Studies of low-energy K- nucleus/nuclei interactions by AMADEUS

Magdalena Skurzok

On the behalf of the AMADEUS collaboration

NSTAR2022 Conference

Santa Margherita Ligure, 17-21.10.2022

Istituto Nazionale di Fisica Nucleare

Motivation and Scientific Case

The investigation of the in-medium modification of the KN interaction is of fundamental for the low-energy QCD (Quantum Chromodynamic)

Chiral perturbation theory (ChPT): effective field theory where **mesons and baryons** represent the effective degrees of freedom instead of the fundamental quark and gluon fields.

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

- The chiral symmetry is **spontaneously broken** → the existence of massless and spinless Nambu-Goldstone bosons which are identified with the pions. Explicitly broken by **q** masses.
- Very successful in describing the πN , $\pi \pi$ and NN interactions in the low-energy regime and is considered as the theory of the low-energy strong interaction in the SU(2) flavour sector.

The extension of the theory to the sector with the <u>quark s</u> turns out to be more problematic since it is not directly applicable to the $\overline{K}N$ channel.

The χ PT is not applicable to the $\overline{K}N$ channel due to the emerging of the $\Lambda(1405)$ and the $\Sigma(1385)$ resonances just below the $\overline{K}N$ mass threshold

Possible solutions:

- Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
- \succ Phenomenological $\overline{K}N$ and NN potentials

The χ PT is not applicable to the $\overline{K}N$ channel due to the emerging of the $\Lambda(1405)$ and the $\Sigma(1385)$ resonances just below the $\overline{K}N$ mass threshold

Λ(1405) I=0 $J^{P} = \frac{1}{2}^{-1}$ M = (1405.1^{+1.3}_{-1.0}) MeV Γ = (50.5 ± 2.0) MeV decay modes: Σπ (I=0) 100%

Σ(1385) I=1 $J^{P} = 3/2^{+}$ decay modes: $\Lambda \pi$ (I=1) (87.0 ± 1.5) % $\Sigma \pi$ (I=1) (11.7 ± 1.5) %

Possible solutions:

- Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
- \succ Phenomenological $\overline{K}N$ and NN potentials

The parameters of the models are constrained by the existing scattering data

The controversial nature of the Λ(1405) and kaonic bound states

DAΦNE

- $\phi \rightarrow K^{-} K^{+} (49.2\%), \approx 1000 \phi/s$
- monochromatic low momentum Kaons ≈127 Mev/c
- back to back K⁻ K⁺ topology
- small hadronic background due to the beam

KLOE

Cilindrical DC with 4π geometry & electromagnetic calormeter 96% acceptance high efficiency and resolution for charged and neutral particles exclusive measurement of the considered AT-REST **IN-FLIGHT** K⁻ absorbed from atomic orbitals (p.~ 100 MeV/c) (p, ~ 0 MeV/c) p.~ 100 MeV/c

AMADEUS: KLOE 2004-2005 dataset analysis ($\mathcal{L} = 1.74 \text{ pb-1}$)

Possibility to use KLOE materials as an active target

- DC wall (750 µm C foil, 150 µm Al foil);
- DC gas (90% He, 10% C₄H₁₀).

AMADEUS @ DAONE

DAΦNE

- φ → K⁻ K⁺ (49.2%), ≈1000 φ/s
- monochromatic low momentum Kaons ≈127 Mev/c
- back to back K⁻ K⁺ topology
- small hadronic background due to the beam

KLOE

- Cilindrical DC with 4π geometry & electromagnetic calormeter
- 96% acceptance
- high efficiency and resolution for charged and neutral particles

exclusive measurement of the considered K⁻ absorption on light nuclei AT REST & IN FLIGHT

AMADEUS: KLOE 2004-2005 dataset analysis (\mathscr{L} = 1.74 pb-1)

AMADEUS scientific case

- nature of $\Lambda(1405)$ and K⁻N amplitude below threshold

 low-energy charged K cross section (for p=100MeV)

Yπ correlation studies (Λπ, Σπ final states)

