

Studies of Two-Pion Production and Time-like Structure of Baryons in Pion-Induced Reactions

Outline:

- 1) Motivations for experiments with pion beams,
- 2) HADES detector and pion beam @ GSI,
- 3) Results of PWA (BGa) for two pion channels,
- 4) Results for time-like em. transion of baryons in pion beam experiment,
- 5) Summary and outlook.

Izabela Ciepał, IFJ PAN Kraków for the HADES Collaboration

Motivations HI & elementary collisions

hadron properties in hot and dense nuclear matter
hadron electromagnetic structure
role of vector mesons

→ in-medium ρ broadening → chiral symmetry restoration

 $\rho(760)/a_{\rm l}(1260)\,$ become degenerate at $T\sim T_{\rm c}$, $\mu_b\,$ =0

in-medium **spectral function** depends on ρ **NN* coupling** (N(1520), Δ (1720), N(1910),) studied in **NN**, π **N collisions** via N*(Δ) \rightarrow N**e+e**- Dalitz decays

Electromagnetic structure of baryons

HADES Physics Program with Pion Beams

- → **selectivity:** resonances can be excited at given mass in s-channel by choosing the beam (pion) momentum, HADES starts with $\sqrt{s} = (1.46-1.55)$ GeV
 - \rightarrow 2nd resonance region,

- → $\pi^+\pi^-$, $\pi^+\pi^0$ production: off-shell coupling of ρ to resonance, $\rho \rightarrow \pi\pi$ (~100%) "golden channel",
- \rightarrow **BR** of resonances in the ρN decay,
- \rightarrow two-pion production channels,
- → **dilepton channel** R → N e+e-, never measured in pion induced reactions,
- → **very scarce data** base for pion-nucleon reactions.

HADES Spectrometer

- ✓ SIS18 beams: protons (1-4.5GeV), nuclei (1-2AGeV), pions (0.4-2 GeV) secondary beam
- ✓ Spectrometer with $\Delta M/M$ ~ 2% at ρ/ω
- ✓ PID (π /p/K): ToF (TOF/RPC, T0 detector), tracking (dE/dx)
- ✓ momenta, angles: MDC+ magnetic field
- ✓ electrons: RICH
- ✓ neutral particles: ECAL
- ✓ full azimuthal, polar angles $18^{\circ} 85^{\circ}$
- ✓ e+e- pair acceptance ~0.35

Pion Beam @ GSI

Eur. Phys. J. A 53, 188 (2017)

Bonn-Gatchina PWA

A. Sarantsev

exclusive analysis of 2π channels

6<u>×1</u>0°

2π data included in the fit

Reaction	Observable	W (GeV)	
$\gamma p o \pi^0 \pi^0 p$	DCS, Tot	1.2 - 1.9	MAMI
$\gamma p o \pi^0 \pi^0 p$	\mathbf{E}	1.2 - 1.9	MAMI
$\gamma p o \pi^0 \pi^0 p$	DCS,Tot	1.4 - 2.38	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	P,H	1.45 - 1.65	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	T, P_x, P_y	1.45 - 2.28	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	P_x, P_x^c, P_x^s (4D)	1.45 - 1.8	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	$P_{y}, P_{y}^{c}, P_{y}^{s}$ (4D)	1.45 - 1.8	CB-ELSA
$\gamma p ightarrow \pi^+\pi^- p$	DCS	1.7 - 2.3	CLAS
$\gamma p ightarrow \pi^+\pi^- p$	I^c, I^s	1.74 - 2.08	CLAS
$\pi^- p o \pi^0 \pi^0 n$	DCS	1.29 - 1.55	Crystal Ball
$\pi^- p ightarrow \pi^+ \pi^- n$	DCS	1.45 - 1.55	HADES
$\pi^- p o \pi^0 \pi^- p$	DCS	1.45 - 1.55	HADES

counts 0.85 0.9 0.95 1.05 $M_{miss}(\pi^+\pi^-)$ [GeV/c²] 1.5×10³ counts 0.05 0.1 0.15 0.2 $M_{miss}(p\pi^{-})$ [GeV/c²]

unique data set

 $h - \pi \longrightarrow N-\rho \longrightarrow N-\sigma \longrightarrow N-\rho \longrightarrow N-$

8

$\begin{array}{c} 2\pi \ production \ in \ \pi^-p \rightarrow n\pi^+\pi^-/p\pi^-\pi^0 \\ total \ cross \ sections \end{array}$

HADES: Phys. Rev. C 102, 024001, (2020)

- → D_{13} (N*(1520)) dominant contribution in ρ production
- → D₁₃(1520) coupling to pN: 12+/-2 %

8 new entries

crucial for e+e- analysis

particle data group branching ratios of N(1440), N(1535), N(1520) to 2π channels ($\Delta\pi$, N ρ , N σ)

Dalitz decays of Baryon resonance

QED "point-like" R- γ^* vertex

M. Zetenyi et al., PRC 67, 044002 (2003). M. I. Krivoruchenko et al., Ann. Phys. 296, 299 (2002).

VDM2 "strict VDM"

Sakurai. Phys. Rev 22 (1969) 981 M. I. Krivoruchenko et al., Ann. Phys. 296, 299 (2002)

$$\Gamma(M_{e^+e^-}) = \Gamma_0 (M_0/M_{e^+e^-})^3$$

 $\Delta(1232)$

N(1520)

 $\Delta(1680)$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mee [GeV/c²]

extended VDM1 two component

ρN, γN fixed independently vanishing $\rho \rightarrow e+e-$ at $q^2 \sim 0$

Kroll, Lee & Zuminio Phys. Rev. 157, 1376 (1967)

