration], Phys. Rev. C 97, no. 5, 055202 (2018)

F, P and H for ω

Observable: \boldsymbol{E}

Reactions: $\gamma \boldsymbol{p} \rightarrow \boldsymbol{p} \omega, \boldsymbol{p} \eta$ and $\gamma \boldsymbol{n} \rightarrow \boldsymbol{K}^{+} \Sigma^{-}$

Configuration:

- Circular photon polarization
- Longitudinal Target polarization
- No recoil polarization

Experiment:

- g9b: FROST
- g14: HD-ICE

Photon		Target			Recoil			Target + Recoil			
	-	-	-	\downarrow	x^{\prime}	y^{\prime}	z^{\prime}	x^{\prime}	x^{\prime}	z^{\prime}	z^{\prime}
	-	x	y	z	-	-	-	x	z	x	z
unpolarized	σ_{0}	0	T	0	0	P	0	$T_{x^{\prime}}$	$-\mathrm{L}_{x^{\prime}}$	$T_{z^{\prime}}$	$L_{z^{\prime}}$
linear pol.	$-\Sigma$	H	$(-\mathrm{P})$	$-G$	$O_{x^{\prime}}$	$(-\mathrm{T})$	$O_{z^{\prime}}$	$\left(-\mathrm{L}_{z^{\prime}}\right)$	$\left(\mathrm{T}_{z^{\prime}}\right)$	$\left(-\mathrm{L}_{x^{\prime}}\right)$	$\left(-\mathrm{T}_{x^{\prime}}\right)$
circular pol.	0	F	0	$-E$	$-C_{x^{\prime}}$	0	$-C_{z^{\prime}}$	0	0	0	0

Helicity Asymmetry in $\vec{\gamma} \vec{p} \rightarrow p \omega$ (CLAS g9a)

BnGa (coupled-channels) PWA

- Dominant \mathbf{P} exchange
- Complex $3 / 2^{+}$wave
(1) $N(1720)$
(2) $W \approx 1.9 \mathrm{GeV}$
- $N(1895) 1 / 2^{-}$(new state)
- $N(1680), N(2000) 5 / 2^{+}$
- 7/2 wave > 2.1 GeV
- CLAS-g9a
- CBELSA/TAPS

Phys. Lett. B 750, 453 (2015)
Z. Akbar et al. [CLAS Collaboration], Phys. Rev. C 96, no. 6, 065209 (2017)

E for η

W (MeV)

G9a: FROST

- Fit to Julich-Bonn model (red lines) does not indicate the need for a narrow resonance ~ 1.7 GeV
- Structure near $\sim 1.7 \mathrm{GeV}$ appears to be interference of $E_{0}{ }^{+}$and $M_{2}{ }^{+}$multipoles
E for $\gamma \boldsymbol{n} \rightarrow K^{+} \Sigma^{-}$

G14: HD-ICE

Red: Bonn-Gatchina prior to fit Blue: Full fit including "missing" D_{13} Black: Full fit without D_{13}

Self-analyzing reaction $\boldsymbol{K}^{+} \boldsymbol{Y}$ (hyperon)

- The weak decay of the hyperon allows the extraction of the hyperon polarization by looking at the decay distribution of the baryon in the hyperon center of mass system:

$$
I(\cos \theta)=\frac{1}{2}\left(1+\alpha P_{Y} \cos \theta\right)
$$

where I is the decay distribution of the baryon, α is the weak decay asymmetry ($\alpha_{A}=0.642$ and $\alpha_{\Sigma 0}=-1 / 3 \alpha_{A}$), and P_{Y} is the hyperon polarization.

- We can obtain recoil polarization information without a recoil polarimeter and the reaction is said to be "self-analyzing"

Observables: Σ, T, O_{x}, O_{z} Reaction: $\gamma \boldsymbol{p} \rightarrow \boldsymbol{K}^{+} \Lambda, K^{+} \Sigma$

Configuration:

- Linear photon polarization

Experiments:

- Recoil polarization self analyzed $\cdot \mathrm{g} 13 \rightarrow$ neutron reactions
- No target polarization

