### Development of Reaction Models for KY Photo- and Electroproduction

#### Dalibor Skoupil

#### (in collaboration with P. Bydžovský, A. Cieplý, D. Petrellis, and N. Zachariou)

Phys. Rev. C **93**, 025204 (2016) Phys. Rev. C **97**, 025202 (2018) Phys. Rev. C **104**, 065202 (2021)

NSTAR 2022, Santa Margherita Ligure, Italy

October 18, 2022

# Motivation

- We aim at understanding the baryon spectrum and production dynamics of particles with strangeness at low energies.
- Constituent Quark Model predicts a lot more  $N^*$  states than was observed in pion production experiments  $\rightarrow$  "missing" resonance problem.
- Models for the description of elementary hyperon electroproduction are a suitable tool for hypernuclear physics calculations.
- New good-quality photoproduction data from LEPS, GRAAL, MAMI and (particularly) CLAS collaborations allow us to tune free parameters of the models.
- As the  $\alpha_s$  increases with decreasing energy, we cannot use perturbative QCD at low energies  $\rightarrow$  need for introducing effective theories and models.

# Isobar model

#### Single-channel approximation

 higher-order contributions (rescattering, FSI) included, to some extent, by means of effective values of the coupling constants

#### Use of effective hadron Lagrangian

- hadrons either in their ground or excited states
- · amplitude constructed as a sum of tree-level Feynman diagrams
  - background part: Born terms with an off-shell proton (s channel), kaon (t), and hyperon (u) exchanges; non Born terms with (axial) vector K<sup>\*</sup> (t) and Y<sup>\*</sup> (u) exchange
  - resonance part: s-channel Feynman diagram with N\* exchanges



Free parameters adjusted to experimental data

Satisfactory agreement with the data in the energy range  $W = 1.6 - 2.5 \,\text{GeV}$ 

KY Photo- and Electroproduction

3/20

Isobar model Novel features of our IM

#### Exchanges of high-spin resonant states

non physical lower-spin components removed by appropriate choice of Lint

$$V^{\mu}_{S}\, {\cal P}^{(1/2)}_{ij,\,\mu
u}\, V^{
u}_{EM} = 0$$

Energy-dependent decay widths of nucleon resonances  $\rightarrow$  restoration of unitarity

$$\Gamma(\vec{q}) = \Gamma_{N^*} \frac{\sqrt{s}}{m_{N^*}} \sum_i x_i \left( \frac{|\vec{q}_i|}{|\vec{q}_i^{N^*}|} \right)^{2l+1} \frac{D(|\vec{q}_i|)}{D(|\vec{q}_i^{N^*}|)},$$

#### Extension from photoproduction to electroproduction

- · Phenomenological form factors in the electromagnetic vertex
- Longitudinal couplings of N\*'s to γ\* (crucial at small Q<sup>2</sup>)

$$\begin{split} V^{EM}(N^*_{1/2}p\gamma) &= -i\frac{g_3^{EM}}{(m_R+m_p)^2}\Gamma_{\mp}\gamma_{\beta} \ \mathcal{F}^{\beta}, \\ V^{EM}_{\mu}(N^*_{3/2}p\gamma) &= -i\frac{g_3^{EM}}{m_R(m_R+m_p)^2}\gamma_5\Gamma_{\mp}\left(\not g \ g_{\mu\beta} - q_{\beta}\gamma_{\mu}\right) \ \mathcal{F}^{\beta}, \\ V^{EM}_{\mu\nu}(N^*_{5/2}p\gamma) &= -i\frac{g_3^{EM}}{(2m_p)^5}\Gamma_{\mp}(q_{\alpha}q_{\beta}g_{\mu\nu} + q^2g_{\alpha\mu}g_{\beta\nu} - q_{\alpha}q_{\nu}g_{\beta\mu} - q_{\beta}q_{\nu}g_{\alpha\mu}) \ p^{\alpha}\mathcal{F}^{\beta}. \end{split}$$