 $\Gamma(M_{e^+e^-}) = \Gamma_0 M_{e^+e^-} / M_0$

this scheme is implemented in Rapp and Wambach calculations of in-medium ρ spectral functions

$$\Gamma(M_{e^+e^-}) = \Gamma_0(M_0/M_{e^+e^-})$$

Implementation of VDMs

0.6

Implementation of VDMs

Two-component Lagrangian model M. Zetenyi and G. Wolf

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

- cut on **invMe**⁺e⁻ >140 MeV (above π^0 mass)
- missing mass cut on $\mathbf{M}_{_{miss}}(\eta \text{ removed})$

- π C simulations using Pluto (qfs participant-spectator model)
- production cross sec. on C for: π^0 , η , ρ , γ deduced from the scaling: $R_{C/H} = \sigma_C / \sigma_H$
- **CH**₂ target: $\left(\frac{d\sigma}{dM_{ee}}\right)_{CH_2} = \left(\frac{d\sigma}{dM_{ee}}\right)_C + 2\left(\frac{d\sigma}{dM_{ee}}\right)_H$

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

- cut on $invMe^+e^- > 140$ MeV (above π^0 mass)
- missing mass cut on $\mathbf{M}_{miss}(\eta \text{ removed})$

Exclusive e+e- cocktail

comparison to the Lagrangian and covariant quark models

Lagrangian model:

- based on VDM1
- shown with phase $\phi=90^{\circ}$
- needs to be confronted to $\pi^- p \rightarrow \pi \pi N$ data

Covariant form factor model:

- n-N(1520) and n-N(1535) transitions
- **dominant pion cloud contribution**: baryon transition form factor strongly related to the pion electromagnetic form factor

huge excess over point-like QED

Structure of Baryon Transitions Lagrangian Model

E. Speranza et al. Phys. Lett. B764, 282 (2017)

 $\pi N \rightarrow Ne+e-$ spin density m

spin density matrix elements (SDME) information on photon polarization

$$\frac{d^{3}\sigma}{dM_{ee}d\Omega_{\gamma_{*}}d\Omega_{e}} \sim |\mathsf{A}|^{2} = \frac{e^{2}}{Q^{4}} \sum_{\Lambda\Lambda'} \rho_{\Lambda\Lambda'}^{(H)} \rho_{\Lambda\Lambda'}^{(dec)} \quad \text{QED: } \gamma^{*} \to e^{+e^{-1}}$$

hadron decay to γ^{*}

 $\frac{|A|^2}{\sigma} = \frac{1}{N} \left(8m_e^2 + 8|\mathbf{k}|^2 \left[1 - \tilde{\rho}_{11}^{(H)} + \cos^2\theta (3\tilde{\rho}_{11}^{(H)} - 1) + \sqrt{2}\sin(2\theta)\cos\phi\operatorname{Re}\tilde{\rho}_{10}^{(H)} + \sin^2\theta\cos(2\phi)\operatorname{Re}\tilde{\rho}_{1-1}^{(H)} \right] \right)$

SDME ρ_{11} , ρ_{10} , ρ_{1-1} extracted taking into account acceptance and efficiency (A. Sarantsev) in 3 bins in $\cos\theta\gamma$

HADES Physics Program with Pion Beams explore the 3rd resonance region $\sqrt{s} = 1.7$ GeV/c²

High statistics beam energy scan: continuation and extension to 3rd resonance region

1) Baryon-meson couplings:

 \rightarrow ππN, ωn, ηn, K⁰Λ, K⁰Σ, ...

including neutral mesons (ECAL),

- → ρR couplings S31(1620), D33(1700), P13(1720),...
- 2) Time-like em. baryon transitions
 - $\rightarrow \pi^{-}p \rightarrow ne+e-,$
 - \rightarrow test of VMD for ρ and $\omega,$
 - \rightarrow spin-density matrix elements,
- 3) Cold nuclear matter studies:
 - $\rightarrow \omega$ absorption
 - $\rightarrow \rho$ spectral function
 - \rightarrow strangeness production

HADES Spectrometer UPGRADE

HODO, fRPC, STS2, STS1

• ECAL (lead glass)

STS2 STS1

new RICH

RCH Start Veto

innerTOF (fast trigger)

• START T0 detector

HADES UPGRADE

Low Gain Avalanche Detectors for the HADES reaction time (T) detector upgrade (Eur. Phys. J. A (2020) 56: 183)

- timing < 100 ps</p>
- PCB in the beam vacuum
- rate capability 10⁸ p/s
- 2 cm x 2 cm, 96 channels
- pitch 387 µm

 $\mathsf{MWPC} \rightarrow \mathsf{MAPMT}$

Strangeness studies with HADES pp@ 4.5 GeV (Feb 2022)

HADES: Eur. Phys. J. A57, 138 (2021)

Intrinsic interest of pp:

• Structure of strange baryons (Λ , Σ)

measurement @SISFebruary 2022: pp @ 4.5GeV

VMD:

huge effect of vector mesons predicted

R. Williams et. al. PRC48, 1381 (1993)

- HADES & **pion beam** is an unique tool to understand in details baryoncouplings:
 - → significant off-shell contribution originating from N(1520)D₁₃ shown by combined PWA,
 - \rightarrow D₁₃(1520) coupling to p-N: 12+/-2 %,
 - \rightarrow very new information on electromagnetic baryon transitions in the time-like region,
- On-going analysis for hyperon Dalitz and radiative decays in pp reaction at 4.5 GeV
- Proposal for pion beam experiment in 2025 in the third resonance region
 - → investigate heavier resonances N(1620), N(1720),...in e+e- channels and many hadronic channels, e.g. $\pi^-p \rightarrow n$, K⁰ Λ , K⁰ Σ ,....

Thank You for Your Attention