- K⁻ multiN absorption

kaonic nuclear clusters
 VN correlation studies
 (Λp, Σ⁰p, Λt final states)

<u>Λπ⁻ analysis</u>: K⁻n non-resonant transition amplitude

K⁻n scattering amplitude with Chiral models

J. Hrtankova, J. Mares, Phys. Rev. C96, 015205 (2017) A. Cieply et al, Nycl. Phys. A 954, 17 (2016) The detailed characterisation of the yield and spectral shape of the non-resonant antiKN absorption is fundamental reference to extract the $\Lambda(1405)$ properties in KN absorption experiments

Investigated using: K^{-} "n" ³He $\rightarrow \Lambda \pi^{-}$ ³He

K. Piscicchia, et. al., Phys. Lett. B782, 339 (2018) K. Piscicchia, S. Wycech, C. Curceanu, Nucl. Phys. A 954, 75 (2016)

 $E_{
m Kn}\sim -B_n-<rac{p_{\Lambda\pi}^2}{2\mu_{\pi,\Lambda,3
m He}}>~_{
m (33\pm6)}$ MeV below KN threshold

$Σ^0 π^0 / \Lambda^0 π^0$ analysis

Motivation:

1) The available data for the inelastic $K^{\text{-}}\,p\to\Sigma^0\,\pi^0$ cross section close to threshold:

- three points in the p_K=120-200 MeV/c range (bubble chamber experiments),
- uncertainties larger than 30%,
- the $K^- p \rightarrow \Sigma^0 \pi^0$ cross sections are obtained **not directly but** on the basis of the isospin symmetry argument, from the measurement of $K^- p \rightarrow \Lambda \pi^0$ events

Low momentum K⁻ scattering cross sections in this Isospin I = 0 channel represent a fundamental input for the non-perturbative low energy QCD models

$\Sigma^0 \pi^0 / \Lambda^0 \pi^0$ analysis

PRELIMINARY

 $\sigma(K^{-}p \to \Sigma^{0}\pi^{0})(p_{K} = (98 \pm 10)MeV/c) = 42.8 \pm 1.5(stat.)^{+2.4}_{-2.0}(syst.) \text{ mb} \quad \sigma(K^{-}p \to \Lambda\pi^{0})(p_{K} = (98 \pm 10)MeV/c) = 31.0 \pm 0.5(stat.)^{+1.2}_{-1.2}(syst.) \text{ mb}$

K⁻ multi-nucleon absorptions

In K⁻-nuclei optical potential a K⁻ multi-nucleon absorption term is necessary to fit the kaonic atoms data:

bound nucleons = "N", "NN", "NNN", "NNN" bound or unbound nucleons = (NN), (NNN) $Y = \Lambda, \Sigma$

<u>Ap analysis</u>: K⁻ multi-nucleon absorption BRs and σ

R. Del Grande et al., Eur .Phys. J. C 79 (2019) no. 3, 190

Process	Branching Ratio (%)	$\sigma \ ({ m mb})$	0	$p_K ~({\rm MeV/c})$
2NA-QF Λp	$0.25 \pm 0.02 \text{ (stat.)} \stackrel{+0.01}{_{-0.02}} \text{(syst.)}$	$2.8 \pm 0.3 \text{ (stat.)} ^{+0.1}_{-0.2} \text{ (syst.)}$	0	128 ± 29
2NA-FSI Λp	6.2 ± 1.4 (stat.) $^{+0.5}_{-0.6}$ (syst.)	$69 \pm 15 \text{ (stat.)} \pm 6 \text{ (syst.)}$	0	128 ± 29
2NA-QF $\Sigma^0 p$	0.35 ± 0.09 (stat.) $^{+0.13}_{-0.06}$ (syst.)	$3.9 \pm 1.0 \text{ (stat.)} ^{+1.4}_{-0.7} \text{ (syst.)}$	0	128 ± 29
2NA-FSI $\Sigma^0 p$	7.2 ± 2.2 (stat.) $^{+4.2}_{-5.4}$ (syst.)	$80 \pm 25 \text{ (stat.)} ^{+46}_{-60} \text{ (syst.)}$	0	128 ± 29
2NA-CONV Σ/Λ	2.1 ± 1.2 (stat.) $^{+0.9}_{-0.5}$ (syst.)	-		
3NA Λpn	1.4 ± 0.2 (stat.) $^{+0.1}_{-0.2}$ (syst.)	$15 \pm 2 \text{ (stat.)} \pm 2 \text{ (syst.)}$	0	117 ± 23
3NA Σ^0 pn	3.7 ± 0.4 (stat.) $^{+0.2}_{-0.4}$ (syst.)	$41 \pm 4 \text{ (stat.)} {}^{+2}_{-5} \text{ (syst.)}$	0	117 ± 23
4NA Apnn	0.13 ± 0.09 (stat.) $^{+0.08}_{-0.07}$ (syst.)	-		
Global $\Lambda(\Sigma^0)$ p	$21 \pm 3(\text{stat.}) \stackrel{+5}{_{-6}}(\text{syst.})$			