Photon		Target			Recoil			Target + Recoil			
	-	-	-	-	x^{\prime}	y^{\prime}	z^{\prime}	x^{\prime}	x^{\prime}	z^{\prime}	z^{\prime}
	-	x	y	z	-	-	-	x	z	x	z
unpolarized	σ_{0}	0	T	0	0	P	0	$T_{x^{\prime}}$	$-\mathrm{L}_{x^{\prime}}$	$T_{z^{\prime}}$	$L_{z^{\prime}}$
linear pol.	- Σ	H	(-P)	$-G$	$O_{x^{\prime}}$	(-T)	$O_{z^{\prime}}$	(-L z^{\prime})	($\mathrm{T}_{z^{\prime}}$)	(- $\mathrm{L}_{x^{\prime}}$)	$\left(-\mathrm{T}_{x^{\prime}}\right)$
circular pol.	0	F	0	-E	$-C_{x^{\prime}}$	0	$-C_{z^{\prime}}$	0	0	0	0

Σ, T for $\gamma p \rightarrow K^{+} \boldsymbol{\Lambda}$

- Blue lines represent fits to Bonn-Gatchina model
- Other lines represent various predictions

W (GeV)
C.A. Paterson, et al., (CLAS Collaboration), Phys. Rev. C 93, 065201 (2016)

$\boldsymbol{O}_{x}, O_{z}$ for $\gamma p \rightarrow \boldsymbol{K}^{+} \boldsymbol{\Lambda}$

- Blue lines represent fits to Bonn-Gatchina model
- Other lines represent various predictions

Σ, T for $\gamma p \rightarrow K^{+} \Sigma^{0}$

- Blue lines represent fits to Bonn-Gatchina model
- Other lines represent various predictions

$\boldsymbol{O}_{x}, \boldsymbol{O}_{z}$ for $\gamma \boldsymbol{p} \rightarrow \boldsymbol{K}^{+} \Sigma^{0}$

W (GeV)

- Blue lines represent fits to Bonn-Gatchina model
- Other lines represent various predictions

O_{x}, O_{z} for $\gamma p \rightarrow K^{+} \Sigma^{0}$

$\boldsymbol{\Xi}$ photoproduction

*asu

σ for $\gamma p \rightarrow K^{+} \boldsymbol{K}^{+} \Xi^{-}$

- All data from CLAS (G11, and G12)
- First total cross sections or photoproduction of these states above $W=2.8 \mathrm{GeV}$

Observables: P, C_{x}, C_{z} Reaction: $\gamma \boldsymbol{p} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{\Xi}^{-}$

Configuration:

- Circular photon polarization
- Recoil polarization self analyzed
- No target polarization

| Photon | | Target | | | Recoil | | | Target + Recoil | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | - | - | - | - | x^{\prime} | y^{\prime} | z^{\prime} | x^{\prime} | x^{\prime} | z^{\prime} | z^{\prime} |
| | - | x | y | z | - | - | - | x | z | x | z |
| unpolarized | σ_{0} | 0 | T | 0 | 0 | P | 0 | $T_{x^{\prime}}$ | $-\mathrm{L}_{x^{\prime}}$ | $T_{z^{\prime}}$ | $L_{z^{\prime}}$ |
| linear pol. | $-\Sigma$ | H | $(-\mathrm{P})$ | $-G$ | $O_{x^{\prime}}$ | $(-\mathrm{T})$ | $O_{z^{\prime}}$ | $\left(-\mathrm{L}_{z^{\prime}}\right)$ | $\left(\mathrm{T}_{z^{\prime}}\right)$ | $\left(-\mathrm{L}_{x^{\prime}}\right)$ | $\left(-\mathrm{T}_{x^{\prime}}\right)$ |
| circular pol. | 0 | F | 0 | $-E$ | $-C_{x^{\prime}}$ | 0 | $-C_{z^{\prime}}$ | 0 | 0 | 0 | 0 |

P, C_{v}, C_{z} for $\gamma p \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{+} \Xi^{-}$

- First-time measurement
- Coupling:
- ps = pseudoscalar
- $\mathrm{pv}=$ pseudovector

- Green dotted includes $\Sigma(2030)$ contribution

$p \Lambda$ elastic scattering: $p \Lambda \rightarrow p \Lambda$

- Black circles: previous world data (bubble chambers)
- Blue squares: CLAS results
- Momentum range important to neutron star physics

