CLAS Excited Baryon Program

Michael Dugger* Arizona State University

*Work at ASU is supported by the U.S. Department of Energy

M. Dugger, NSTAR, October 2022

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Nucleon resonances

- As a three-quark system, the nucleon has a specific excitation spectrum comprised of nucleon resonances.
- This nucleon resonance spectrum has been found to have many broad overlapping states, making disentangling the spectrum difficult. ⊗

How well do we know the nucleon resonance spectrum?

Nucleon resonances are rated using the "star" system:

- * Poor evidence of existence
- ** Fair evidence of existence
- *** Likely evidence of existence, or certain and properties need work
- **** Existence is certain and properties well explored

Resonance status for N^* and \varDelta^*

Status as seen in

Status as seen in

	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta\prime$	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	ΣK	$N\rho$	$\Delta \eta$
Nucleon-	$\rightarrow N$	$1/2^+$	****											$\Delta(1232)$	$3/2^{+}$	****	****	****				
	N(1440)	$1/2^{+}$	****	****	****	****	***							$\Lambda(1600)$	$3/2^+$	****	****	***	****			
	N(1520)	$\frac{3}{2}$	****	****	****	****	**	****						$\Delta(1620)$	$1/2^{-}$	****	****	****	****			
	N(1535) N(1650)	1/2	****	****	****	***	*	****						$\Delta(1020)$	2/0-	****	****	****	****			
	N(1675)	5/9-	****	****	****	***	*	****	*					$\Delta(1700)$	3/2	****	****	****	****	*	*	
	N(1675) N(1680)	5/2+	****	****	****	****	***	*	*	*				$\Delta(1750)$	$1/2^{+}$	*	*	*		*		
	N(1000)	$3/2^{-}$	***	**	***	***	*	*	*	+	*			$\Delta(1900)$	$1/2^{-}$	***	***	***	*	**	*	
	N(1710)	$1/2^+$	****	****	****	*		***	**	*	*	*		$\Delta(1905)$	$5/2^{+}$	****	****	****	**	*	*	**
	N(1720)	$3/2^+$	****	****	****	***	*	*	****	*	*	*		$\Delta(1910)$	$1/2^{+}$	****	***	****	**	**		*
	N(1860)	$5/2^+$	**	*	**		*	*						$\Delta(1920)$	$3/2^{+}$	***	***	***	***	**		**
	N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*		$\Delta(1930)$	$5/2^{-}$	***	*	***	*	*		
	N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**		$\Lambda(1940)$	$3/2^{-}$	**	*	**	*			*
	N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****	$\Delta(1050)$	$\frac{7}{2}$	***	*****	****	**	***		
	N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**	$\Delta(1950)$	1/2 5/0 [±]	****	****	****	**	ተተተ		
	N(1990)	$7/2^{+}$	**	**	**			*	*	*				$\Delta(2000)$	$\frac{5}{2}$	**	*	**	*		*	
	N(2000)	$5/2^{+}$	**	**	*	**	*	*				*		$\Delta(2150)$	1/2	*		*				
	N(2040)	$3/2^{+}$	*		*									$\Delta(2200)$	$7/2^{-}$	***	***	**	***	**		
	N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*		$\Delta(2300)$	$9/2^{+}$	**		**				
	N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**	$\Delta(2350)$	$5/2^{-}$	*		*				
	N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*	A(2390)	$7/2^+$	*		*				
	N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*		A(2400)	$0/2^{-}$	-t-	aleale	-t-				
	N(2220)	$9/2^{+}$	****	**	****			*	*	*				$\Delta(2400)$	9/2 11/0 [±]	**	**	**				
	N(2250)	9/2	****	**	****			*	*	*				$\Delta(2420)$	$11/2^{-1}$	****	*	****				
	N(2300)	1/2'	**		**									$\Delta(2750)$	13/2	**		**				
	N(2570)	5/2	**		**									$\Delta(2950)$	$15/2^{+}$	**		**				
	N(2600)	$\frac{11/2}{12/2^{\pm}}$	***		***									22 4* 4								
	N(2700)	13/2	**		**									22 / st	ates:							
	$27 N^* s$	states:												• 8 w	ith ***	**						
	• 13	with	****											• 4 w	ith ***	c						
	• 7	with	***											• 6 w	ith **							
	• 6	with	**											• $4 \mathbf{w}$	ith *							
	• 1	with	*											T VV.	1111						5	
4	1	VV IUII																				

Resonance status for N^* and \varDelta^*

Status as seen in

Status as seen in

.	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	Nρ	$N\omega$	$N\eta\prime$	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	ΣK	$N\rho$	$\Delta \eta$
Nucleon-	$\rightarrow N$	$1/2^+$	****											$\Delta(1232)$	$3/2^{+}$	****	****	****				-
	N(1440) N(1590)	$\frac{1}{2}$	****	****	****	****	***							$\Delta(1600)$	$3/2^{+}$	****	****	***	****			
	N(1520) N(1525)	$\frac{3}{2}$	****	****	****	****	**	****						A(1620)	$1/2^{-}$	****	****	****	****			
	N(1650)	$\frac{1}{2}$	****	****	****	***	*	****						$\Delta(1020)$	$\frac{1}{2}$	****	****	****	****			
	N(1675)	$\frac{1}{2}$	****	****	****	***	*	****	*	*				$\Delta(1700)$	3/2	****	****	****	****	*	*	
	N(1680)	$5/2^+$	****	****	****	****	***	*	*	*				$\Delta(1750)$	$1/2^{-1}$	*	*	*		*		
	N(1700)	$3/2^{-}$	***	**	***	***	*	*	-	-	*			$\Delta(1900)$	1/2	***	***	***	*	**	*	
	N(1710)	$1/2^+$	****	****	****	*		***	**	*	*	*		$\Delta(1905)$	$5/2^{+}$	****	****	****	**	*	*	**
	N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*		$\Delta(1910)$	$1/2^{+}$	****	***	****	**	**		*
	N(1860)	$5/2^{+}$	**	*	**		*	*						$\Delta(1920)$	$3/2^{+}$	***	***	***	***	**		**
	N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*		$\Delta(1930)$	$5/2^{-}$	***	*	***	*	*		
	N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**		$\Delta(1940)$	$3/2^{-}$	**	*	**	*			*
	N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****	A(1950)	$7/2^+$	****	****	****	**	***		
	N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**	$\Delta(2000)$	5/2+	***	*	**	*		÷	
	N(1990)	$7/2^+$	**	**	**			*	*	*				$\Delta(2000)$	1/9-	**	*	**	*		*	
	N(2000)	$5/2^{+}$	**	**	*	**	*	*				*		$\Delta(2150)$	1/2	*		*				
	N(2040)	3/2'	*		*									$\Delta(2200)$	7/2	***	***	**	***	**		
	N(2060)	5/2	***	***	**	*	*	*	*	*	*	*		$\Delta(2300)$	$9/2^{+}$	**		**				
	N(2100) N(9190)	$\frac{1}{2}$	***	**	***	**	**	*	*		*	*	**	$\Delta(2350)$	$5/2^{-}$	*		*				
	N(2120) N(2100)	7/2	***	***	**	**	**	*	**	*	*	*	*	$\Delta(2390)$	$7/2^{+}$	*		*				
	N(2220)	9/2+	****	**	****	****	**	*	*	*	Ŧ	Ŧ		$\Delta(2400)$	$9/2^{-}$	**	**	**				
	N(2250)	$9/2^{-}$	****	**	****			*	*	*				$\Delta(2420)$	$11/2^+$	****	*	****				
	N(2300)	$1/2^+$	**		**									A(2750)	$13/2^{-}$	**		**				
	N(2570)	$5/2^{-}$	**		**									$\Delta(2950)$	$15/2^+$	**		**				
	N(2600)	$11/2^{-}$	***		***									<u> (2500)</u>	10/2	**		44				
	N(2700)	$13/2^{+}$	**		**									$22 \varDelta^*$ st	ates:			22	Λ^* sta	ates:		
	$27 N^* s$	states:			2	$26 N^*$	* sta	tes:						• 8 w	ith ***	*	<u> </u>		7 wi	th **	:**	
	• 13	with	****		<u> </u>	1	0 w	ith *	***					• <u>4</u> w	ith ***	:				111 th **	:*	
	• 7	with	***		2.	1	5 w	ith *	**					• 6 w	ith **					111 +h **	:	
			**				0		*					• UW	1011 *⊿1 ↓				/ WI	.ui		
	• 0	with					o W	iun "	•					• 4 W	ith *			•	5 WI	th *	6	
	• 1	with	*		•		3 w	ith *													2	