Simultaneous fit of:

- Ap invariant mass;
- angular correlation;
- proton momentum;
- Λ momentum.

cross sections and BRs

<u>Ap analysis</u>: K⁻ multi-nucleon absorption BRs and σ

Process	Branching Ratio (%)	$\sigma \ ({ m mb})$	0	$p_K \; ({\rm MeV/c})$
2NA-QF Λp	$0.25 \pm 0.02 \text{ (stat.)} \stackrel{+0.01}{_{-0.02}} \text{(syst.)}$	$2.8 \pm 0.3 \text{ (stat.)} ^{+0.1}_{-0.2} \text{ (syst.)}$	0	128 ± 29
2 NA-FSI Λp	6.2 ± 1.4 (stat.) $^{+0.5}_{-0.6}$ (syst.)	69 ± 15 (stat.) ±6 (syst.)	@	128 ± 29
2NA-QF $\Sigma^0 p$	0.35 ± 0.09 (stat.) $^{+0.13}_{-0.06}$ (syst.)	$3.9 \pm 1.0 \text{ (stat.)} ^{+1.4}_{-0.7} \text{ (syst.)}$	@	128 ± 29
2NA-FSI $\Sigma^0 p$	7.2 ± 2.2 (stat.) $^{+4.2}_{-5.4}$ (syst.)	$80 \pm 25 \text{ (stat.)} ^{+46}_{-60} \text{ (syst.)}$	0	128 ± 29
2NA-CONV Σ/Λ	2.1 ± 1.2 (stat.) $^{+0.9}_{-0.5}$ (syst.)	-		
3NA Apn	1.4 ± 0.2 (stat.) $^{+0.1}_{-0.2}$ (syst.)	$15 \pm 2 \text{ (stat.)} \pm 2 \text{ (syst.)}$	0	117 ± 23
3NA Σ^0 pn	3.7 ± 0.4 (stat.) $^{+0.2}_{-0.4}$ (syst.)	$41 \pm 4 \text{ (stat.)} {}^{+2}_{-5} \text{ (syst.)}$	@	117 ± 23
4NA Apnn	0.13 ± 0.09 (stat.) $^{+0.08}_{-0.07}$ (syst.)	-		
Global $\Lambda(\Sigma^0)$ p	21 ± 3 (stat.) $^{+5}_{-6}$ (syst.)	-		

R. Del Grande et al., Eur. Phys. J. C79 (2019) no.3, 190

The ratio between the branching ratios of the 2NA-QF in the Λp channel and in the $\Sigma^0 p$ is measured to be:

$$\mathcal{R} = \frac{BR(K^-pp \to \Lambda p)}{BR(K^-pp \to \Sigma^0 p)} = 0.7 \pm 0.2(stat.)^{+0.2}_{-0.3}(syst.)$$

and the ratio between the corresponding phase spaces is $\mathcal{R}' \simeq 1.22$.