Status of meson photoproduction

	σ	Σ	T	P	E	F	G	H	T_{x}	Tz	$L_{\text {x }}$	L_{2}	$\mathrm{O}_{\boldsymbol{x}}$	O_{2}	C_{x}	C_{2}
Proton target																
$\mathrm{pr}{ }^{0}$	\checkmark															
$n \pi^{+}$	\checkmark															
pn	\checkmark															
pn'	\checkmark															
pw	\checkmark															
$\mathbf{K}^{+} \wedge$	\checkmark															
K「さ ${ }^{0}$	\checkmark															
$\mathrm{K}^{0} \mathrm{\Sigma}^{+}$	\checkmark															

"Neutron" target

PTE	\checkmark	\checkmark	V	\checkmark	$\sqrt{ }$	V	$\sqrt{ }$	$\sqrt{ }$								
$\mathbf{K}^{+} \underline{2}^{-}$	\checkmark	\checkmark	V	V	V	V	\checkmark	$\sqrt{ }$								
$\mathrm{K}^{0} \boldsymbol{A}$	\checkmark	\checkmark	V	$\sqrt{ }$	V	V	$\sqrt{ }$	V	V	V	\checkmark	V	V	V	V	V
$\mathrm{KO}^{\mathbf{O}}$	V	\checkmark	V	\checkmark	$\sqrt{ }$	V	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	V	\checkmark	\checkmark	\checkmark	V

Not shown in table:

- $\pi \pi$ photoproduction observables or

Changes to PDG from 1996 to 2018

Changes to PDG from 1996 to 2018

Changes to PDG from 1996 to 2018

Changes to PDG from 1996 to 2018

Along with additional new states, "old" states have been measured better and PDG properties have changed

Changes to PDG from 1996 to 2018

Δ^{*} Resonances

States have been measured better and PDG properties have changed
$\psi_{\text {asu }}$
$\psi_{\text {asu }}$

廿asu
$\psi_{\text {asu }}$

Frost target

- Brute force polarization requires large magnet
- Instead use "trick" (Dynamic Nuclear Polarization):
- Dope butanol with paramagnetic radical TEMPO
- Polarize unpaired TEMPO electrons to 99.999% with $\mathrm{B}=5 \mathrm{~T}$ and $\mathrm{T}=0.3 \mathrm{~K}$
- Transfer electron polarization to free protons with microwaves at $\sim 140 \mathrm{GHz}$
- Remove microwaves
- Cool to $\mathrm{T}=3 \mathrm{mK}$ and use $\mathrm{B}=0.5 \mathrm{~T}$ holding field
- Put target in CLAS and run experiment

Performance: target polarization

- Frozen spin butanol $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)$
- $P_{z} \approx 80 \%$
- Target depolarization: $\tau \approx 100$ days
- For 99a (longitudinal orientation) 10% of allocated time was used polarizing target
- For g9b (transverse orientation) 5\% of allocated time was used polarizing target
廿ASU

Frost target

Brute Force Polarization

$$
P=\tanh \left(\frac{\vec{\mu} \cdot \vec{B}}{k T}\right) \longrightarrow \underset{\operatorname{minimize} T}{ } \quad \longrightarrow
$$

Disadvantages:

1. Requires very large magnet
2. Low temperatures mean low luminosity
3. Polarization can take a very long time

We need a trick!
5 Tesla

Slide from Chris Keith

Frost target

The Trick -- Dynamic Nuclear Polarization

Use brute force to polarize free electrons in the target material. Use microwaves to "transer" this polarization to nuclei. Mutual electron-nucleus spin flips re-arrange the nuclear Zeeman populations to favor one spin state over the other.

For best results, DNP is performed at B / T conditions where electron t_{1} is short (ms) and nuclear t_{1} is long (minutes)

$$
\text { JLab: } \begin{aligned}
& B=5 \text { Tesla } \\
& T=1 \text { Kelvin }
\end{aligned}
$$

Stide from Chris Keith

Frost target

The Resolved Solid Effect

Slide from Chris Keith

Frost target

Materials for DNP Targets

- Choice of material dictated by 4 factors:

1. Maximum polarization
2. Resistance to ionizing radiation
3. Presence of unpolarized nuclei \longrightarrow quality factor, $f \equiv \frac{\vec{N}}{N_{\text {total }}}$
4. Presence of unwanted, polarized nuclei