Resonance status for N^* and \varDelta^*

Status as seen in

Status as seen in

	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	Nσ	$N\eta$	ΛK	ΣK	Νρ	$N\omega$	$N\eta\prime$	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	ΣK	No	Δn
Nucleon-	$\rightarrow N$	$1/2^+$	****											$\Delta(1232)$	$3/2^{+}$	****	****	****				
	N(1440)	$1/2^{+}$	****	****	****	****	***							$\Delta(1600)$	$3/2^+$	****	****	***	****			
	N(1520) N(1525)	$\frac{3}{2}$	****	****	****	****	**	****						A(1620)	$1/2^{-}$	****	****	****	****			
	N(1650)	$\frac{1}{2}$	****	****	****	***	*	****						A(1020)	$\frac{1}{2}$	****	****	****	****			
	N(1675)	$\frac{1}{2}$	****	****	****	***	*	****	*	*				$\Delta(1700)$	3/2	****	****	****	****	*	*	
	N(1680)	$5/2^+$	****	****	****	****	***	*	*	*				$\Delta(1750)$	1/2	*	*	*		*		
	N(1700)	$3/2^{-}$	***	**	***	***	*	*	-		*			$\Delta(1900)$	1/2	***	***	***	*	**	*	
	N(1710)	$1/2^{+}$	****	****	****	*		***	**	*	*	*		$\Delta(1905)$	5/2	****	****	****	**	*	*	**
	N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*		$\Delta(1910)$	$1/2^{+}$	****	***	****	**	**		*
	N(1860)	$5/2^{+}$	**	*	**		*	*						$\Delta(1920)$	$3/2^{+}$	***	***	***	***	**		**
	N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*		$\Delta(1930)$	$5/2^{-}$	***	*	***	*	*		
	N(1880)	$1/2^+$	***	**	*	**	*	*	**	**		**		$\Delta(1940)$	$3/2^{-}$	**	*	**	*			*
	N(1895)	$1/2^{-1}$	****	****	*	*	*	****	**	**	*	*	****	$\Delta(1950)$	$7/2^+$	****	****	****	**	***		
	N(1900) N(1000)	$\frac{3}{2}$	****	****	**	**	*	*	**	**		*	**	$\Delta(2000)$	$5/2^{+}$	**	*	**	*		*	
	N(2000)	$\frac{1}{2}$	**	**	**	**	*	*	*	*		*		$\Delta(2150)$	$1/2^{-}$	*		*				
	N(2040)	$3/2^+$	*	**	*	ጥጥ	*	*				*		$\Delta(2200)$	$7/2^{-}$	***	***	**	***	**		
	N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*		A(2300)	$0/2^+$	**		**				
	N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**	A(2250)	5/2	**		**				
	N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*	$\Delta(2300)$	7/9+	*		î.				
	N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*		$\Delta(2390)$	1/2	*		*				
	N(2220)	$9/2^+$	****	**	****			*	*	*				$\Delta(2400)$	9/2	**	**	**				
	N(2250)	$9/2^{-}$	****	**	****			*	*	*				$\Delta(2420)$	11/2'	****	*	****				
	N(2300)	1/2	**		**									$\Delta(2750)$	13/2	**		**				
	N(2570) N(2600)	5/2 11/9	**		**									$\Delta(2950)$	$15/2^+$	**		**				
	N(2000) N(2700)	$\frac{11/2}{13/2^+}$	***		***									22.4^{*} ct	atos.			22	1* ~+			
	$\frac{11(2100)}{27 M^*}$	10/2	**				*	4							ales.	<u>م</u>	~		\angle Sta	nes:		
	2/ IV S	tates:			∞^2	0 N	sta	tes:						• 8 W	1th ***	*		•	7 wi	th **	***	
	• 13	with ³	****		Ξ.	1	0 w	ith *	***					• 4 w	ith ***		~ ~	i •	3 wi	th **	:*	
	• 7	with ^a	***		ລີ.		5 w	ith *	**					• 6 w	ith **		5	•	7 wi	th **	:	
	• 6	with ^s	**		-		8 w	ith *	*					• 4 w	ith *		-	-	5 wi	th *		
	• 1	with [*]	*				3 w	ith *	٠	A	re	th	ere n	nissing	state	s?			5		7	

Resonance status for $\boldsymbol{\Xi}^*$

State, J^P		Predicted r	masses (MeV)				
$\Xi_{\frac{1}{2}}^{+}$	1305							
$\Xi \frac{3}{2}^{+}$	1505							
$\Xi^{*\frac{1}{2}^{-}}$	1755	1810	1835	2225	2285	2300	2320	2380
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	2385
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385				
$\Xi^{*\frac{7}{2}}$	2355							
$\Xi^{*\frac{1}{2}^{+}}$	1840	2040	2100	2130	2150	2230	2345	
$\Xi^{*\frac{3}{2}^{+}}$	2045	2065	2115	2165	2170	2210	2230	2275
$\Xi^{*\frac{5}{2}^+}$	2045	2165	2230	2230	2240			
$\Xi^{*\frac{7}{2}+}$	2180	2240						

• List of Cascade Baryons predicted by Capstick and Isgur with mass less than 2.4 GeV/c^2

+

Resonance status for $\boldsymbol{\Xi}^*$

State, J^P		Predicted r	nasses (MeV	")						PDG	ŕ
$\Xi^{\frac{1}{2}^+}$	1305										Overall
$\Xi_{\frac{3}{2}}^{\frac{3}{2}}$ +	1505								Particle	J^P	Status
$\Xi^{*\frac{1}{2}}$	1755	1810	1835	2225	2285	2300	2320	2380	$\Xi(1318)$	$1/2^+$	****
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	2385	$\Xi(1530)$	$3/2^+$	****
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385					$\Xi(1620)$		*
$\Xi^{*\frac{7}{2}}$	2355								Ξ(1690)		***
$\Xi^{*\frac{1}{2}^{+}}$	1840	2040	2100	2130	2150	2230	2345		Ξ(1820)	$3/2^{-}$	***
$\Xi^{*\frac{3}{2}^{+}}$	2045	2065	2115	2165	2170	2210	2230	2275	$\Xi(1950)$	0/ =	***
$\Xi^{*\frac{5}{2}^{+}}$	2045	2165	2230	2230	2240				$\Xi(2030)$	5/9?	***
$\Xi^{*\frac{7}{2}^{+}}$	2180	2240							$\Xi(2030)$ $\Xi(2120)$	0/2	*
	_								=(2120)		

• List of Cascade Baryons predicted by Capstick and Isgur with mass less than 2.4 GeV/c^2

$\Xi(1530)$	$3/2^{+}$	****
$\Xi(1620)$		*
$\Xi(1690)$		***
$\Xi(1820)$	$3/2^{-}$	***
$\Xi(1950)$		***
$\Xi(2030)$	$5/2^{?}$	***
$\Xi(2120)$		*
$\Xi(2250)$		**
$\Xi(2370)$		**
$\Xi(2500)$		*

Resonance status for $\boldsymbol{\Xi}^*$

State, J^P		Predicted r	nasses (MeV)						PDG	ŕ
Ξ ¹ / ₂ ⁺	1305										Overall
$\Xi_{\frac{3}{2}}^{\frac{2}{3}+}$	1505								Particle	J^P	Status
$\Xi^{*\frac{1}{2}^{-}}$	1755	1810	1835	2225	2285	2300	2320	2380	$\Xi(1318)$	$1/2^+$	****
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	2385	$\Xi(1530)$	$3/2^+$	****
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385					$\Xi(1620)$		*
$\Xi^{*\frac{7}{2}}$	2355								Ξ(1690)		***
$\Xi^{*\frac{1}{2}^{+}}$	1840	2040	2100	2130	2150	2230	2345		$\Xi(1820)$	$3/2^{-}$	***
$\Xi^{*\frac{3}{2}^{+}}$	2045	2065	2115	2165	2170	2210	2230	2275	$\Xi(1950)$	0/ =	***
$\Xi^{*\frac{5}{2}^{+}}$	2045	2165	2230	2230	2240				$\Xi(2030)$	5/9?	***
$\Xi^{*\frac{7}{2}^{+}}$	2180	2240							$\Xi(2030)$ $\Xi(2120)$	0/2	*

• List of Cascade Baryons predicted by Capstick and Isgur with mass less than 2.4 GeV/c^2

±(1516)	1/2	
$\Xi(1530)$	$3/2^+$	****
$\Xi(1620)$		*
$\Xi(1690)$		+***
$\Xi(1820)$	$3/2^{-}$	***
$\Xi(1950)$		***
$\Xi(2030)$	$5/2^{?}$	***
$\Xi(2120)$,	*
$\Xi(2250)$		**
$\Xi(2370)$		**
$\Xi(2500)$		*
<u><u> </u></u>	A TZ	∇U

State	ΛK	ΣK	$\Xi\pi$
$\Xi(1530)$			$100 \ \%$
$\Xi(1690)$	seen	seen	seen
$\Xi(1820)$	large	small	small
$\Xi(1950)$	seen	seen?	seen
$\Xi(2030)$	20%	80%	small

