

Talk: A. Calivà, Tue, 17:30

Talk: P. Ganoti, Wed, 11:50

EXPLORING THE HADRONIC PHASE OF ULTRARELATIVISTIC HEAVY-ION COLLISIONS WITH RESONANCES IN ALICE

ENRICO FRAGIACOMO

INFN - SEZIONE DI TRIESTE

NSTAR 2022

S. MARGHERITA LIGURE, 17-21 OCTOBER 2022

THE ALICE DETECTOR

Excellent track momentum resolution and PID

Central barrel: vertexing, tracking, PID, EM calos $|\eta| < 0.9$

Forward detectors: multiplicity, trigger, centrality, time zero

TRANSVERSE MOMENTUM SPECTRA

Excellent track momentum resolution is critical to reconstruct hadron resonances down to p_T below 1 GeV/c

COLLISION EVOLUTION

QGP phase

Hadron gas phase

TEMPERATURE AT CHEMICAL FREEZE-OUT

Statistical Hadronization Model (SHM)

- At hadronization the system is close to thermal equilibrium
- → A rapid hadrochemical freeze-out takes place at the phase boundary
- → Hadron abundances described by SHM over 9 orders of magnitude!
- Note that also loosely bound objects (light nuclei and hypernuclei) and heavy-flavour hadrons (J/ψ) are described by SHM

Total yields include contributions from resonance decays!

HADROCHEMISTRY

Common particle production mechanism for all systems?

- Smooth evolution of particle production from small to large systems vs. charged-particle multiplicity
- Strangeness production increasing with multiplicity until saturation (grand-canonical plateau) is reached
- Steeper increase for particles with more strangeness content
- High-multiplicity pp: same hadrochemistry as larger (p-Pb, peripheral Pb-Pb) systems

TEMPERATURE AT KINETIC FREEZE-OUT

Boltzmann-Gibbs Blast-Wave fits are used to determine
parameters of the radial flow:

- T_{kin} kinetic freeze-out temperature
- $<\beta_{T}>$ transverse flow velocity

Fit parameters are extracted from simultaneous fits to π , K, p spectra

Results are sensitive to fitting range!

RESONANCES IN THE HADRON GAS

Re-scattering (elastic or pseudo-elastic scattering of the decay products) and regeneration modify the yield of reconstructible resonances

$p_{\mathsf{T}}\text{-}\mathsf{SPECTRA}$ WITH PREDICTIONS

- \triangleright Curves are obtained with a simultaneous fit to $\pi/K/p$ distributions
- \triangleright Curves are normalized to the measured K⁻ yield times the K*⁰/K⁻ (ϕ /K⁻) ratio from the thermal model (T=156 MeV)

RATIO K*/K

K*±/K shows a ~55% suppression going from peripheral Pb–Pb collisions to most central Pb–Pb

- consistent with the rescattering of the daughters as the dominant effect
- models with rescattering effect (MUSIC+SMASH and HRG-PCE) qualitatively describe the data

K** measurement is consistent with previous results for K*0

MUSIC: D. Oliinychenko, arXiv:2105.07539 PCE: A. Motornenko, Phys.Rev.C 102 (2020) 2, 024909 GCSM: V. Vovchenko, Phys.Rev.C 100 (2019) 5, 054906

RATIO Λ^*/Λ

 $\Lambda*/\Lambda$ shows a ~ 70% suppression going from peripheral Pb—Pb collisions to most central Pb—Pb

- consistent with the rescattering of the daughters as the dominant effect
- it is larger than $\sim 55\%$ for $K^{*\pm}$ although $\tau(\Lambda^*) = 3 \tau(K^*)$
- MUSIC-SMASH reproduces the multiplicity suppression trend
- thermal models overestimate the ratio in central Pb-Pb collisions

ALI-PREL-516662

RATIO Σ^*/π

- Suppression of $\Sigma^{*\pm}/\pi^{\pm}$ yield ratio in central Pb-Pb collisions wrt pp and p-Pb
- Thermal model and EPOS + UrQMD overestimates the measurement
- Suppression at a level of 3.6σ in 0-10% central Pb-Pb collisions with respect to statistical thermal model

arXiv:2205.13998

SUMMARY OF PARTICLES RATIOS

MEASURING LIFETIME OF HADRONIC PHASE

Estimation of lower limit of the timespan between chemical and kinetic freeze-out by exponential law:

$$r_{\rm kin} = r_{\rm chem} \times \exp(-(\tau_{\rm kin} - \tau_{\rm chem})/\tau_{\rm res})$$

- r_{kin} = measured yield ratios in Pb—Pb collisions
- r_{chem} = measured yield ratios in pp collisions
- τ_{res} = lifetime of resonance

Assumptions:

i) Simultaneous freeze-out for all particles

ii) Negligible regeneration

Lifetime of hadronic phase smoothly increases with multiplicity

SUMMARY

- ✓ ALICE continues to measure a varied set of resonances with different lifetime, mass, quark content to probe the hadronic phase
- ✓ Dominance of rescattering effects over regeneration effects for short lived resonances in the hadronic phase
- ✓ Lower limit of hadronic phase lifetime is obtained
- ✓ Lifetime of hadronic phase smoothly increases with multiplicity