Bose Polarons in a Homogeneous ³⁹K Bose-Einstein Condensate

Christoph Eigen

Quantum gases, fundamental interactions and Cosmology, Pisa, October 28^{th,} 2022

RSITY OF BRIDGE

Hadzibabic Group

Alec Cao	Chri
Jiří Etrych	Ma
Gevorg Martirosyan	Nisł
Lena Dogra	Zorar

Science and Technology **Facilities Council**

Christoph Eigen

people

- istopher Ho
- iciej Galka
- hant Dogra
- n Hadzibabic

Martin Gažo

Andrey Karailiev

Paul Wong

Konstantinos Konstantinou

Christoph Eigen **UNIVERSITY OF** 2 Min ton

Engineering and Physical Sciences Research Council

Impurities in a Bose medium

historically: Landau, Pekar, ...

generic! quantum system + environment

Christoph Eigen

fundamental problem in physics

Impurities in a Bose medium

fundamental problem in physics

Bose polarons in cold atoms (in harmonic traps)

JILA, Aarhus, MIT, Paris...

Hu et al., PRL **117**, 055301 (2016)

see also Fermi polarons, Rydberg impurities, etc.

historically: Landau, Pekar, ...

generic! quantum system + environment

Christoph Eigen

Some highlights:

- Jørgensen *et al.*, PRL **117**, 055302 (2016)
 - Yan et al., Science **368**, 190 (2020)
 - Skou *et al.*, Nat. Phys. **17**, 731 (2021)
 - Cayla et al., arXiv:2204.10697 (2022)

injection spectrum

from Jørgensen *et al.*, PRL **117**, 055302 (2016)

many rich theories...

Tempere, Bruun, Massignan, Enss, Schmidt, Demler, Grusdt, Gurarie, Giorgini, Parish, Levinsen, Lewenstein, Devreese, Naidon, Schmelcher, Busch, ...

many aspects understood, but questions remain...

Homogeneous Bose-Einstein condensates

homogeneous density

Homogeneous Bose-Einstein condensates

homogeneous density

review: N. Navon *et al.*, Nat. Phys. **17**, 1334 (2021) optical box A.L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016) ultracold ³⁹K Bose gas in a box

Homogeneous Bose-Einstein condensates

Homogeneous Bose mixtures?

Christoph Eigen

another spin state mobile equal mass impurities/ Bose mixtures

G. Roati et al., PRL 99, 010403 (2007)

rich Feshbach resonance landscape for tuning intra- and inter-state interactions...

> 3 interactions strengths a, a_B, a_I

Homogeneous Bose mixtures?

homogeneous density

Efimov trimers quantum mechanical analogue of Borromean rings

Christoph Eigen

rich interaction landscapes in ³⁹K

few-body

testbed for few-body physics

- interaction control (also switches)
- quantum mixtures

polarons

droplets

solitons, and more...

Homogeneous Bose mixtures?

homogeneous density

Christoph Eigen

rich interaction landscapes in ³⁹K

testbed for few-body physics

pinpointing Feshbach resonances in 39K

- interaction control (also switches)
- quantum mixtures

polarons

droplets

solitons, and more...

e.g. atom-molecule coherence

following E. A. Donley *et al.*, Nature **417**, 529 (2002)

bound-state spectroscopy Etrych et al., arXiv:2208.13766 (2022)

e.g. atom-molecule coherence

following E. A. Donley *et al.*, Nature **417**, 529 (2002)

Christoph Eigen

bound-state spectroscopy Etrych et al., arXiv:2208.13766 (2022)

$$a \approx \sqrt{\hbar/(m\omega_{\rm b})} + \bar{a}$$
$$\bar{a} = 0.956a_{\rm vdW}$$
$$a_{\rm vdW} = 64.6a_0 \text{ for } {}^{39}\text{K}$$

e.g. atom-molecule coherence

following E. A. Donley *et al.*, Nature **417**, 529 (2002)

Christoph Eigen

bound-state spectroscopy Etrych et al., arXiv:2208.13766 (2022)

 $a_{\rm vdW} = 64.6a_0$ for ³⁹K

e.g. atom-molecule coherence

following E. A. Donley *et al.*, Nature **417**, 529 (2002)

Christoph Eigen

bound-state spectroscopy Etrych et al., arXiv:2208.13766 (2022)

e.g. atom-molecule coherence

following E. A. Donley *et al.*, Nature **417**, 529 (2002)

Christoph Eigen

bound-state spectroscopy Etrych et al., arXiv:2208.13766 (2022)

Christoph Eigen

benchmarking quench-based loss spectroscopy

Christoph Eigen

benchmarking quench-based loss spectroscopy Etrych et al., arXiv:2208.13766 (2022)

Christoph Eigen

benchmarking quench-based loss spectroscopy Etrych et al., arXiv:2208.13766 (2022)

Efimov trimers quantum mechanical analogue of Borromean rings

Test Efimov universalities across the Feshbach resonance

> Systematic breakdown of Efimov-van-der-Waals universality $a_{-} = -13(1) a_{\rm vdW}$

Etrych *et al.*, arXiv:2208.13766 (2022)

see also: Chapurin *et al.*, PRL **123**, 233402 (2019) Xie et al. PRL **125**, 243401 (2021)

Christoph Eigen

benchmarking quench-based loss spectroscopy Etrych et al., arXiv:2208.13766 (2022)

characterized 8 intrastate resonances!