Resonance status for Ξ^*

State, J^P		Predicted r	nasses (MeV)						PDG	ŕ
Ξ ¹ / ₂ ⁺	1305										Overall
$\Xi_{\frac{3}{2}}^{\frac{2}{3}+}$	1505								Particle	J^P	Status
$\Xi^{*\frac{1}{2}^{-}}$	1755	1810	1835	2225	2285	2300	2320	2380	$\Xi(1318)$	$1/2^+$	****
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	2385	$\Xi(1530)$	$3/2^+$	****
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385					$\Xi(1620)$		*
$\Xi^{*\frac{7}{2}}$	2355								Ξ(1690)		***
$\Xi^{*\frac{1}{2}^{+}}$	1840	2040	2100	2130	2150	2230	2345		$\Xi(1820)$	$3/2^{-}$	***
$\Xi^{*\frac{3}{2}^{+}}$	2045	2065	2115	2165	2170	2210	2230	2275	$\Xi(1950)$	0/ =	***
$\Xi^{*\frac{5}{2}^{+}}$	2045	2165	2230	2230	2240				$\Xi(2030)$	5/9?	***
$\Xi^{*\frac{7}{2}^{+}}$	2180	2240							$\Xi(2030)$ $\Xi(2120)$	0/2	*

• List of Cascade Baryons predicted by Capstick and Isgur with mass less than 2.4 GeV/ c^2

$\Xi(1318)$	$1/2^+$	****
$\Xi(1530)$	$3/2^{+}$	****
$\Xi(1620)$		*
$\Xi(1690)$		***
$\Xi(1820)$	$3/2^{-}$	***
$\Xi(1950)$		***
$\Xi(2030)$	$5/2^{?}$	***
$\Xi(2120)$		*
$\Xi(2250)$		**
$\Xi(2370)$		**
$\Xi(2500)$		*

State	ΛK	ΣK	$\Xi\pi$
$\Xi(1530)$			100 %
$\Xi(1690)$	seen	seen	seen
$\Xi(1820)$	large	small	small
$\Xi(1950)$	seen	seen?	seen
$\Xi(2030)$	20%	80%	small

Are there missing states? •

So, where are the resonances?

• Masses, widths, and coupling constants not well known for many resonances

So, where are the resonances?

• Masses, widths, and coupling constants not well known for many resonances

• Many models exist to "predict" the nucleon resonance spectrum - quark model, Goldstone-boson exchange, diquark and collective models, instantoninduced interactions, flux-tube models, lattice QCD - **BUT**...

So, where are the resonances?

• Masses, widths, and coupling constants not well known for many resonances

• Many models exist to "predict" the nucleon resonance spectrum - quark model, Goldstone-boson exchange, diquark and collective models, instanton-induced interactions, flux-tube models, lattice QCD - **BUT**...

• THE BIG PUZZLE: Most models predict many more resonance states than have been observed.

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Helicity amplitudes for $\gamma + p \rightarrow p + pseudoscalar$

- 8 helicity states: 4 initial, 2 final $\rightarrow 4 \cdot 2 = 8$
- Amplitudes are complex but parity symmetry reduces independent numbers to 8
- Overall phase unobservable \rightarrow 7 independent numbers
- **HOWEVER**, not all possible observables are linearly independent and it turns out that there must be a minimum of 8 observables / experiments

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

 $\begin{array}{l} \textbf{helicity +1 photons (\epsilon_{+}):} \\ A_{\varepsilon_{+}} = \frac{1}{2} \begin{bmatrix} H_{1} & H_{2} \\ H_{3} & H_{4} \end{bmatrix} \\ \begin{array}{l} \left(A_{-\mu,-\lambda} = -e^{(\lambda-\mu)\pi}A_{\mu,\lambda}\right) \\ Parity symmetry \rightarrow \end{array} \right) \begin{array}{l} \textbf{helicity -1 photons (\epsilon_{-}):} \\ \frac{-1}{2} & \frac{-3}{2} \\ H_{4} & -H_{3} \\ -H_{2} & H_{1} \end{bmatrix} \end{array}$

Spin observable	Helicity representation	Differential cross sect
$ \begin{split} &\check{\Omega}^1 \equiv \mathcal{I}(\theta) \\ &\check{\Omega}^4 \equiv \check{\Sigma} \\ &\check{\Omega}^{10} \equiv -\check{T} \\ &\check{\Omega}^{12} \equiv \check{P} \end{split} $	$\begin{array}{c} \frac{1}{2}(H_1 ^2+ H_2 ^2+ H_3 ^2+ H_4 ^2) \\ \text{Re}(-H_1H_4^*+H_2H_3^*) \\ \text{Im}(H_1H_2^*+H_3H_4^*) \\ \text{Im}(-H_1H_3^*-H_2H_4^*) \end{array}$	
$\check{\Omega}^3 \equiv \check{G}$ $\check{\Omega}^5 \equiv \check{H}$ $\check{\Omega}^9 \equiv \check{E}$ $\check{\Omega}^{11} \equiv \check{F}$	$\begin{split} & \operatorname{Im}(H_1H_4^*-H_3H_2^*) \\ & \operatorname{Im}(-H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2- H_2 ^2+ H_3 ^2- H_4 ^2) \\ & \operatorname{Re}(-H_2H_1^*-H_4H_3^*) \end{split}$	
$ \begin{split} &\check{\Omega}^{14} \equiv \check{O}_x \\ &\check{\Omega}^7 \equiv -\check{O}_z \\ &\check{\Omega}^{16} \equiv -\check{C}_x \\ &\check{\Omega}^2 \equiv -\check{C}_z \end{split} $	$\begin{split} \mathrm{Im}(-H_2H_1^*+H_4H_3^*) \\ \mathrm{Im}(H_1H_4^*-H_2H_3^*) \\ \mathrm{Re}(H_2H_4^*+H_1H_3^*) \\ \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	
$ \begin{split} &\check{\Omega}^6 \equiv -\check{T}_x \\ &\check{\Omega}^{13} \equiv -\check{T}_z \\ &\check{\Omega}^8 \equiv \check{L}_x \\ &\check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_1H_4^*-H_2H_3^*)\\ \operatorname{Re}(-H_1H_2^*+H_4H_3^*)\\ \operatorname{Re}(H_2H_4^*-H_1H_3^*)\\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2) \end{array}$	

Spin observable	Helicity representation	Differential cross section
$ \begin{split} &\check{\Omega}^1 \equiv \mathcal{I}(\theta) \\ &\check{\Omega}^4 \equiv \check{\Sigma} \\ &\check{\Omega}^{10} \equiv -\check{T} \\ &\check{\Omega}^{12} \equiv \check{P} \end{split} $	$\begin{array}{c} \frac{1}{2}(H_1 ^2+ H_2 ^2+ H_3 ^2+ H_4 ^2) \\ \mathrm{Re}(-H_1H_4^*+H_2H_3^*) \\ \mathrm{Im}(H_1H_2^*+H_3H_4^*) \\ \mathrm{Im}(-H_1H_3^*-H_2H_4^*) \end{array}$	Beam polarization Σ
$ \begin{split} \overset{\check{\Omega}}{}^3 &\equiv \overset{\check{G}}{G} \\ \overset{\check{\Omega}}{}^5 &\equiv \overset{\check{H}}{H} \\ \overset{\check{\Omega}}{}^9 &\equiv \overset{\check{E}}{E} \\ \overset{\check{\Omega}}{}^{11} &\equiv \overset{\check{F}}{F} \end{split} $	$\begin{array}{c} \mathrm{Im}(H_1H_4^*-H_3H_2^*)\\ \mathrm{Im}(-H_2H_4^*+H_1H_3^*)\\ \frac{1}{2}(H_1 ^2- H_2 ^2+ H_3 ^2- H_4 ^2)\\ \mathrm{Re}(-H_2H_1^*-H_4H_3^*) \end{array}$	
$ \begin{split} &\check{\Omega}^{14} \equiv \check{O}_x \\ &\check{\Omega}^7 \equiv -\check{O}_z \\ &\check{\Omega}^{16} \equiv -\check{C}_x \\ &\check{\Omega}^2 \equiv -\check{C}_z \end{split} $	$\begin{split} & \operatorname{Im}(-H_2H_1^*+H_4H_3^*) \\ & \operatorname{Im}(H_1H_4^*-H_2H_3^*) \\ & \operatorname{Re}(H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	
$ \begin{split} &\check{\Omega}^6 \equiv -\check{T}_x \\ &\check{\Omega}^{13} \equiv -\check{T}_z \\ &\check{\Omega}^8 \equiv \check{L}_x \\ &\check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_1H_4^*-H_2H_3^*) \\ \operatorname{Re}(-H_1H_2^*+H_4H_3^*) \\ \operatorname{Re}(H_2H_4^*-H_1H_3^*) \\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2) \end{array}$	

