Baryon resonance studies at the LEPS2 BGOegg experiment

Tran Nam

Research Center for Nuclear Physics, Osaka University
(LEPS \& BGOegg collaboration)

Motivation

- Establishing excitation spectra in the high-mass region from the experimental side via photon-induced reactions.
$>\pi^{0}$ photoproduction
- π^{0} data have been well established => Excellent candidate as reference.
- I=1 , both N^{*} and Δ^{*} contributions appear in the s-channel intermediate state maybe an disadvantage.
- Our data can contribute to enriching the existing database.
$>$ single ω and η photoproduction
- I=0 , only couple to N^{*}.
- η meson, couples with $s \bar{s}$, is likely the key to solve missing resonance problem.
$>$ Simultaneous measurement of $d \sigma / d \omega$ and photon beam asymmetry (Σ) in a wide angle and wide energy range helps to decompose the resonance spectrum.

Contents

>Introduction to LEPS2 BGOegg experiment at SPring-8 research facility

- Photoproduction experiments by a Laser Compton Scattering (LCS) beam.
$>$ Baryon resonance studies via single π^{0}, ω and η photoproduction off the proton:
- Differential cross section data in a wide angle region, $-1<\cos \theta^{c m}<0.5$
- Photon beam asymmetry data for $1.3 \mathrm{GeV}<E_{\gamma}<2.4 \mathrm{GeV}$, especially data above 2 GeV are new.
$>$ Summary of the N^{*} program at BGOegg experiment
$>$ Other studies on the η^{\prime} bound nuclei and in-medium decay of η^{\prime}
$>$ Upgrade plan for BGOegg experiment

LEPS2 BGOegg experiment at SPring-8, Japan

LEPS Experimental Hutch (1999 ~)

LEPS2 BGOegg experiment at SPring-8, Japan

Large acceptance EM calorimeter BGOegg

10/19/2022
$60 \mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$ crystals $\times 22$ layers covering $24^{0} \sim 144^{0}, \sigma_{E}=1.3 \% @ 1 \mathrm{GeV}$ Each BGO crystal cover 6^{0} in (θ, ϕ) with $\mathrm{L}_{\text {crystal }}=220 \mathrm{~mm}=20 \mathrm{X}_{0}$

Drift Chamber (DC)

$>$ The distance from DC to target is $z=1.6 \mathrm{~m}$
$>$ the covering angle $\theta<21^{0}$
$>$ Resolution $\sim 300 \mu \mathrm{~m}$

Resistive Plate Chamber(RPC)

$$
\gamma+p \rightarrow \eta+X \rightarrow 2 \gamma+X
$$

Where X was expected to be a proton
$>\theta^{l a b}<6^{\circ}=>$ Targeting the extreme angles
$>12.5 \mathrm{~m}$ distance from the target $=>$ only long-live charged particles (proton, electron...) can be measured
$>$ Using ToF method with time resolution is $50-120$ ps
Complete 4-momentum conservation => minimum BG

Analysis procedure

Event Selection

E_{γ} meas. (1.3-2.4 GeV) at tagger.
2 or 3 neutral clusters at BGOegg.

$$
\begin{aligned}
& \pi^{0} \rightarrow \gamma \gamma(\mathrm{Br}=98.8 \%) \\
& \eta \rightarrow \gamma \gamma(\mathrm{Br}=39.4 \%) \\
& \omega \rightarrow \pi^{0} \gamma \rightarrow \gamma \gamma \gamma(\mathrm{Br}=8.40 \%)
\end{aligned}
$$

Proton detection at DC, RPC or BGOegg.

χ^{2} probability cut with Kinematic Fit

Required 4-momentum conservation

$$
\& \pi^{0} / \eta \text { mass (PDG value). }
$$

Better S / N ratio \& resolutions are expected.