# Fitting procedure

Minimization of  $\chi^2/n.d.f.$  with help of MINUIT code

#### **Resonance selection**

- s channel: spin-1/2, 3/2, and 5/2 N\* with mass < 2 GeV; initial set from the Bayesian analysis (PR C 86 (2012) 015212) and then varied
  - missing resonances D<sub>13</sub>(1875), P<sub>11</sub>(1880), P<sub>13</sub>(1900)
- *t* channel: *K*\*(892), *K*<sub>1</sub>(1272)
- *u* channel: *Y*\*(1/2) and *Y*\*(3/2)

#### Free parameters ( $\approx 30 + 10$ ):

- SU(3)<sub>f</sub> :  $-4.4 \le g_{K\Lambda N}/\sqrt{4\pi} \le -3.0,$  $0.8 \le g_{K\Sigma N}/\sqrt{4\pi} \le 1.3$
- K\*'s have vector and tensor couplings
- spin-1/2 resonance → 1 parameter; spin-3/2 and 5/2 resonance → 2 parameters
- 2 cut-off parameters for the hff
- 1 longitudinal coupling for each N\*
- 2 cut-off parameters for the emff of K\* and K<sub>1</sub>

#### Experimental data

#### 3383 $p(\gamma, K^+)\Lambda$ data

- cross section for W < 2.355 GeV (CLAS 2005 & 2010; LEPS, Adelseck-Saghai)
- hyperon polarisation for W < 2.225 GeV (CLAS 2010)
- beam asymmetry (LEPS)
- 171  $p(e, e'K^+)\Lambda$  data
  - σ<sub>U</sub>, σ<sub>T</sub>, σ<sub>L</sub>, σ<sub>LT'</sub>, σ<sub>K</sub>

# Results of the fitting procedure

**Solutions:** BS1 and BS2,  $\chi^2$ /n.d.f. = 1.64

(constant widths of *N*\*'s; fit on  $p(\gamma, K^+)\Lambda$  data; PR C 93 (2016) 025204), BS3,  $\chi^2$ /n.d.f. = 1.74 (energy-dependent widths of *N*\*'s; fit on  $p(\gamma, K^+)\Lambda$  ( $\chi^2$ /n.d.f. = 1.51) and  $p(e, e'K^+)\Lambda$  data; PR C 97 (2018) 025202)

- $\chi^2$ 's, fitted parameter values (smallness) and correspondence with data taken into account
- sets of chosen  $Y^*$  differ in all BS models  $\rightarrow$  different description of background
- electromagnetic form factors of K\* and K<sub>1</sub>: crucial for Q<sup>2</sup> > 2 (GeV/c)<sup>2</sup>

| BS1 model                                                                                                                                                                                                                                                                 | BS3 model                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>S<sub>11</sub>(1535), S<sub>11</sub>(1650), F<sub>15</sub>(1680),<br/>P<sub>13</sub>(1720), F<sub>15</sub>(1860), D<sub>13</sub>(1875),<br/>F<sub>15</sub>(2000);</li> <li>K*(892), K<sub>1</sub>(1272);</li> <li>Λ(1520), Λ(1800), Λ(1890), Σ(1660),</li> </ul> | • $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{11}(1710), P_{13}(1720), F_{15}(1860), D_{13}(1875), P_{13}(1900), F_{15}(2000), D_{13}(2120);$<br>• $K^*(892), K_1(1272);$ |
| Σ(1750), Σ(1940);<br>• multidipole form factor:<br>$\Lambda_{bar} = 1.88 \text{ GeV}, \Lambda_{res} = 2.74 \text{ GeV}$                                                                                                                                                   | <ul> <li>Λ(1405), Λ(1600), Λ(1890), Σ(1670);</li> <li>dipole form factor:<br/>Λ<sub>bar</sub> = 1.24 GeV, Λ<sub>res</sub> = 0.89 GeV</li> </ul>                             |
| $\Lambda_{bgr} = 1.00 \text{ GeV}, \Lambda_{res} = 2.74 \text{ GeV}$                                                                                                                                                                                                      | $\Lambda_{bgr} = 1.24 \text{ GeV}, \Lambda_{res} = 0.05 \text{ GeV}$                                                                                                        |

