Baryon spectroscopy with Hyp-TPC at J-PARC

Kiyoshi Tanida

(Advanced Science Research Center, Japan Atomic Energy Agency)

The 13th International Workshop on the

J-P/JRC

Physics of Excited Nucleons (NSTAR2022)

18 Oct. 2022

Introduction

- J-PARC: multi-purpose facility with high-intensity proton beam & various 2ndary beams (π , K, n, μ ...)
- Hyp-TPC: multi-purpose detector for hadron spectroscopy – compact but large acceptance

Contents

- I. Hyperon Spectrometer & HypTPC
- II. Experiments using HypTPC
 - E42 (H dibaryon)
 - E45 (N^{*}/Y^{*} spectroscopy)
 - E72 (Search for new narrow Λ^* resonance)

Part I. Hyperon Spectrometer & HypTPC

The Superconducting magnet

- Helmholz type, design maximum field : 1.5 T
- Conduction cooling with 2 GM cryocoolers
- Coil diameter : 1.0m
- Field uniformity : Br/By<1% in the TPC volume to achieve the good momentum resolution

HypTPC

- High rate capability
 - (100µm+50µm+50µm)
 - Gating grid
- Target inside the drift volume through the target holder
 - Large acceptance
- Drift field parallel to B-
 - Good position resolution

More on HypTPC

OOctagonal prism field cage O5768 readout pads

- Inner(10 rows): 2.1-2.7 × 9 mm²
- Outer(22 rows): 2.3-2.4 × 12.5 mm²

O Gating grid: φ50 μm, 1mm space

O Gas: P-10 (v_{max} ~ 5.3 cm /s) O Gain ~ 10⁴

O Position resolution < 300 μ m

O Δp/p = 1-3% for π and p

TPC Hodoscope

- Used for trigger/TOF
- 32 segments of plastic scintillator array surrounding HypTPC.
- Plastic scintillator of 80cm x 7cm x 1cm
- MPPCs on both ends
 - PMTs not used due to the strong magnetic field.

Part II. Experiments using HypTPC

J-PARC E42 experiment ~Search for H dibaryon~

H dibaryon

Flavor-singlet (00) state (strangeness -2, isospin 0, or ${}^{1}S_{0}$ state in $\Lambda \Lambda - \Xi N - \Sigma \Sigma$ system)

in s-state

Color-magnetic force is not repulsive, but attractive S S d 6 quark state may exist \rightarrow H dibaryon but not found so far A resonant state just above $\Lambda\Lambda$ threshold? All 6 quarks

⇒ Still an open and important question

Lattice QCD vs ALICE data

Valentina Mantovani Sarti (TUM Physics Department - E62)

10

Talk by Valentina Mantovani Sarti (TUM) at MESON2018 (June 8, 2018)

Gark Hatt

J-PARC E42 experiment

H-dibaryon search by using (K⁻, K⁺) reaction with diamond target.

Run in 2021

- Data taking is finished
- Analysis ongoing

Event display

HypTPC worked very well.

Analysis status of HypTPC

We are proceeding with careful analysis step by step, starting with basic calibration to evaluate efficiency and resolution.

Baseline correction of waveform

Even small dE MIPs, which were difficult to see due to noise in the online analysis, can be analyzed.

J-PARC E45 experiment

~Baryon spectroscopy by using $p(\pi, 2\pi)$ reaction~

Missing resonances

- A lot of states are predicted by QM, but not observed
- Measured by using mainly $\pi N \rightarrow \pi N$, $\gamma N \rightarrow \pi N$ reactions

Importance of $\pi\pi N$ (Width of *N** resonances)

Over half of the decay branchig fraction goes into 2π channel.

E45 setup

Measure $(\pi, 2\pi)$ in large acceptance TPC in dipole magnetic field $\pi^{p} \rightarrow \pi^{+} \pi^{n}, \pi^{0} \pi^{p}$ 2 charged particles + 1 neutral particle $\pi^{+} p \rightarrow \pi^{0} \pi^{+} p, \pi^{+} \pi^{+} n$ \rightarrow missing mass technique

 $\pi N \rightarrow KY \text{ (2-body reaction)}$ $\pi^{*} p \rightarrow K^{0} \Lambda,$ $\pi^{*} p \rightarrow K^{+} \Sigma^{*} \text{ (I=3/2, } \Delta^{*})$

 π^{+-} beam on liquid-H target (p= 0.73 – 2.0 GeV/c W=1.5-2.15 GeV)

x100 more statistics than ever

Run expected in 2025-2026

J-PARC E72 experiment

~Search for new Λ^* by using $K^-p \rightarrow \Lambda \eta$ reaction~

A new Λ resonance around 1670 MeV?