- Free electrons must be embedded into target material:

1. Chemical doping with paramagnetic radicals
2. Paramagnetic radicals created by ionizing radiation

- Typically 1 free electron can "service" $\sim 10^{3}$ free protons

Slide from Chris Keith

Materials for DNP Targets, examples

Name	Dopant	f	Rad. Resistance
Polyethelyne, $\mathrm{C}_{2} \mathrm{H}_{4}$	chemical	0.12	low
Polystyrene, $\mathrm{C}_{8} \mathrm{H}_{8}$	chemical	0.07	low
Propandiol, $\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{OH})_{2}$	chemical	0.11	moderate
Butanol, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	chemical	0.13	moderate
Ammonia, ${ }^{15} \mathrm{NH}_{3}$	radiation	0.17	high
Lithium Hydride, ${ }^{7} \mathrm{LiH}$	radiation	0.12	very high

Slide from Chris Keith

Low-lying Resonance States

$\gamma p \rightarrow p \pi^{+} \pi^{-}$

The differential cross section for $\gamma p \rightarrow p \pi^{+} \pi^{-}$
(without measuring the polarization of the recoiling nucleon)

Circular beam and longitudinal target: $\delta_{1}=\Lambda_{x}=\Lambda_{y}=0$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathrm{x}_{\mathrm{i}}}=\sigma_{0}\{ & (1+\vec{\Lambda}_{i}-\underbrace{\mathbf{P}}_{\mathrm{P}}+\delta_{\odot}\left(\mathbf{I}^{\odot}+\vec{\Lambda}_{i} \cdot\right. \text { Next slides } \\
+ & \left.\delta_{l}\left[\sin 2 \beta\left(\mathbf{I}^{\mathbf{s}}+\vec{\Lambda}_{i} \cdot \overrightarrow{\mathbf{P}}^{\mathbf{s}}\right)+\cos 2 \beta\left(\mathbf{I}^{\mathbf{c}}+\vec{\Lambda}_{i} \cdot \overrightarrow{\mathbf{P}}^{\mathbf{c}}\right)\right]\right\}
\end{aligned}
$$

- σ_{0} : The unpolarized cross section
- β : The angle between the direction of polarization and the x -axis
- $\delta_{\odot, l}$: The degree of polarizaton of the photon beam $\Rightarrow \delta \odot$, and δ_{l}
- $\vec{\Lambda}_{i}$: The polarization of the initial nucleon $\Rightarrow\left(\Lambda_{x}, \Lambda_{y}, \Lambda_{z}\right)$
- $\mathbf{I}^{\odot}, \mathbf{s}, \mathbf{c}$. The observable arising from use of polarized photons $\Rightarrow \mathbf{I}^{\odot}, \mathbf{I}^{\mathbf{s}}, \mathbf{I}^{\mathbf{c}}$
- $\overrightarrow{\mathbf{P}}$: The polarization observable $\Rightarrow\left(\mathbf{P}_{\mathbf{x}}, \mathbf{P}_{\mathbf{y}}, \mathbf{P}_{\mathbf{z}}\right)\left(\mathbf{P}_{x}^{\odot}, \mathbf{P}_{y}^{\odot}, \mathbf{P}_{z}^{\odot}\right)\left(\mathbf{P}_{x}^{s}, \mathbf{P}_{y}^{s}, \mathbf{P}_{z}^{s}\right)\left(\mathbf{P}_{\mathbf{x}}^{\mathbf{c}}, \mathbf{P}_{\mathbf{y}}^{\mathbf{c}}, \mathbf{P}_{\mathbf{z}}^{\mathbf{c}}\right)$

15 Observables

$P^{\mathbf{Z}}$ for $p \pi^{+} \pi^{-}$

G9a: FROST

P^{\ominus} for $p \pi^{+} \pi^{-}$

G9a: FROST

Observable

Configuration:

- Linear photon polarization
- Longitudinal Target polarization
- No recoil polarization

Experiment:

- g9a: FROST

Photon		Target			Recoil			Target + Recoil			
	$\begin{aligned} & - \\ & - \end{aligned}$		$\begin{aligned} & - \\ & y \end{aligned}$		x^{\prime}	y^{\prime} -	$\begin{aligned} & z^{\prime} \\ & - \end{aligned}$	x^{\prime} x	$\begin{gathered} x^{\prime} \\ z \end{gathered}$	$\begin{gathered} z^{\prime} \\ x \end{gathered}$	$\begin{aligned} & z^{\prime} \\ & z \end{aligned}$
unpolarized linear pol. circular pol.	$\begin{gathered} \sigma_{0} \\ -\Sigma \\ 0 \end{gathered}$	0 H F	$\begin{gathered} T \\ (-\mathrm{P}) \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \begin{array}{c} -G \\ -E \end{array} \end{gathered}$	$\begin{gathered} 0 \\ O_{x^{\prime}} \\ -C_{x^{\prime}} \end{gathered}$	$\begin{gathered} P \\ (-\mathrm{T}) \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ O_{z^{\prime}} \\ -C_{z^{\prime}} \end{gathered}$	$\begin{gathered} T_{x^{\prime}} \\ \left(-\mathrm{L}_{z^{\prime}}\right) \\ 0 \end{gathered}$	$\begin{gathered} -\mathrm{L}_{x^{\prime}} \\ \left(\mathrm{T}_{z^{\prime}}\right) \\ 0 \end{gathered}$	$\begin{gathered} T_{z^{\prime}} \\ \left(-\mathrm{L}_{x^{\prime}}\right) \\ 0 \end{gathered}$	$\begin{gathered} L_{z^{\prime}} \\ \left(-\mathrm{T}_{x^{\prime}}\right) \\ 0 \end{gathered}$

Isospin photo-couplings for $\gamma \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\pi}^{+}$and $\boldsymbol{\gamma} \boldsymbol{n} \rightarrow \boldsymbol{p} \boldsymbol{\pi}^{-}$

$$
\begin{aligned}
& \gamma p \longrightarrow \begin{array}{l}
\text { Iso-singlet } \left.A^{0}\left|I=0, I_{3}=0\right\rangle I I=\frac{1}{2}, I_{3}=\frac{1}{2}\right\rangle=A^{0}\left|I=\frac{1}{2}, I_{3}=\frac{1}{2}\right\rangle \\
\text { Iso-vector } \left.A^{4}\left|I=1, I_{3}=0\right\rangle\left|I=\frac{1}{2}, I_{3}=\frac{1}{2}\right\rangle=A^{\prime}|\sqrt{2 / 3}| I=\frac{3}{2}, I_{3}=\frac{1}{2}-\sqrt{1 / 3}\left|I=\frac{1}{2}, I_{3}=\frac{1}{2}\right\rangle\right]
\end{array} \\
& \gamma n \longrightarrow \text { Iso-singlet } A^{0}\left|I=0, I_{3}=0\right\rangle\left|I=\frac{1}{2}, I_{3}=\frac{-1}{2}\right\rangle=A^{0}\left|I=\frac{1}{2}, I_{3}=\frac{-1}{2}\right\rangle \\
& \text { Iso-vector } A^{\prime}\left|I=1, I_{3}=0\right\rangle\left|I=\frac{1}{2}, I_{3}=\frac{-1}{2}\right\rangle=A^{\prime}|\sqrt{2 / 3}| I=\frac{3}{2}, I_{3}=\frac{-1}{2}\left\lfloor\left\lceil\sqrt{1 / 3}\left|I=\frac{1}{2}, I_{3}=\frac{-1}{2}\right\rangle\right]\right.
\end{aligned}
$$

$$
\begin{array}{ll}
\gamma p \rightarrow n \pi^{+}: & \oplus \sqrt{\frac{2}{3}}\left\lfloor A^{0} \Theta \sqrt{\frac{1}{3}} A^{1}\right] N^{*}+\frac{\sqrt{2}}{3} A^{1} \Delta^{*} \\
\gamma n \rightarrow p \pi: & \oplus \sqrt{\frac{2}{3}}\left\lfloor A^{0} \oplus \sqrt{\frac{1}{3}} A^{1}\right] N^{*}+\frac{\sqrt{2}}{3} A^{1} \Delta^{*}
\end{array}
$$

- Using both proton and neutron targets allows decomposition of iso-singlet and iso-vector photo-couplings
- The sings in $\bigcirc \bigcirc$ will give interference terms

廿asu