<u>Ap analysis:</u> K⁻pp bound state search

R. Del Grande et al., Eur.Phys.J. C79 (2019) no.3, 190

K⁻pp bound state contribution completely overlaps with the K⁻2NA

Summary

Λ p channel: 2NA, 3NA and 4NA BRs and σ

Process	Branching Ratio (%)	$\sigma ~({ m mb})$	0	$p_K \; (MeV/c)$
2NA-QF Λp	$0.25 \pm 0.02 \text{ (stat.)} \stackrel{+0.01}{_{-0.02}} \text{(syst.)}$	$2.8 \pm 0.3 \text{ (stat.)} ^{+0.1}_{-0.2} \text{ (syst.)}$	0	128 ± 29
2NA-FSI Λp	6.2 ± 1.4 (stat.) $^{+0.5}_{-0.6}$ (syst.)	$69 \pm 15 \text{ (stat.)} \pm 6 \text{ (syst.)}$	0	128 ± 29
2NA-QF $\Sigma^0 p$	$0.35 \pm 0.09 (\text{stat.}) \stackrel{+0.13}{_{-0.06}} (\text{syst.})$	$3.9 \pm 1.0 \text{ (stat.)} ^{+1.4}_{-0.7} \text{ (syst.)}$	0	128 ± 29
2NA-FSI Σ^0 p	7.2 ± 2.2 (stat.) $^{+4.2}_{-5.4}$ (syst.)	$80 \pm 25 \text{ (stat.)} {+46 \atop -60} \text{ (syst.)}$	@	128 ± 29
2NA-CONV Σ/Λ	2.1 ± 1.2 (stat.) $^{+0.9}_{-0.5}$ (syst.)	-		
3NA Apn	1.4 ± 0.2 (stat.) $^{+0.1}_{-0.2}$ (syst.)	$15 \pm 2 \text{ (stat.)} \pm 2 \text{ (syst.)}$	0	117 ± 23
$3NA \Sigma^0 pn$	3.7 ± 0.4 (stat.) $^{+0.2}_{-0.4}$ (syst.)	$41 \pm 4 \text{ (stat.)} {}^{+2}_{-5} \text{ (syst.)}$	0	117 ± 23
4NA Apnn	$0.13 \pm 0.09 (\text{stat.}) \stackrel{+0.08}{_{-0.07}} (\text{syst.})$	-		
Global $\Lambda(\Sigma^0)$ p	$21 \pm 3(\text{stat.}) \stackrel{+5}{-6}(\text{syst.})$	-		

Experimental constraints above threshold

K⁻p scattering amplitude

Large discrepancies in the region below threshold!

K⁻p scattering amplitude with Chiral models

Kvoto-Munich (KM)

Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881 (2012) 98 Murcia (MI, MII) Z. H. Guo, J. A. Oller, Phys. Rev. C 87 (2013) 035202

Barcelona (BCN)

140

120

MeV/c

σ_{K^p - K^p (mb)}

A. Feijoo, V. Magas, À. Ramos, Phys. Rev. C 99 (2019) 035211

Bonn (B2, B4) M. Mai, U.-G. Meißner - Eur. Phys. J. A 51 (2015) 30 Prague (P)

200

250

A. C., J. Smejkal, Nucl. Phys. A 881 (2012) 115

K-p elastic and inelastic low-energy cross sections

Experimental constraints at threshold

K⁻p scattering amplitude

Precise SIDDHARTA measurement of kaonic hydrogen 1s level shift and width

Large discrepancies in the region below threshold!

Experimental constraints below threshold

K⁻p scattering amplitude

No data below threshold

NEW EXPERIMENTAL CONSTRAINTS ARE STRONGLY NEEDED!!

<u>Λπ⁻ analysis</u>: K⁻n non-resonant transition amplitude

THE "LINE-SHAPE" OF THE Λ(1405) DEPENDS ON THE OBSERVED CHANNEL !!

$$\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$

$$\frac{d\sigma(\Sigma^{+}\pi^{-})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} - \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$

$$\frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} \propto \frac{1}{3} |T^{0}|^{2}$$

THE CLEANEST SIGNATURE OF THE Λ(1405) IS C CHANNEL:

- is free from isospin interference
- is purely I = 0, no $\Sigma(1385)$ contamination.