Spin observable	Helicity representation	Differential cross section
$ \tilde{\Omega}^1 \equiv \mathcal{I}(\theta) \tilde{\Omega}^4 \equiv \tilde{\Sigma} \tilde{\Omega}^{10} = \tilde{\mathcal{T}} $	$\frac{\frac{1}{2}(H_1 ^2 + H_2 ^2 + H_3 ^2 + H_4 ^2)}{\operatorname{Re}(-H_1H_4^* + H_2H_3^*)}$	Beam polarization Σ
$\tilde{\Omega}^{12} \equiv \tilde{P}$	$\operatorname{Im}(-H_1H_3^* - H_2H_4^*)$ $\operatorname{Im}(-H_1H_3^* - H_2H_4^*)$	Target a symmetry T
$ \begin{split} \overset{\circ}{\Omega}{}^3 &\equiv \overset{\circ}{G} \\ \overset{\circ}{\Omega}{}^5 &\equiv \overset{\circ}{H} \\ \overset{\circ}{\Omega}{}^9 &\equiv \overset{\circ}{E} \\ \overset{\circ}{\Omega}{}^{11} &\equiv \overset{\circ}{F} \end{split} $	$\begin{split} & \operatorname{Im}(H_1H_4^*-H_3H_2^*) \\ & \operatorname{Im}(-H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2- H_2 ^2+ H_3 ^2- H_4 ^2) \\ & \operatorname{Re}(-H_2H_1^*-H_4H_3^*) \end{split}$	
$ \begin{split} &\check{\Omega}^{14} \equiv \check{O}_x \\ &\check{\Omega}^7 \equiv -\check{O}_z \\ &\check{\Omega}^{16} \equiv -\check{C}_x \\ &\check{\Omega}^2 \equiv -\check{C}_z \end{split} $	$\begin{split} \mathrm{Im}(-H_2H_1^*+H_4H_3^*) \\ \mathrm{Im}(H_1H_4^*-H_2H_3^*) \\ \mathrm{Re}(H_2H_4^*+H_1H_3^*) \\ \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	
$ \begin{split} &\check{\Omega}^6 \equiv -\check{T}_x \\ &\check{\Omega}^{13} \equiv -\check{T}_z \\ &\check{\Omega}^8 \equiv \check{L}_x \\ &\check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_1H_4^*-H_2H_3^*) \\ \operatorname{Re}(-H_1H_2^*+H_4H_3^*) \\ \operatorname{Re}(H_2H_4^*-H_1H_3^*) \\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2) \end{array}$	

Spin observable	Helicity representation	Differential cross section
$\begin{split} \check{\Omega}^1 &\equiv \mathcal{I}(\theta) \\ \check{\Omega}^4 &\equiv \check{\Sigma} \\ \check{\Omega}^{10} &\equiv -\check{T} \\ \check{\Omega}^{12} &\equiv \check{P} \end{split}$	$\begin{array}{c} \frac{1}{2}(H_1 ^2+ H_2 ^2+ H_3 ^2+ H_4 ^2)\\ \mathrm{Re}(-H_1H_4^*+H_2H_3^*)\\ \mathrm{Im}(H_1H_2^*+H_3H_4^*)\\ \mathrm{Im}(-H_1H_3^*-H_2H_4^*) \end{array}$	$\frac{1}{2}$ Beam polarization Σ Target asymmetry T
$\overset{\circ}{\Omega}{}^3 \equiv \overset{\circ}{G}$ $\overset{\circ}{\Omega}{}^5 \equiv \overset{\circ}{H}$ $\overset{\circ}{\Omega}{}^9 \equiv \overset{\circ}{E}$ $\overset{\circ}{\Omega}{}^{11} \equiv \overset{\circ}{F}$	$\begin{split} & \operatorname{Im}(H_1H_4^*-H_3H_2^*) \\ & \operatorname{Im}(-H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2- H_2 ^2+ H_3 ^2- H_4 ^2) \\ & \operatorname{Re}(-H_2H_1^*-H_4H_3^*) \end{split}$	Recoil polarization <i>P</i>
$ \begin{split} &\check{\Omega}^{14} \equiv \check{O}_x \\ &\check{\Omega}^7 \equiv -\check{O}_z \\ &\check{\Omega}^{16} \equiv -\check{C}_x \\ &\check{\Omega}^2 \equiv -\check{C}_z \end{split} $	$\begin{split} \mathrm{Im}(-H_2H_1^*+H_4H_3^*) \\ \mathrm{Im}(H_1H_4^*-H_2H_3^*) \\ \mathrm{Re}(H_2H_4^*+H_1H_3^*) \\ \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	
$ \begin{split} &\check{\Omega}^6 \equiv -\check{T}_x \\ &\check{\Omega}^{13} \equiv -\check{T}_z \\ &\check{\Omega}^8 \equiv \check{L}_x \\ &\check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_1H_4^*-H_2H_3^*) \\ \operatorname{Re}(-H_1H_2^*+H_4H_3^*) \\ \operatorname{Re}(H_2H_4^*-H_1H_3^*) \\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2) \end{array}$	

		Spin observable	Helicity representation	Differential cross section
		$ \tilde{\Omega}^{1} \equiv \mathcal{I}(\theta) $ $ \tilde{\Omega}^{4} \equiv \tilde{\Sigma} $ $ \tilde{\Omega}^{10} = -\tilde{T} $	$\frac{1}{2}(H_1 ^2 + H_2 ^2 + H_3 ^2 + H_4 ^2) \leftarrow \text{Re}(-H_1H_4^* + H_2H_3^*) \leftarrow \text{Im}(H_1H_2^* + H_2H_4^*)$	Beam polarization Σ
-	+	$\tilde{\Omega}^{12} \equiv \tilde{P}$	$\operatorname{Im}(-H_1H_3^* - H_2H_4^*)$	Target asymmetry T
-	-	$\tilde{\Omega}^3 \equiv \tilde{G}$ $\tilde{\Omega}^5 \equiv \tilde{H}$ $\tilde{O}^9 = \tilde{E}$	$Im(H_1H_4^* - H_3H_2^*)$ $Im(-H_2H_4^* + H_1H_3^*)$ $\frac{1}{2}(H ^2 - H ^2 + H ^2 - H ^2)$	Recoil polarization P
-		$\tilde{\Omega}^{1} \equiv \tilde{E}$ $\tilde{\Omega}^{11} \equiv \tilde{F}$	$\operatorname{Re}(-H_2H_1^* - H_4H_3^*)$	Double polarization observables
sverse target	itudinal target	$ \begin{split} &\check{\Omega}^{14} \equiv \check{O}_x \\ &\check{\Omega}^7 \equiv -\check{O}_z \\ &\check{\Omega}^{16} \equiv -\check{C}_x \\ &\check{\Omega}^2 \equiv -\check{C}_z \end{split} $	$\begin{split} & \operatorname{Im}(-H_2H_1^*+H_4H_3^*) \\ & \operatorname{Im}(H_1H_4^*-H_2H_3^*) \\ & \operatorname{Re}(H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	
d + Trans	s - Longi	$ \begin{split} &\check{\Omega}^6 \equiv -\check{T}_x \\ &\check{\Omega}^{13} \equiv -\check{T}_z \\ &\check{\Omega}^8 \equiv \check{L}_x \\ &\check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_1H_4^*-H_2H_3^*)\\ \operatorname{Re}(-H_1H_2^*+H_4H_3^*)\\ \operatorname{Re}(H_2H_4^*-H_1H_3^*)\\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2)\end{array}$	
Polarize	photon			= 21

		Spin observable	Helicity representation	Differential cross section
+		$ \begin{split} &\check{\Omega}^1 \equiv \mathcal{I}(\theta) \\ &\check{\Omega}^4 \equiv \check{\Sigma} \\ &\check{\Omega}^{10} \equiv -\check{T} \end{split} $	$\frac{1}{2}(H_1 ^2 + H_2 ^2 + H_3 ^2 + H_4 ^2)$ Re(-H_1H_4^* + H_2H_3^*) Im(H_1H_2^* + H_3H_4^*)	Beam polarization Σ
-	+	$\check{\Omega}^{12} \equiv \check{P}$	$Im(-H_1H_3^*-H_2H_4^*)$	Target asymmetry T
•		$\check{\Omega}^3 \equiv \check{G}$ $\check{\Omega}^5 \equiv \check{H}$ $\check{\Omega}^9 \equiv \check{E}$	$\begin{array}{c} \operatorname{Im}(H_{1}H_{4}^{*}-H_{3}H_{2}^{*})\\ \operatorname{Im}(-H_{2}H_{4}^{*}+H_{1}H_{3}^{*})\\ \frac{1}{2}(H_{1} ^{2}- H_{2} ^{2}+ H_{3} ^{2}- H_{4} ^{2})\end{array}$	Recoil polarization P
-		$\check{\Omega}^{11} \equiv \check{F}$	$\operatorname{Re}(-H_2H_1^*-H_4H_3^*)$	Double polarization observables
sverse target – itudinal target –	jitudinal target -	$ \begin{split} &\check{\Omega}^{14} \equiv \check{O}_{x} \\ &\check{\Omega}^{7} \equiv -\check{O}_{z} \\ &\check{\Omega}^{16} \equiv -\check{C}_{x} \\ &\check{\Omega}^{2} \equiv -\check{C}_{z} \end{split} $	$\begin{split} & \operatorname{Im}(-H_2H_1^*+H_4H_3^*) \\ & \operatorname{Im}(H_1H_4^*-H_2H_3^*) \\ & \operatorname{Re}(H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	• Need at least 4 of the double observables from at least 2 groups for a "complete experiment"
zed 🕂 Trans	ons ¹ Long	$ \begin{split} &\check{\Omega}^6 \equiv -\check{T}_x \\ &\check{\Omega}^{13} \equiv -\check{T}_z \\ &\check{\Omega}^8 \equiv \check{L}_x \\ &\check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_1H_4^*-H_2H_3^*) \\ \operatorname{Re}(-H_1H_2^*+H_4H_3^*) \\ \operatorname{Re}(H_2H_4^*-H_1H_3^*) \\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2) \end{array}$	_
lariz	hotc			