Angular dependence of the cross section for  $p(\gamma, K^+)\Lambda$ 



Predictions of  $d\sigma/d\Omega$  for  $p(\gamma, K^+) \wedge$  at  $\theta_K^{c.m.} = 6^\circ$ 



• Brown  $[Q^2 = 0.18 (\text{GeV}/c)^2]$  & E94-107  $[Q^2 = 0.07 (\text{GeV}/c)^2]$ : data for  $p(e, e'K^+)\Lambda$  but:  $\sigma_L \sim Q^2$ ,  $\sigma_{TT} \sim \sin^2 \theta_K^{c.m.}$ , and  $\sigma_{LT} \sim \sqrt{Q^2} \sin \theta_K^{c.m.} \Rightarrow \sigma \approx \sigma_T$ 

# Transverse, $\sigma_T$ , and longitudinal, $\sigma_L$ , cross sections of $p(e, e'K^+)\Lambda$



Extension from photo- to electroproduction

- BS1: naive extension by adding em. form factors only
- BS3: em. form factors and longitudinal couplings of  $N^*$ 's to  $\gamma^*$  added

Least Absolute Shrinkage Selection Operator (LASSO)

Fitting procedure with MINUIT library: **minimizing the**  $\chi^2$ 

$$\chi^2 = \sum_{i=1}^{N} \frac{[d_i - p_i(c_1, \dots, c_n)]^2}{\sigma_{d_i}^2},$$

 $(c_1, ..., c_n)$  - set of free parameters,  $(d_1, ..., d_N)$  - set of data points,  $p_i$  - theory,  $\sigma_{d_i}$  - error **Problem:**  $\chi^2$  minimization cannot prevent overfitting **Remedy to the overfitting issue:** regularization (in this case, it is LASSO)

• penalized  $\chi^2_T$ :  $\chi^2_T = \chi^2 + P(\lambda)$ 

• penalty term: 
$$P(\lambda) = \lambda^4 \sum_{i=1}^{N_{res}} |g_i|$$

 $\lambda$  - regularization parameter,  $g_i$  - resonances' couplings

#### Information criteria:

• AIC =  $2n + \chi_T^2$ 

• AICc = AIC + 
$$\frac{2n(n+1)}{N-n-1}$$

• 
$$BIC = n \ln(N) + \chi_T^2$$



P. Bydžovský, A. Cieplý, D. Petrellis, D. Skoupil, and N. Zachariou, PR C 104, 065202 (2021)

#### Fitting procedure

- non resonant part: Born terms and exchanges of  $K^*$  and  $K_1$  (t channel) and  $\Sigma^*$  (u channel)
- resonant part: exchanges of  $N^*$ 's and  $\Delta$ 's in the *s* channel
- around 600 data utilized to fit  $\approx$  25 parameters
- the main coupling,  $g_{K^+\Sigma^-n} = \sqrt{2}g_{K^+\Sigma^0\rho} = 1.568$ , taken from  $K^+\Lambda$  channel
- result with the smallest  $\chi^2/ndf = 2.3 \rightarrow fit M$  (25 parameters, 14 resonances)
- LASSO method used:  $\chi^2_T$ /ndf = 3.4  $\rightarrow$  fit L (17 parameters, 9 resonances)

#### **Characteristics of models**

- only one Δ resonance introduced
- no hyperon resonances needed for reliable data description
- · results in very good agreement with the cross-section and beam-asymmetry data
- fit L: a very economical fit

Differential cross section in dependence on the photon lab energy



Differential cross section in dependence on the photon lab energy - fit L w/o individual resonances



N7: N(1720)3/2<sup>+</sup>, M4: N(2060)5/2<sup>-</sup>

Dalibor Skoupil

Beam asymmetry in dependence on the kaon center-of-mass angle - fit L w/o individual resonances