FIG. 4: Theoretical $(\pi^0 \Sigma^0)$ invariant mass distribution for an initial kaon lab momenta of 687 MeV. The non-symmetrized distribution also contains the factor 1/2 in the cross section.

FIG. 5: Two experimental shapes of $\Lambda(1405)$ resonance. See text for more details.

IS DIFFERENT IN $\Sigma^+\pi^-$ VS $\Sigma^-\pi^+$

DUE TO ISOSPIN INTERFERENCE

$\Lambda\pi^{-}$ analysis: K⁻n non-resonant transition amplitude

A/4 4051 ----

FIG. 4: Theoretical $(\pi^0 \Sigma^0)$ inv initial kaon lab momenta of 68 distribution also contains the f

Two main biases:

- the kinematical energy threshold 1412 MeV
- $(M_{\kappa} + M_{p} |BE_{p}|)$ the high pole energy region is closed,
- The shape and the amplitude of the NON-RESONANT

 $\Sigma \pi$ production below KbarN threshold is unknown.

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

An ideal experiment:

- Λ (1405) is produced in K- p absorption \rightarrow mainly coupled to the high mass pole,
- $\Lambda(1405)$ is observed in the $\Sigma^0 \pi^0$ decay channel (pure isospin 0),
- K- is absorbed in-flight on a bound proton with $p_{\kappa} \sim 100 \text{ MeV}$, $\Sigma \pi$ invariant mass gain of ~ 10 MeV to open an energy window to the high mass pole.
- Knowledge of the $\Sigma\pi$ NON-RESONANT production amplitude ... a choice of the resonant amplitude necessary to model simulations

K⁻n scattering amplitude

K⁻n scattering amplitude with Chiral models

Large spread in I=1 channel

Experimental information is totally missing:

- SIDDHARTA-2 \rightarrow first experimental constraint at threshold
- AMADEUS → first experimental constraint below threshold

Laboratori Nazionali di Frascati

AMADEUS @ DA ONE

DAΦNE

- φ → K⁻ K⁺ (49.2%), ≈1000 φ/s
- monochromatic low momentum Kaons ≈127 Mev/c
- back to back K⁻ K⁺ topology
- small hadronic background due to the beam

KLOE

- Cilindrical DC with 4π geometry & electromagnetic calormeter
- 96% acceptance
- high efficiency and resolution for charged and neutral particles

exclusive measurement of the considered K⁻ absorption on light nuclei AT REST & IN FLIGHT

K- absorbed from atomic orbit

AMADEUS: KLOE 2004-2005 dataset analysis (*L* = 1.74 pb-1)

AMADEUS scientific case

- nature of $\Lambda(1405)$ and K⁻N amplitude below threshold

- K⁻ multiN absorption

- kaonic nuclear clusters

YN correlation studies ($\Lambda p, \Sigma^0 p, \Lambda t$)

- low-energy charged K cross section (for p=100MeV)

Particles identification: Λ(1116)

27

Σ^0 p analysis: K⁻ multi-nucleon absorptions in ¹²C

$K^{-12}C \rightarrow \Sigma^0 p R \rightarrow ($	р л⁻) י	y p R
---	---------	--------------

detected particles

-		
		Dhya Latt D750 404 (0040)
	U. Vazduez Doce. et. al	Phys. Lett. B/ 56, 134 (2016)
_		· · · · j • · · · · · · · · · · · · · · · · · ·

	yield / $K_{stop} \cdot 10^{-1}$	$\sigma_{stat} \cdot 10^{-1}$	$\sigma_{syst} \cdot 10$ -
2NA-QF	0.127	± 0.019	+0.004 -0.008
2NA-FSI	0.272	± 0.028	+0.022 -0.023
Tot 2NA	0.376	± 0.033	+0.023 -0.032
3NA	0.274	± 0.069	+0.044 -0.021
Tot 3body	0.546	± 0.074	+0.048 -0.033
4NA + bkg.	0.773	± 0.053	$+0.025 \\ -0.076$

The controversial nature of the $\Lambda(1405)$

• Chiral SU(3) coupled channel dynamics: the state is given by the superpositions of two poles of the KN scattering amplitude.