	Spin observable	Helicity representation	Differential cross section
	$\begin{split} \tilde{\Omega}^{1} &\equiv \mathcal{I}(\theta) \\ \tilde{\Omega}^{4} &\equiv \tilde{\Sigma} \\ \tilde{\Omega}^{10} &\equiv -\tilde{T} \\ \tilde{\Omega}^{12} &\equiv \tilde{P} \end{split}$	$\begin{array}{c} \frac{1}{2}(H_1 ^2+ H_2 ^2+ H_3 ^2+ H_4 ^2)\\ \mathrm{Re}(-H_1H_4^*+H_2H_3^*)\\ \mathrm{Im}(H_1H_2^*+H_3H_4^*)\\ \mathrm{Im}(-H_1H_3^*-H_2H_4^*) \end{array}$	$\sum_{i=1}^{n} Beam polarization \Sigma$ $\sum_{i=1}^{n} Target a symmetry T$
	$\dot{\Omega}^3 \equiv \check{G}$ $\dot{\Omega}^5 \equiv \check{H}$ $\dot{O}^9 = \check{E}$	$Im(H_1H_4^* - H_3H_2^*)$ $Im(-H_2H_4^* + H_1H_3^*)$ $\frac{1}{2}(H_1 ^2 - H_2 ^2 + H_2 ^2 - H_1 ^2)$	Recoil polarization P
	$\tilde{\Omega}^{11} \equiv \tilde{F}$	$\frac{2(H_1 H_2 + H_3 H_4)}{\operatorname{Re}(-H_2H_1^* - H_4H_3^*)}$	Double polarization observables
verse target - tudinal target -	$ \begin{split} & \check{\Omega}^{14} \equiv \check{O}_{x} \\ & \check{\Omega}^{7} \equiv -\check{O}_{z} \\ & \check{\Omega}^{16} \equiv -\check{C}_{x} \\ & \check{\Omega}^{2} \equiv -\check{C}_{z} \end{split} $	$\begin{split} & \operatorname{Im}(-H_2H_1^*+H_4H_3^*) \\ & \operatorname{Im}(H_1H_4^*-H_2H_3^*) \\ & \operatorname{Re}(H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	• Need at least 4 of the double observables from at least 2 groups for a "complete experiment"
$\frac{zed}{ons} + \frac{Trans}{ons}$	$ \begin{split} & \check{\Omega}^6 \equiv -\check{T}_x \\ & \check{\Omega}^{13} \equiv -\check{T}_x \\ & \check{\Omega}^8 \equiv \check{L}_x \\ & \check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_{1}H_{4}^{*}-H_{2}H_{3}^{*}) \\ \operatorname{Re}(-H_{1}H_{2}^{*}+H_{4}H_{3}^{*}) \\ \operatorname{Re}(H_{2}H_{4}^{*}-H_{1}H_{3}^{*}) \\ \frac{1}{2}(- H_{1} ^{2}+ H_{2} ^{2}+ H_{3} ^{2}- H_{4} ^{2}) \end{array}$	• $\pi^0 p$, $\pi^+ n$, and ηp will be nearly complete
Polari phot			23

	Spin observable	Helicity representation	Differential cross section
	$\tilde{\Omega}^1 \equiv I(\theta)$ $\tilde{\Omega}^4 \equiv \tilde{\Sigma}$ $\tilde{\Omega}^{10} \equiv -\tilde{T}$	$\frac{1}{2}(H_1 ^2 + H_2 ^2 + H_3 ^2 + H_4 ^2) \leftarrow \text{Re}(-H_1H_4^* + H_2H_3^*) \leftarrow \text{Im}(H_1H_2^* + H_3H_4^*)$	Beam polarization Σ
	$\check{\Omega}^{12} \equiv \check{P}$	$Im(-H_1H_3^*-H_2H_4^*)$	Target asymmetry T
	$\tilde{\Omega}^3 \equiv \check{G}$ $\tilde{\Omega}^5 \equiv \check{H}$ $\check{\Omega}^9 = \check{E}$	$Im(H_1H_4^* - H_3H_2^*)$ $Im(-H_2H_4^* + H_1H_3^*)$ $\frac{1}{2}(H_1 ^2 - H_1 ^2 + H_1 ^2 - H_1 ^2)$	Recoil polarization P
-	$\tilde{\Omega}^{1} \equiv E$ $\tilde{\Omega}^{11} \equiv \tilde{F}$	$\frac{2(H_1 - H_2 + H_3 - H_4)}{\operatorname{Re}(-H_2H_1^* - H_4H_3^*)}$	Double polarization observables
ad + Transverse target - Is Longitudinal target -	$ \begin{split} &\check{\Omega}^{14} \equiv \check{O}_{x} \\ &\check{\Omega}^{7} \equiv -\check{O}_{z} \\ &\check{\Omega}^{16} \equiv -\check{C}_{x} \\ &\check{\Omega}^{2} \equiv -\check{C}_{z} \end{split} $	$\begin{split} & \operatorname{Im}(-H_2H_1^*+H_4H_3^*) \\ & \operatorname{Im}(H_1H_4^*-H_2H_3^*) \\ & \operatorname{Re}(H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2+ H_2 ^2- H_3 ^2- H_4 ^2) \end{split}$	• Need at least 4 of the double observables from at least 2 groups for a "complete experiment"
	$ \begin{split} &\check{\Omega}^6 \equiv -\check{T}_x \\ &\check{\Omega}^{13} \equiv -\check{T}_z \\ &\check{\Omega}^8 \equiv \check{L}_x \\ &\check{\Omega}^{15} \equiv \check{L}_z \end{split} $	$\begin{array}{c} \operatorname{Re}(-H_1H_4^*-H_2H_3^*) \\ \operatorname{Re}(-H_1H_2^*+H_4H_3^*) \\ \operatorname{Re}(H_2H_4^*-H_1H_3^*) \\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2) \end{array}$	• $\pi^0 p$, $\pi^+ n$, and ηp will be nearly complete
olariza photoi			• $K^+ \Lambda$ will be complete!

So, finding missing resonances requires lots of different observables.

Cross sections are not enough!

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Experimental facilities:

- The Thomas Jefferson National Accelerator Facility (Jefferson Laboratory = JLab).
- Continuous Electron Beam Accelerator Facility (CEBAF)

- Racetrack design
- Energies up to 6 GeV (prior to upgrade)

Lest we forget:

- CLAS was very good for detecting charged particles
- CLAS had a rather large acceptance

Bremsstrahlung photon tagger (also deceased)

- Jefferson Lab Hall B bremsstrahlung photon tagger had:
 - $E_{\gamma} = 20-95\%$ of E_0

•
$$E_{\gamma}$$
 up to ~5.5 GeV

Bremsstrahlung photon tagger (also deceased)

- Jefferson Lab Hall B bremsstrahlung photon tagger had:
 - $E_{\gamma} = 20-95\%$ of E_0
 - E_{γ} up to ~5.5 GeV
 - Circular polarized photons with longitudinally polarized electrons

Bremsstrahlung photon tagger (also deceased)

- Jefferson Lab Hall B bremsstrahlung photon tagger had:
 - $E_{\gamma} = 20-95\%$ of E_0
 - E_{γ} up to ~5.5 GeV
 - Circular polarized photons with longitudinally polarized electrons
 - Oriented diamond crystal for linearly polarized photons

Circular beam polarization

• Circular photon beam from longitudinallypolarized electrons

• Incident electron beam polarization > 85%

Linearly polarized photons

Coherent bremsstrahlung from
 50-μ oriented diamond

• Two linear polarization states (vertical & horizontal)