- 2 independent theory groups claim there is a new narrow Λ^* resonance around 1670 MeV with J=3/2
 - Kamano et al. [PRC90.065204, PRC92.025205] $J^{P}=3/2^{+}$ (P₀₃), M=1671+2-8 MeV, Γ=10+22-4 MeV
 - Liu & Xie [PRC85.038201, PRC86.055202] $J^{P}=3/2^{-}$ (D₀₃), M=1668.5±0.5 MeV, $\Gamma=1.5\pm0.5$ MeV
- The reason is the same
 - From $K^-p \rightarrow \Lambda \eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
 - Model independent

Differential cross sections (1)

Differential cross sections (2)

- Flat near the threshold
 Expected for J=1/2 (S-wave)
- Concave-up around p_K=734 MeV/c (Vs=1669 MeV)
- Flat again for p_K > 750 MeV/c (vs=1677 MeV)
- Concave shape requires J=3/2 amplitude
 reason for a narrow resonance; model independent

What can it be?

• The experimental data suggest the existence of a new Λ^* resonance with spin 3/2 (P₀₃ or D₀₃), Λ (1665):

Q: What is the nature of $\Lambda(1665)$, if it really exists?

- A: We have few ideas at the moment, aside from that it must be exotic, and thus very interesting.
- It is near the $\Lambda\eta$ threshold, but threshold cusp is unlikely. – Visible cusp appears only in S wave
- A molecular state in P or D? Then, where is the S state?
 - Cf. X(3872) & $\Lambda(1405)$ are in S wave.

\rightarrow It may be a new type of exotic state!

- Mixture of a molecular state and a 3-quark state???
- $udss\bar{s}$ pentaquark???

J-PARC E72

- Repeat the Kp $\rightarrow \Lambda \eta$ experiment again with a large acceptance detector, i.e., TPC (HypTPC)
 - Confirm angular distribution & the new resonance
 - Determine parity by Λ polarization measurement
- Principle
 - K beam momentum: 720-770 MeV/c
 - Momentum resolution: 1 MeV/c or better \rightarrow Can identify narrow resonance of Γ =1.5 MeV
 - Detect $\Lambda \rightarrow p\pi^{-}$, identify η by missing mass
- Run expected in 2024

Summary

- We developed a powerful multi-purpose time-projection-chamber, HypTPC.
 - Internal target 4π acceptance
 - High-rate capability, good momentum resolution
- Three experiments for baryons at J-PARC
 - E42: Search for H-dibaryon by using (K⁻, K⁺) reaction
 → Finished data taking. HypTPC worked well.
 - E45: Baryon spectroscopy by using $p(\pi, 2\pi)$ reaction
 - E72: Search for new Λ* resonance via $p(K^{-}, \Lambda)\eta$
 - More are coming.

Backup

TOF resolution

31

• Achieved ~140 ps resolution with a real size bar.

Time resolution of several voltage conditions

Time Resolution [ps]

PID capability

- By dE/dx in TPC & TOF with the Hodoscope
 - $-\pi$ -p separation up to 0.9 GeV/c
 - K- π separation up to 0.5 GeV/c

Part I. Introduction of J-PARC

Nuclear & Hadron Physics in J-PARC

Experiments at a glance (not all)

Test experiment at HIMAC

Test experiment at HIMAC (July 2018)

Test Results

Good resolution obtained w/o magnetic field

> <Transverse Diffusion> $\sigma_T(L) = \sqrt{\sigma_0^2 + D_T^2 L}$

 $\sigma_D^2 \ [mm^2]$

<Position Resolution>

414

Expected to have 200-250 μm resolution under the B field of 1 T

and the second second

High rate capability

Dalitz plot: $\Lambda_c^+ \rightarrow p K^- \pi^+$ [PRL117.011801]

* M(pK⁻)⁴¹

1D projection -- $M(pK^-)$

What's this?

- The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than $\Lambda,$ Σ resonances in this region
 - $-\Lambda$ (1670): 25-50 MeV
 - $-\Sigma$ (1660): 40-200 MeV
 - $-\Sigma$ (1670): 40-80 MeV
 - Λ(1690): ~60 MeV
- No such narrow states are theoretically predicted in this region – exotic?