PHYSICAL REVIEW C 100, 055202 (2019)

Differential cross section of $\gamma p \rightarrow \pi^{0} p$

22 energy bins for $1300<\mathrm{E}_{\gamma}<2400 \mathrm{MeV} \& 17$ polar angle bins for $-1.0<\cos \theta_{\pi}^{C M}<0.7$

$>$ Our d $\sigma / d \Omega$ data are consistent with the existing PWA model

 calculations. What about photon beam asymmetry?—_ : Bonn-Gatchina [https://pwa.hiskp.uni-bonn.de/ BG2014_02_obs_int.htm]
__ : GWU SAID [http://gwdac.phys.gwu.edu/analysis/ pr_analysis.html]
_-: ANL-Osaka [Private communication with
Prof. Sato (Osaka Univ.)]

- : BGOegg experiment

口: CLAS [PRC76, 025211 (2007)]
o: CB-ELSA [PRC94, 012003 (2005)]
Δ : CBELSA/TAP [PRC84, 055203 (2011)]
$\diamond:$ GRAAL [EPJA26, 399 (2005)]
o: LEPS [PLB657, 32 (2007)]
Typical systematic error ~ 4\%-5\% (hist)

Photon beam asymmetry of $\gamma p \rightarrow \pi^{0} p$

- BGOegg experiment
\square : CLAS [PRC88 (2013) 065203]
O: CBELSA [PRC81 (2010) 065210]
\diamond : GRAAL [EPJA26 (2005) 399]
§ :LEPS [PLB657 (2007) 32]
* : Daresbury [NPB104(1976)253]

A: Daresbury [NPB154(1979)492]

* : CEA [PRL28(1972)1403]
Δ :Yerevan [PLB48(1974)463]
Syst. error (hist) : 0.006-0.050
: Bonn-Gatchina
[https://pwa.hiskp.uni-bonn.de/ BG2014_02_obs_int.htm]
-_: GWU SAID
[http://gwdac.phys.gwu.edu/ analysis/pr_analysis.html]
: ANL-Osaka
[Private communication with Prof. Sato (Osaka Univ.)]

Comparison with PWA results at high energy

- : this work (BGOegg), 出: LEPS [PLB657 (2007) 32], \star : Daresbury [NPB104(1976)253]

Photon Beam Asymmetry (Σ) at $2200<\mathrm{E}_{\gamma}<2300 \mathrm{GeV}$
$>$ SAID solution shows a big difference between $\mathrm{L} \leq 4$ and $\mathrm{L} \leq 5$ at reproducing the backward dip structure, corresponding to $\mathrm{H}_{19}(\mathrm{~N}(2220))$ and $\mathrm{H}_{39}(\Delta(2300))$ with $\mathrm{J}^{\mathrm{p}}=\frac{9}{2}^{+}$.
$>$ Bonn-Gatchina shows no significant different when restricting L from 9 to 4 . The middle range can be reproduced but not backward dip structure.
$>$ The inconsistency of two PWA models tells a large ambiguity in the amplitude solutions at $\mathrm{E}_{\gamma}>2 \mathrm{GeV}$

Differential cross section of $\gamma p \rightarrow \omega p$

Differential cross section of $\gamma p \rightarrow \omega p$

$>d \sigma / d \Omega$ at extremely backward angles became flat at $W>1.95 \mathrm{GeV}$
$>$ Possible of multi high-spin resonance contributions at backward angles such as G_{17} (2190) and "missing state" around with $J^{P}=\frac{5}{2}^{+} \quad$ [Phys. Rev. C 80, 065209]

Photon beam asymmetry of $\gamma p \rightarrow \omega p$

Differential cross section of $\gamma p \rightarrow \eta p$

PWWA solutions, such as MAID and BnGa, well describe data at $W<$ 2.2 GeV.
$>$ The peaking behavior at backward angles and at higher energies can not be explained with only uchannel contributions.

- : etaMAID2018
......... : SAID2009
- - - : Bonn-Gatchina2019
-.- : ANL-Osaka2016

Differential cross section of $\gamma p \rightarrow \eta p$

$>$ Existing data at the backward angles are inconsistent => variation in PWA results.
$>$ A clear bump structure was seen at the backward angles.
$>$ Shift in the position of the bump structure over the decay angles indicate possibility of multi-resonance contributions at $E_{\gamma}>$ 2 GeV .
$>$ This bump structure was not seen in the other angles besides backward angles => high-spin resonances which decay strongly to the backward/forward angles.