•Analytical QED coherent bremsstrahlung calculation fit to actual spectrum (Livingston/Glasgow)

• Vertical 1.3 GeV edge shown

FROST target

Butanol composition: C₄H₉OH The FroST target and its components: • C and O are even-even nuclei \rightarrow No A: Primary heat exchanger B. 1 K heat shield polarization of the bound nucleons C: Holding coil D: 20 K heat shield E: Outer vacuum can (Rohacell extension) B F: CH2 target G: Carbon target H: Butanol target I: Target insert K: Mixing chamber L: Microwave waveguide M: Kapton coldseal **Performance Specs**: Base Temp: 28 mK w/o beam, 30 mK with Cooling Power: 800 µW @ 50 mK, 10 mW @ 100 mK, and 60 mW @ 300 mK Polarization: +82%, -90% • Carbon target used to 1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol) represent bound nucleon Roughly 1% polarization loss per day. contribution of butanol

HD-ICE target

• Deuteron target

Outline

- Motivations
- Helicity amplitudes
- Experimental facilities
- Reactions and results

Pion photoproduction

Isospin combinations for reactions involving π^{θ} and π^+

- Differing isospin compositions for N^* and Δ^+ for the $\pi^0 p$ and $\pi^+ n$ final states
- The $\pi^0 p$ and $\pi^+ n$ final states can help distinguish between the Δ and N^*

$$\begin{split} & \bigwedge^{+} & \bigwedge^{*} \\ & \downarrow & \downarrow \\ & \pi^{0} + p : \sqrt{2/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle - \sqrt{1/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle \\ & \pi^{+} + n : \sqrt{1/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle + \sqrt{2/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle \end{split}$$

Isospin photo-couplings

• Using both proton and neutron targets allows decomposition of iso-singlet and iso-vector photo-couplings C^0 , C^1

Example:

$$\gamma p \rightarrow n\pi^+$$
: $\pm \sqrt{\frac{2}{3}} \left[C^0 \ominus \sqrt{\frac{1}{3}} C^1 \right] N^* + \frac{\sqrt{2}}{3} C \Delta^*$
 $\gamma n \rightarrow p\pi^-$: $\mp \sqrt{\frac{2}{3}} \left[C^0 \oplus \sqrt{\frac{1}{3}} C^1 \right] N^* + \frac{\sqrt{2}}{3} C \Delta^*$

Observable: σ Reaction: $\gamma n \rightarrow p \pi$

First-ever determination of the excited neutron multipoles for: $N(1440)1/2^+$, $N(1535)1/2^-$, $N(1650)1/2^-$, and $N(1720)3/2^+$

G13

P.T. Mattione, *et al.*, (CLAS Collaboration), Phys. Rev. C 96, 035204 (2017)

Observable: Σ Reactions: $\gamma p \rightarrow p \pi^{0}$ and $\gamma p \rightarrow n \pi^{+}$

Configuration:

- Linear photon polarization
- No target polarization
- No recoil polarization

Experiments:

- $g8b \rightarrow proton reactions$
- $g13 \rightarrow$ neutron reactions

Photon			Target			Recoil					
	_		_	_	x'	y'	z'	x'	x'	z'	z'
	_	x	y	z	_	_	_	x	z	x	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$^{-\mathrm{L}_{x'}}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$({\rm T}_{z'})$	$(\text{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

 Σ for $\gamma p \rightarrow p \pi^{\theta}$

G8b

ARIZONA STATE UNIVERSITY

RED: SAID fit

M. Dugger, et al., (CLAS Collaboration), Phys. Rev. C88, 065203 (2013)

Σ for $\gamma p \rightarrow n \pi^+$

Data for both reactions more than doubled the world database

G8b

M. Dugger, et al., (CLAS Collaboration), Phys. Rev. C88, 065203 (2013)

Σ for $\gamma p \rightarrow n \pi^+$

• Largest change from fits to prior Σ data for pions found in resonance couplings of $\Delta(1700)3/2^-$ and $\Delta(1905)5/2^+$

M. Dugger, et al., (CLAS Collaboration), Phys. Rev. C88, 065203 (2013)

Observable: *G* Reactions: $\gamma p \rightarrow p \pi^0$ and $\gamma p \rightarrow n \pi^+$

Configuration:

- Linear photon polarization
- Longitudinal target polarization
- No recoil polarization

Experiment: • g9b: FROST

Photon		Target			Recoil			Target -	+ Recoil		
	_	_	_	4	x'	y'	z'	x'	x'	z'	z'
	_	x	y	z	-	_	_	x	z	x	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$^{-\mathrm{L}_{x'}}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$(\mathbf{T}_{z'})$	$(\operatorname{-L}_{x'})$	$(-T_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

G for $\gamma p \rightarrow p \pi^{\theta}$

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B817, 136304 (2021)

G for $\gamma p \rightarrow n \pi^+$

UNIVERSITY

Bonn-Gatchina analysis (dotted) sees important contribution from $N(2190)7/2^{-1}$ and $\Delta(2200)7/2^{-1}$

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B817, 136304 (2021)

Observables: *T* and *F* Reaction: $\gamma p \rightarrow n \pi^+$

Configuration:

- Circular photon polarization
- Transverse target polarization
- Unpolarized photon (by adding circular beams)
- No recoil polarization

	Photon			Targe	t		Recoil		Targe		+ Recoil	
		_	4	4	_	x'	y'	z'	x'	x'	z'	z'
		_	x	y	z	_	_	_	x	z	x	z
>	unpolarized	σ_0	0	Т	0	0	P	0	$T_{x'}$	$^{-\mathrm{L}_{x'}}$	$T_{z'}$	$L_{z'}$
	linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$({\rm T}_{z'})$	$(-\mathbf{L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
→	circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

Experiment:

g9b: FROST

T for $\gamma p \rightarrow n \pi^+$

G9b: FROST

ARIZONA STATI UNIVERSITY

F for $\gamma p \rightarrow n \pi^+$

G9b: FROST

- Early stage results
- • Predictions get worse at higher energies

Observable: *E*

Reactions: $\gamma p \rightarrow n \pi^+$, $p \pi^0$ and $\gamma n \rightarrow p \pi^-$

Configuration:

- Circular photon polarization
- Longitudinal Target polarization
- No recoil polarization

Experiments:

- g9a: FROST \rightarrow proton reactions
- g14: HDICE \rightarrow neutron reactions

Photon			Target			Recoil			Target -	+ Recoil	
	_	-	_	4	x'	y'	z'	x'	x'	z'	z'
	_	x	\boldsymbol{y}	z	—	—	—	x	z	x	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$(\mathbf{T}_{z'})$	$(\text{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

E for $\gamma p \rightarrow p \pi^{\theta}$

SU

- Sample of results taken from analysis note
- Blue lines: SAID
- Magenta lines: MAID

Selected results of FROST Experiment $\vec{\gamma} \vec{p} \rightarrow \pi^+ n$

W = 1.650 GeV

W = 1.920 GeV

W = 2.170 GeV

- FROST experiment produced 900 data points of the **double-polarization observable E** in π^+ photoproduction with circularly polarized beam on longitudinally polarized protons for W = 1240 - 2260 MeV.
- Significant improvements of the description of the data in SAID, Jülich, and BnGa partial-wave analyses after fitting.
- New evidence found in this data for a $\Delta(2200)7/2^-$ resonance (BnGa analysis).
- S. Strauch et al. (CLAS Collaboration), Phys. Lett. B 750, 53 (2015) and A.V. Anisovich et al., arXiv:1503.05774.

Jefferson Lab

g14 beam-target helicity asymmetries for $\gamma n \rightarrow \pi^- p$ and N* states excited from the neutron

- *E&M* interaction is not isospin symmetric
- γnN* and γpN* couplings are different
 ⇔ probes of dynamics in N* excitation
- eg. SAID Partial Wave Analysis (PWA): $A_{\gamma n}^{1/2} [N(2190)7/2-] \rightarrow -16 \pm 5 (10^{-3} \text{ GeV}^{-1/2})$ $A_{\gamma n}^{3/2} [N(2190)7/2-] \rightarrow -35 \pm 5 (10^{-3} \text{ GeV}^{-1/2})$

"Isospin filters"

• The ηp , ωp and $K^+\Lambda$ systems have isospin $\frac{1}{2}$ and limit onestep excited states of the proton to be isospin $\frac{1}{2}$. The final states ηp , ωp , and $K^+\Lambda$ act as **isospin filters** to the resonance spectrum.