M = 1425 MeV \rightarrow mainly coupled to the $\overline{K}N$ channel

M = 1380 MeV \rightarrow mainly coupled to the $\Sigma\pi$ channel

The $\Lambda(1405)$ state does not fit with the simple three quarks model (*uds*) and it is commonly accepted that **it is, at least partially, a** \overline{KN} **bound state**.

• **Phenomenological potentials models:** the Λ (1405) is a pure \overline{KN} bound state with mass M=1405 MeV, binding energy BE = 27 MeV and width Γ =50 MeV.

Possible existence of kaonic bound states

Wycech (1986) - Akaishi & Yamazaki (2002)

Predicted in the $\overline{K}N$ interaction in the I=0 channel due to the strong interaction (deeply bound kaonic nuclear states)

The central densities are expected to be large enough to activate the strangeness production:

largely compressed due to the strong attraction

Kaonic Nuclei	Binding Energy [MeV]	Width [MeV]	Central Density	
K⁻p	27	40	3.5ρ₀	o _o =0.17 fm [⁻]
К⁻рр	<mark>48</mark>	61	3.1 ρ₀	
K-ppp	97	13	9.2 _{P0}	
K-ppn	118	21	8.8p ₀	

EoS of the Neutron Stars

$$p + e^{-} \rightarrow n + v_{e}$$

 $n \rightarrow p + K^{-}$

Possible existence of kaonic bound states

Barnea, Gal, Liverts	10	41	Phys. Lett. B (12 (2012) 132
Ikeda, Kamano, Sato	9 - 16	34 - 46	Prog. Theor. Phys. (2010) 124 (3)
Bicudo	14.2 - 53	13.8 - 28.3	Phys. Rev. D 76 (2007) 031502
Bayar, Oset	15 - 30	75 - 80	Nucl. Phys. A 914 (2013) 349
Dote, Inoue, Myo	21.2 - 32.2	9 - 31.7	Prog. Theor. Exp. Phys. 2015 (2015) 043D02
Sekihara, Oset, Ramos	16	72	Prog. Theor. Exp. Phys. 2016 (2016) 123D03
Phon approach	BE [MeV]	Γ [MeV]	Reference
i nen. approach	DD [mc ·]	I [INIC V]	Reference
Akaishi, Yamazaki	48	61	Phys. Rev. C 65 (2002) 044005
Akaishi, Yamazaki Ikeda, Sato	48 60 - 95	61 45 - 90	Phys. Rev. C 65 (2002) 044005 Phys. Rev. C 76 (2007) 035203
Akaishi, Yamazaki Ikeda, Sato Shevchenko, Gal, Mares	48 60 - 95 55 - 70		Phys. Rev. C 65 (2002) 044005 Phys. Rev. C 76 (2007) 035203 Phys. Rev. Lett. 98 (2007) 082301
Akaishi, Yamazaki Ikeda, Sato Shevchenko, Gal, Mares Revai, Shevchenko	48 60 - 95 55 - 70 32	$ \begin{array}{r} \hline \\ 61 \\ $	Phys. Rev. C 65 (2002) 044005 Phys. Rev. C 76 (2007) 035203 Phys. Rev. Lett. 98 (2007) 082301 Phys. Rev. C 90 no. 3 (2014) 034004
Akaishi, Yamazaki Ikeda, Sato Shevchenko, Gal, Mares Revai, Shevchenko Maeda, Akaishi, Yamazaki	$ \begin{array}{r} 48 \\ 60 - 95 \\ 55 - 70 \\ 32 \\ 51.5 \end{array} $	$ \begin{array}{r} 61 \\ 45 - 90 \\ 90 - 110 \\ 49 \\ 61 \\ \end{array} $	Phys. Rev. C 65 (2002) 044005 Phys. Rev. C 76 (2007) 035203 Phys. Rev. Lett. 98 (2007) 082301 Phys. Rev. C 90 no. 3 (2014) 034004 Proc. Jpn. Acad. B 89 (2013) 418