Differential cross section of $\gamma p \rightarrow \eta p$

\checkmark The bump structure was double checked at the most backward angle with a full four-momentum conservation measurement.
$>$ likely associated with the nucleon resonances that have a large $s \bar{s}$ component and strongly couple to the $\eta \mathrm{N}$ channel.
$>$ Candidates such as
$N(2120) \frac{3^{-}}{2}, N(2190) \frac{7^{-}}{2}, N(2220) \frac{9^{+}}{2}, N(2250) \frac{9^{-}}{2}$
Which the current information in the ηN decay channel are limited

Photon beam asymmetry of $\gamma p \rightarrow \eta p$

- Data above 2 GeV is new => large discrepancy between PWA calculations.
>etaMAID2018 and BnGa2019 can reproduce the new data to some extend except the middle range.

Differential cross section and Photon beam asymmetry of $\gamma p \rightarrow \eta p$

$>$ The multipole amplitudes of existing PWA solutions are inconsistent even at lower orbital momentum L.
=> A re-fit to the new data can improve the current understanding of resonance and Born-term contributions

Summary for the N^{*} program at BGOegg experiment

- N^{*} physics with single π^{0}, ω and η photoproduction off the proton.
- A wide angular measurement ($-1<\cos \theta^{C M}<0.5$) of differential cross sections and photon beam asymmetries were presented for photon beam energy
$1.3 \mathrm{GeV}<E_{\gamma}<2.4 \mathrm{GeV}$.
- A bump structure was found in η DCS distribution which is unique
- The main contribution should come from high-spin resonances instead of u-channel.
- No similar structure was found in π^{0} and $\omega=>$ the resonances should contain $s \bar{s}$ which strongly couple to ηN channel.
- Possible candidates such as $N(2120) \frac{3^{-}}{2}, N(2190) \frac{7^{-}}{2}, N(2220) \frac{9^{+}}{2}, N(2250) \frac{9^{-}}{2}$ were poorly
established in ηN decay channel => our data may help to improve the status of them.
- Photon beam asymmetry at higher energies are new and reveal inconsistences between PWA calculations, in addition, non of the existing PWAs can reproduce new data above $\mathrm{E}_{\gamma}>2.1 \mathrm{GeV}$.=> a re-fit that including our data is welcome.

Other studies at BGOegg experiment

- We performed two analysis procedures using Carbon-target data:
> Search for η^{\prime} bound nuclei
- N. Tomida et al., PRL 124 (2020) 202501.
- Upper limit : $2.2 \mathrm{nb} / \mathrm{sr}$ for $\cos \theta_{l a b}^{\eta p_{s}}<-0.9$

Direct measurement of in-medium η^{\prime} mass spectrum

- Y. Matsumura, Doctoral Thesis (Tohoku Univ., 2021).

Indirect measurement $\left(m_{\eta^{\prime}}+M_{A}\right)$ Need to know bound levels.

η-PRiME/Super-FRS (GSI) BGOegg phase-1 (SPring-8)

Direct measurement by $\mathrm{M}(\gamma \gamma)$
Need high-resolution calorimeter.

This small enhancement is not enough for a conclusion => we are in the middle of analyzing more data and update this figure

Upgrade plan for BGOegg experiment

(1) Upgrade the detector setup.
\Rightarrow Multi-meson BG $\left(\gamma \mathrm{p} \rightarrow \pi^{0} \pi^{0} \mathrm{p}\right) \times 1 / 40$
(2) Change a target from $\mathrm{C}[20 \mathrm{~mm}]$ to $\mathrm{Cu}[7 \mathrm{~mm}]$. $\Rightarrow \mathrm{R}_{\text {nucleus }} \times 1.8$, \# of nucleons $\times 1.8, \sigma\left(\mathrm{M}_{\gamma \gamma}\right) \times 0.6$
(3) Increase a photon beam intensity.

24 W pulse laser + existing 3 lasers $\Rightarrow \sim 5 \mathrm{Mcps}$

Upgrade plan for BGOegg experiment

$>$ Schedule : Preparation \& test data-taking in FY2022. Physics runs with a Cu target in FY2023. Reference data with LH_{2} target in FY2024.