Σ for η

ARIZONA STATI

- Fit to Julich Bonn model (black line) with presence of *N*(1900)3/2⁻ (solid) and without (dashed)
- The inclusion of the N(1900)3/2+ was found to be important by Bonn-Gatchina for $K\Lambda$ and $K\Sigma$ photoproduction

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 771, 213-221 (2017)

Σ for η'

Fit to Bonn-Gatchina model
 (blue lines) indicates presence
 of N(1895)1/2⁻, N(2100)1/2⁺,
 N(2120)3/2⁻ and strong presence
 of N(1900)1/2⁻

G8b

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 771, 213-221 (2017)

Σ for ω

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 773, 112-120 (2017)

Σ for ω

P. Collins, et al., (CLAS Collaboration), Phys. Lett. B 773, 112-120 (2017)

FLORIDA STATE UNIVERSITY

Beam asymmetries for $\gamma n \rightarrow K^+ \Sigma^-$

Red: Full solution (Bonn-Gatchina) **Black**: Contribution of $N(1720)3/2^+$ removed **Green**: Contribution of $\Delta(1900)1/2^-$ removed

G13

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B 827, 136985 (2022)

Observable: *T*, *F*, *P* and *H*

Reaction: $\gamma p \rightarrow p \omega$

Configuration:

 \rightarrow \rightarrow

- Circular photon polarization
- Transverse target polarization
- Unpolarized photon (by adding circular beams)
- No recoil polarization

Experiment: • g9b: FROST

Photon		Target				Recoil			Target + Recoil				
	-	4	4	-	x'	y'	z'	x'	x'	z'	z'		
	_	x	y	z	—	—	_	x	z	x	z		
unpolarized	σ_0	0	Т	0	0	P	0	$T_{x'}$	$^{-\mathrm{L}_{x'}}$	$T_{z'}$	$L_{z'}$		
linear pol.	$-\Sigma$	Н	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$({\rm T}_{z'})$	$(\operatorname{-L}_{x'})$	$(\text{-}\mathrm{T}_{x'})$		
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0		

Target Asymmetry T in $\gamma \vec{p} \rightarrow p \omega$ (CLAS g9b)

P. Roy et al. [CLAS Collaboration], Phys. Rev. C 97, no. 5, 055202 (2018)

P. Roy, Z. Akbar, V. Credé et al. Published on 4 May 2018

200

3

<= ≥ > < ≥ >

F, P and H for ω

P. Roy, et al., (CLAS Collaboration), Phys. Rev. Lett. 122, 162301 (2019) FLORIDA STATE UNIVERSITY

Observable: *E* Reactions: $\gamma p \rightarrow p \omega$, $p \eta$ and $\gamma n \rightarrow K^+ \Sigma^-$

Configuration:

- Circular photon polarization
- Longitudinal Target polarization
- No recoil polarization

Experiment:

- g9b: FROST
- g14: HD-ICE

Photon		Target			Recoil			Target -	+ Recoil		
	_	_	_	4	x'	y'	z'	x'	x'	z'	z'
	—	x	y	z	—	—	—	x	z	x	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$\left(\text{-L}_{z'}\right)$	$({\rm T}_{z'})$	$(\operatorname{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

Helicity Asymmetry in $\vec{\gamma} \, \vec{p} \rightarrow p \, \omega$ (CLAS g9a)

BnGa (coupled-channels) PWA

- Dominant P exchange
- Complex 3/2⁺ wave

N(1720)
 W ≈ 1.9 GeV

- N(1895) 1/2⁻ (new state)
- N(1680), N(2000) 5/2⁺
- 7/2 wave > 2.1 GeV

< E ► < E ►

200

E

Z. Akbar et al. [CLAS Collaboration], Phys. Rev. C 96, no. 6, 065209 (2017)

E for η

- Fit to Julich-Bonn model (red lines) does not indicate the need for a narrow resonance ~1.7 GeV
- Structure near ~1.7 GeV appears to be interference of E_0^+ and M_2^+ multipoles

Red: Bonn-Gatchina prior to fit **Blue**: Full fit including "missing" D_{13} **Black**: Full fit without D_{13}

G14: HD-ICE

N. Zachariou, et al., (CLAS Collaboration), Phys. Lett. B 808, 135662 (2020)

Self-analyzing reaction K⁺ Y (hyperon)

• The weak decay of the hyperon allows the extraction of the hyperon polarization by looking at the decay distribution of the baryon in the hyperon center of mass system:

$$I(\cos\theta) = \frac{1}{2} \left(1 + \alpha P_Y \cos\theta \right)$$

where *I* is the decay distribution of the baryon, α is the weak decay asymmetry ($\alpha_A = 0.642$ and $\alpha_{\Sigma 0} = -\frac{1}{3} \alpha_A$), and P_Y is the hyperon polarization.

• We can obtain recoil polarization information without a recoil polarimeter and the reaction is said to be **"self-analyzing"**

Observables: Σ , T, O_x , O_z Reaction: $\gamma p \rightarrow K^+\Lambda$, $K^+\Sigma$

Configuration:

- Linear photon polarization
- Recoil polarization self analyzed
- No target polarization

Experiments:

- $g8b \rightarrow proton reactions$
 - $g13 \rightarrow$ neutron reactions

Photon			Target			Recoil			Target -	+ Recoil	
	_	_	_	_	x'	y'	z'	x'	x'	z'	z'
	_	x	y	z	_	_	_	x	z	x	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$^{-\mathrm{L}_{x'}}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$({\rm T}_{z'})$	$(\operatorname{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

 Σ, T for $\gamma p \to K^+ \Lambda$

Blue lines represent fits to Bonn-Gatchina model

G8b

iversity

Other lines represent various predictions

 O_x , O_z for $\gamma p \to K^+ \Lambda$

- Blue lines represent fits to Bonn-Gatchina model
- Other lines represent various predictions

G8b

 Σ , T for $\gamma p \rightarrow K^+ \Sigma^0$

- Blue lines represent fits to Bonn-Gatchina model
- Other lines represent various predictions

G8b
O_x , O_z for $\gamma p \to K^+ \Sigma^0$

- Blue lines represent fits to Bonn-Gatchina model
- Other lines represent various predictions

G8b

 O_x, O_z for $\gamma p \to K^+ \Sigma^0$

Indicates some evidence for additional $N^*(3/2^+)$ and $N^*(5/2^+)$ resonances of undetermined mass

G8b

$\boldsymbol{\Xi}$ photoproduction

 σ for $\gamma p \rightarrow K^+ K^+ \Xi^-$

- All data from CLAS (G11, and G12)
 - First total cross sections or photoproduction of these states above *W*=2.8 GeV

J.T. Goetz, et al., (CLAS Collaboration), Phys. Rev. C 98, 062201(R) (2018) UNIVERSITY

Observables: P, C_x, C_z Reaction: $\gamma p \rightarrow K^+K^+\Xi^-$

Configuration:

- Circular photon polarization
- Recoil polarization self analyzed
- No target polarization

Photon			Target			Recoil		Target + Recoil				
	_			x'	y'	z'	x'	x'	z'	z'		
	_	x	y	z	_	_	_	x	z	x	z	
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$	
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$(\mathbf{T}_{z'})$	$(-L_{x'})$	$(\text{-}\mathbf{T}_{x'})$	
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0	

 $P, C_x, C_z \text{ for } \gamma p \to K^+ K^+ \Xi^-$

First-time measurement

Coupling:

- ps = pseudoscalar
- pv = pseudovector

• Green dotted includes $\Sigma(2030)$ contribution

INTERNATIONAL

$p\Lambda$ elastic scattering: $p\Lambda \rightarrow p\Lambda$

- **Black** circles: previous world data (bubble chambers)
- **Blue** squares: CLAS results
- Momentum range important to neutron star physics

UNIVERSITY

J. Rowley, et al., (CLAS Collaboration), Phys. Rev. Lett. 127, 272303 (2021)

Status of meson photoproduction

	σ	Σ	т	Р	E	F	G	н	T _x	T _z	L _x	Lz	O _x	O _z	C _x	C _z
Proton target																
ρ π ⁰	1	1	- 🗸	√	√	√	√	√								
nπ⁺	1	1	- 🗸	√	1	v	√	√								
ρη	1	1	-	√	1	v	v	√								
ρη'	1	1	-	√	-	√	v	1								
ρω	1	1	1	~	1	1	v	1								
K+V	1	1	1	~	√	√	√	√	√	√	√	√	✓	<	1	 ✓
K+Σ0	1	1	1	~	√	√	-	√	-	-	-	-	1	<	1	✓
K0Σ+	1	1	√	✓	√	√	-	✓	-	-	 ✓ 	-	✓	<	~	~
	"Neutron" target															
рπ	1	√	v	√	√	√	√	 ✓ 								
K+Σ-	1	1	 ✓ 	✓	1	 ✓ 	✓	1								
K₀V	1	1	 ✓ 	 ✓ 	1	√	1	1	1	1	1	1	✓	V	1	 ✓
Κ ⁰ Σ ⁰	1	1	 ✓ 	 ✓ 	1	 ✓ 	1	1	1	√	√	 ✓ 	✓	√	1	 ✓
N	lot s	how	n in t	Not shown in table: Published Pu												

Not shown in table:

- $\pi\pi$ photoproduction observables or
- Ξ states
- $p\Lambda$ scattering

81 D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)

82 D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)

83 D.G. Ireland, E. Pasyuk, I. Strakovsky, Progress in Particle and Nuclear Physics 111 103752 (2020)

Frost target

- Brute force polarization requires large magnet
- Instead use "trick" (Dynamic Nuclear Polarization):
 - Dope butanol with paramagnetic radical TEMPO
 - Polarize unpaired TEMPO electrons to 99.999% with B = 5 T and T = 0.3 K
 - Transfer electron polarization to free protons with microwaves at ~140 GHz
 - Remove microwaves
 - Cool to T = 3 mK and use B=0.5T holding field
 - Put target in CLAS and run experiment

Performance: target polarization

- Frozen spin butanol (C₄H₉OH)
- $P_z \approx 80\%$
- Target depolarization: $\tau \approx 100$ days

- For g9a (longitudinal orientation) 10% of allocated time was used polarizing target
- For g9b (transverse orientation) 5% of allocated time was used polarizing target

Frost target

Brute Force Polarization

$$P = \tanh(\frac{\vec{\mu} \cdot \vec{B}}{kT}) \longrightarrow \max(\text{maximize } B, \text{minimize } T)$$

Disadvantages:

- 1. Requires very large magnet
- 2. Low temperatures mean low luminosity
- 3. Polarization can take a very long time

We need a trick!

Slide from Chris Keith

Frost target

The Trick -- Dynamic Nuclear Polarization

Use brute force to polarize free electrons in the target material. Use microwaves to "transer" this polarization to nuclei. Mutual electron-nucleus spin flips re-arrange the nuclear Zeeman populations to favor one spin state over the other.

For best results, DNP is performed at B/T conditions where electron $t_{_{1}}$ is short (ms) and nuclear $t_{_{1}}$ is long (minutes)

The Resolved Solid Effect

Slide from Chris Keith

ARIZONA STATE UNIVERSITY

Frost target

Materials for DNP Targets

- Choice of material dictated by 4 factors:

- 1. Maximum polarization
- 2. Resistance to ionizing radiation
- 3. Presence of unpolarized nuclei \longrightarrow quality factor, $f \equiv \frac{N}{N_{\text{true}}}$
- 4. Presence of unwanted, polarized nuclei

- Free electrons must be embedded into target material:

- 1. Chemical doping with paramagnetic radicals
- 2. Paramagnetic radicals created by ionizing radiation
- Typically 1 free electron can "service" $\sim 10^3$ free protons

Slide from Chris Keith

Materials for DNP Targets, examples

Name	Dopant	f	Rad. Resistance
Polyethelyne, $C_{2}H_{4}$	chemical	0.12	low
Polystyrene, C ₈ H ₈	chemical	0.07	low
Propandiol, $C_{3}H_{6}(OH)_{2}$	chemical	0.11	moderate
Butanol, C ₄ H ₉ OH	chemical	0.13	moderate
Ammonia, ¹⁵ NH ₃	radiation	0.17	high
Lithium Hydride, ⁷ LiH	radiation	0.12	very high

Slide from Chris Keith

Low-lying Resonance States

Lattice QCD is consistent with nonrelativistic quark model for number of low-lying states

 $\gamma p \rightarrow p \pi^+ \pi^-$

The differential cross section for $\gamma p \rightarrow p \pi^+ \pi^-$

(without measuring the polarization of the recoiling nucleon)

$$\frac{d\sigma}{dx_{i}} = \sigma_{0} \{ (1 + \vec{\Lambda}_{i}, \vec{P}) + \delta_{\odot} (\mathbf{I}^{\odot} + \vec{\Lambda}_{i}, \vec{P}^{\odot}) \}$$

$$Shext slides \leftarrow G9a: FROST + \delta_{i} [\sin 2\beta (\mathbf{I}^{\circ} + \vec{\Lambda}_{i} \cdot \vec{P}^{\circ}) + \cos 2\beta (\mathbf{I}^{\circ} + \vec{\Lambda}_{i} \cdot \vec{P}^{\circ})] \}$$

•
$$\sigma_0$$
: The unpolarized cross section

- β: The angle between the direction of polarization and the x-axis
- $\delta_{\odot,I}$: The degree of polarizaton of the photon beam $\Rightarrow \delta_{\odot}$, and δ_{I}
- $\vec{\Lambda}_j$: The polarization of the initial nucleon $\Rightarrow (\Lambda_x, \Lambda_y, \Lambda_z)$
- $I^{\odot, s, c}$: The observable arising from use of polarized photons $\Rightarrow I^{\odot}, I^{s}, I^{c}$
- $\vec{\mathbf{P}}$: The polarization observable \Rightarrow (\mathbf{P}_x , \mathbf{P}_y , \mathbf{P}_z) (\mathbf{P}_x^{\odot} , \mathbf{P}_y^{\odot} , \mathbf{P}_z^{\odot}) (\mathbf{P}_x^s , \mathbf{P}_y^s , \mathbf{P}_z^s) (\mathbf{P}_x^c , \mathbf{P}_y^c , \mathbf{P}_z^c) (\mathbf{P}_x^s , \mathbf{P}_z^s) (\mathbf{P}_x^c , \mathbf{P}_y^c , \mathbf{P}_z^c) (\mathbf{P}_x^s , \mathbf{P}_z^s) (\mathbf{P}_x^c , \mathbf{P}_y^c , \mathbf{P}_z^c) (\mathbf{P}_x^s , \mathbf{P}_z^s) (\mathbf{P}_x^c , \mathbf{P}_z^c) (\mathbf{P}_x^s , \mathbf{P}_z^s) (\mathbf{P}_x^c , \mathbf{P}_z^c) (\mathbf{P}_x^s , \mathbf{P}_z^s) (\mathbf{P}_x^s) (\mathbf{P}_x^s) (\mathbf{P}_x^s , \mathbf{P}_z^s) (\mathbf{P}_x^s) (\mathbf{P}_x^s

Circular beam and

longitudinal target:

 $\delta_{l} = \Lambda_{x} = \Lambda_{v} = 0$

 P^z for $p \pi^+ \pi^-$

 P^{O} for $p \pi^{+} \pi^{-}$

Observable

Configuration:

INIVERSITY

- Linear photon polarization
- Longitudinal Target polarization
- No recoil polarization

Experiment: • g9a: FROST

	Photon	Target			Recoil			Target + Recoil				
		_	_	_	4	x'	y'	z'	x'	x'	z'	z'
		_	x	\boldsymbol{y}	z	_	_	_	x	z	x	z
	unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$
→	linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$({\rm T}_{z'})$	$(-\mathbf{L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
	circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

Isospin photo-couplings for

$$\gamma p \longrightarrow n\pi^{+}$$
 and $\gamma n \longrightarrow p\pi^{-}$
Iso-singlet $A^{0}|I=0,I_{3}=0\rangle|I=\frac{1}{2},I_{3}=\frac{1}{2}\rangle = A^{0}|I=\frac{1}{2},I_{3}=\frac{1}{2}\rangle$
Iso-vector $A^{1}|I=1,I_{3}=0\rangle|I=\frac{1}{2},I_{3}=\frac{1}{2}\rangle = A^{1}[\sqrt{2/3}|I=\frac{3}{2},I_{3}=\frac{1}{2}] \longrightarrow I/3|I=\frac{1}{2},I_{3}=\frac{1}{2}\rangle]$
 $\gamma n \longrightarrow$ Iso-singlet $A^{0}|I=0,I_{3}=0\rangle|I=\frac{1}{2},I_{3}=\frac{-1}{2}\rangle = A^{0}|I=\frac{1}{2},I_{3}=\frac{-1}{2}\rangle$
Iso-vector $A^{1}|I=1,I_{3}=0\rangle|I=\frac{1}{2},I_{3}=\frac{-1}{2}\rangle = A^{1}[\sqrt{2/3}|I=\frac{3}{2},I_{3}=\frac{-1}{2}] + \sqrt{1/3}|I=\frac{1}{2},I_{3}=\frac{-1}{2}\rangle]$
 $\gamma p \longrightarrow n\pi^{+}$: $\bigoplus \sqrt{\frac{2}{3}} \left[A^{0} \bigoplus \sqrt{\frac{1}{3}} A^{1} \right] N^{*} + \frac{\sqrt{2}}{3} A^{1} \Delta^{*}$
 $\gamma n \longrightarrow p\pi^{-}$: $\bigoplus \sqrt{\frac{2}{3}} \left[A^{0} \bigoplus \sqrt{\frac{1}{3}} A^{1} \right] N^{*} + \frac{\sqrt{2}}{3} A^{1} \Delta^{*}$

- Using both proton and neutron targets allows decomposition of iso-singlet and iso-vector photo-couplings
- The sings in \bigcirc \bigcirc will give interference terms