# Refitting the model's parameters in the $K^+\Lambda$ channel

Ridge regression and cross validation for suppressing hyperon couplings

#### Why refit?

- include recent measurements of polarization observables
- need to investigate more the role of hyperon resonances in KY photoproduction
- large values of hyperon couplings: ridge regression to suppress them during the fitting procedure

#### **Ridge regularization**

- penalized  $\chi_T^2$ :  $\chi_T^2 = \chi^2 + \lambda^4 \sum_{i=1}^{K_{\Lambda}} g_i^2$ , ( $K_{\Lambda} = \text{no. of } Y \text{ couplings}$ )
- parameter values reduced but they are not reduced to zero

#### **Cross validation**







### Effect on the couplings of hyperon resonacnes

# BS2 with Ridge

|                                      | Tag           | Resonance                 | Mass [MeV] | Width [MeV] | $g_1$  | $g_2$  |
|--------------------------------------|---------------|---------------------------|------------|-------------|--------|--------|
|                                      | $K^*$         | $K^{*}(892)$              | 891.7      | 50.8        | -0.176 | 0.011  |
|                                      | K1            | $K_{(1272)}$              | 1272       | 90          | 0.321  | -1.136 |
| DC D                                 | N3            | $N(1535) 1/2^{-}$         | 1530       | 150         | -0.012 | -      |
| DSZ                                  | N4            | $N(1650) \ 1/2^{-}$       | 1650       | 125         | -0.075 | _      |
|                                      | P5            | $N(1860) 5/2^+$           | 1860       | 270         | -0.019 | 0.009  |
|                                      | N7            | $N(1720) \ 3/2^+$         | 1720       | 250         | 0.157  | 0.009  |
|                                      | P4            | $N(1875) \ 3/2^{-}$       | 1875       | 200         | 0.141  | 0.135  |
|                                      | P2            | $N(1900) \ 3/2^+$         | 1920       | 200         | -0.045 | -0.010 |
|                                      | P3            | $N(2050) 5/2^+$           | 2050       | 220         | -0.012 | 0.013  |
|                                      | N9            | $N(1685) 5/2^+$           | 1685       | 130         | 0.048  | -0.041 |
| Tag Resonance $g_1$ $g_2$            | N6            | $N(1710) 1/2^+$           | 1710       | 140         | -0.172 | -      |
| L1 $\Lambda(1405) 1/2$ 9.67 –        | L1            | $\Lambda(1405) \ 1/2^{-}$ | 1405       | 51          | 1.308  | -      |
| S1 $\Sigma(1660) 1/2^+$ -8.09 -      | S1            | $\Sigma(1660) \ 1/2^+$    | 1660       | 100         | -1.938 | -      |
| L4 $\Lambda(1800) 1/2^{-11.55}$ –    | L4            | $\Lambda(1800) \ 1/2^{-}$ | 1800       | 300         | -0.342 | -      |
| S4 $\Sigma(1940) 3/2^{-}$ -0.86 0.18 | $\mathbf{S4}$ | $\Sigma(1940) \ 3/2^{-}$  | 1940       | 220         | -0.567 | -0.025 |

# $K^+\Lambda$ channel: beam asymmetry $\Sigma$

(results are still preliminary!)



# $K^+\Lambda$ channel: target asymmetry T

(results are still preliminary!)



# Summary

New version of isobar model for the  $K^+\Lambda$  channel

- consistent formalism for high-spin resonances
- energy-dependent widths of *N*\*'s impemented
- longitudinal couplings for extension towards electroproduction of K<sup>+</sup>Λ
- available for calculations online at: http://www.ujf.cas.cz/en/departments/department-of-theoretical-physics/ isobar-model.html

Description extended from the  $K^+\Lambda$  channel to the  $K^+\Sigma^-$  channel

Regularization methods (LASSO, ridge) introduced as a remedy for overfitting

# Outlook

- testing the models in the DWIA calculations for hypernucleus production
- performing a multi-channel analysis of all Σ photoproduction channels
- extending our analysis of electroproduction beyond  $Q^2 = 1 \text{ GeV}^2$
- studying the production of Ξ hypernuclei

# Thank you for your attention!