OBELIX 160.9 ± 4.9 $<24.4\pm8.0$ NPA 789 (2007), 222 E549 MPLA 23 (2008), 2520 DISTO $103\pm3(\text{stat.})\pm5(\text{syst.})$ $118 \pm 8(stat.) \pm 10(syst.)$ PRL 104 (2010), 132502 LEPS/SPring-8 Upper limit PLB 728 (2014), 616 HADES Upper limit PLB 742 (2015), 242 $95^{+18}_{-17}(\text{stat.})^{+30}_{-21}(\text{syst.})$ $162_{-45}^{+87}(\text{stat.})_{-78}^{+66}(\text{syst.})$ E27 PTEP (2015), 021D01 AMADEUS Upper limit PLB 758 (2016), 134 $15^{+6}_{-8}(\text{stat.}) \pm 12(\text{syst.})$ $110^{+19}_{-17}(\text{stat.})\pm 27(\text{syst.})$ E15 1st run PTEP (2016), 051D01 $47 \pm 3(\text{stat.})^{+3}_{-6}(\text{syst.})$ $115 \pm 7(\text{stat.})^{+10}_{-20}(\text{syst.})$ E15 2nd run PLB 789 (2019), 612

Possible existence of kaonic bound states

<u>**Λπ⁻** analysis</u>: K⁻n non-resonant transition amplitude

<u>At analysis</u>: Cross section and BR for 4NA in $K^{-4}He \rightarrow \Lambda t$ process

Previous data:

- in ⁴He: bubble chamber experiment /M. Roosen, J. H. Wickens, II Nuovo Cimento 66, 101 (1981)/ only **3 events** compatibile with Λ t kinematics found BR(K⁻⁴He $\rightarrow \Lambda$ t) = (3 ± 2) × 10⁻⁴/K_{stop} \rightarrow global, no 4NA

- in **solid targets:** ^{6,7}Li, ⁹Be (FINUDA)

/Phys. Lett. B, 229 (2008)/ 40 events, only back-to-back data At emission yield $\rightarrow 10^{-3} - 10^{-4} / \text{K}_{\text{stop}}^{-} \rightarrow \text{global, no 4NA}$

<u>At analysis</u>: Cross section and BR for 4NA in $K^{-4}He \rightarrow \Lambda t$ process

ounts/(40MeV

14 12 10 **Final fit**

data

--- carbon data from DC wall

--- 4NA K⁻⁴He \rightarrow At in flight MC --- 4NA K⁻⁴He \rightarrow At at rest MC

--- 4NA K⁻⁴He $\rightarrow \Sigma^{0}t$, $\Sigma^{0} \rightarrow \Lambda\gamma$ MC --- 4NA K⁻⁴He $\rightarrow \Sigma^{0}t$, $\Sigma^{0} \rightarrow \Lambda\gamma$ MC

Previous data:

- in ⁴He: bubble chamber experiment /M. Roosen, J. H. Wickens, II Nuovo Cimento 66, 101 (1981)/ only 3 events compatibile with Λt kinematics found BR(K⁻⁴He $\rightarrow \Lambda t$) = (3 ± 2) × 10⁻⁴/K_{stop} \rightarrow global, no 4NA

<u>At analysis</u>: Cross section and BR for 4NA in $K^{-12}C \rightarrow \Lambda t$ process

Previous data:

- in ⁴He: bubble chamber experiment /M. Roosen, J. H. Wickens, II Nuovo Cimento 66, 101 (1981)/ only 3 events compatibile with Λt kinematics found BR(K⁻⁴He $\rightarrow \Lambda t$) = (3 ± 2) × 10⁻⁴/K_{stop} \rightarrow global, no 4NA

Final fit

Lambda-deuteron final state K- absorptions in 4He

572 Λd events in the DC gas

Structures at high mass clearly correlated with back-to-back events