$ F, m_F\rangle$	$B_{\rm res}$ (G)	$a_{bg}\Delta (a_0 G)$	B_{zero} (G)	$\mu(\mu_{\rm B})$
$ 1,1\rangle$	25.91(6)	-	-	-0.605
$ 1,1\rangle$	402.74(1)	1530(20)	350.4(1) ^a	-0.961
$ 1,1\rangle$	752.3(1) ^b	-	-	-0.987
$ 1,0\rangle$	58.97(12)	-	-	-0.337
$ 1,0\rangle$	65.57(23)	-	-	-0.370
$ 1,0\rangle$	472.33(1)	2040(20)	393.2(2)	-0.945
1,0>	491.17(7)	140(30)	490.1(2)	-0.949
$ 1, -1\rangle$	33.5820(14) ^c	-1073	/	0.324
$ 1, -1\rangle$	162.36(2)	760(20)	/	-0.489
$ 1,-1\rangle$	561.14(2)	1660(20)	504.9(2)	-0.959

a) Fattori et al., PRL 101, 190405 (2008) b) D'Errico et al., NJP 9, 223 (2007) c) Chapurin *et al.*, PRL **123**, 233402 (2019)

six previously predicted but experimentally elusive interstate resonances Etrych *et al.*, arXiv:2208.13766 (2022)

$ F, m_F\rangle$	$B_{\rm res}$ (G)	$a_{\rm bg}\Delta (a_0 \rm G)$	B _{zero} (G)	$\mu(\mu_B)$
1,1>	25.91(6)	_	-	-0.605
$ 1,1\rangle$	402.74(1)	1530(20)	350.4(1) ^a	-0.961
$ 1,1\rangle$	752.3(1) ^b	-	-	-0.987
 1,0 >	58.97(12)	-	-	-0.337
$ 1,0\rangle$	65.57(23)	-	-	-0.370
1,0>	472.33(1)	2040(20)	393.2(2)	-0.945
 1,0 >	491.17(7)	140(30)	490.1(2)	-0.949
$ 1, -1\rangle$	33.5820(14) ^c	-1073 ^c	/	0.324
$ 1, -1\rangle$	162.36(2)	760(20)	/	-0.489
$ 1, -1\rangle$	561.14(2)	1660(20)	504.9(2)	-0.959

Intrastate

a) Fattori et al., PRL 101, 190405 (2008) b) D'Errico et al., NJP 9, 223 (2007) c) Chapurin *et al.*, PRL **123**, 233402 (2019)

> Collaboration with Jeremy Hutson; two-body coupled-channel calculations

Christoph Eigen

Interstate				
$ F, m_F\rangle_1 + F, m_F\rangle_2$	$B_{\rm res}$ (G)	$a_{\rm bg}\Delta (a_0{\rm G})$	$\mu_1(\mu_B)$	$\mu_2(\mu$
$ 1,1\rangle + 1,0\rangle$	25.81(6)	-	-0.605	-0.1
1,1 angle+ 1,0 angle	39.81(6)	-	-0.651	-0.2
1,1 angle+ 1,0 angle	445.42(3)	1110(40)	-0.967	-0.9
1,1 angle+ 1,-1 angle	77.6(4)	-	-0.747	0.0
1,1 angle+ 1,-1 angle	501.6(3)	-	-0.973	-0.9
$ 1,0\rangle + 1,-1\rangle$	113.76(1) ^d	715(7) ^d	-0.569	-0.2
1,0 angle+ 1,-1 angle	526.21(5)	970(50)	-0.956	-0.9

d) Tanzi et al., PRA 98, 062712 (2018) - used for previous ³⁹K polarons

six previously predicted but experimentally elusive interstate resonances Etrych *et al.*, arXiv:2208.13766 (2022)

$ F, m_F\rangle$	$B_{\rm res}$ (G)	$a_{\rm bg}\Delta (a_0{\rm G})$	B _{zero} (G)	$\mu(\mu_B)$
1,1>	25.91(6)	_	_	-0.605
$ 1,1\rangle$	402.74(1)	1530(20)	350.4(1) ^a	-0.961
$ 1,1\rangle$	752.3(1) ^b	-	-	-0.987
$ 1,0\rangle$	58.97(12)	-	-	-0.337
$ 1,0\rangle$	65.57(23)	-	-	-0.370
1,0>	472.33(1)	2040(20)	393.2(2)	-0.945
$ 1,0\rangle$	491.17(7)	140(30)	490.1(2)	-0.949
$ 1, -1\rangle$	33.5820(14) ^c	-1073^{c}	/	0.324
$ 1, -1\rangle$	162.36(2)	760(20)	/	-0.489
$ 1,-1\rangle$	561.14(2)	1660(20)	504.9(2)	-0.959

Intrastate

a) Fattori et al., PRL 101, 190405 (2008) b) D'Errico et al., NJP 9, 223 (2007) c) Chapurin *et al.*, PRL **123**, 233402 (2019)

> Collaboration with Jeremy Hutson; two-body coupled-channel calculations

Christoph Eigen

Interstate				
$ F, m_F\rangle_1 + F, m_F\rangle_2$	$B_{\rm res}$ (G)	$a_{\rm bg}\Delta (a_0{\rm G})$	$\mu_1(\mu_B)$	$\mu_2(\mu$
$ 1,1\rangle + 1,0\rangle$	25.81(6)	-	-0.605	-0.1
1,1 angle+ 1,0 angle	39.81(6)	-	-0.651	-0.2
$ 1,1\rangle + 1,0\rangle$	445.42(3)	1110(40)	-0.967	-0.9
1,1 angle+ 1,-1 angle	77.6(4)	-	-0.747	0.0
1,1 angle+ 1,-1 angle	501.6(3)	-	-0.973	-0.9
1,0 angle+ 1,-1 angle	113.76(1) ^d	715(7) ^d	-0.569	-0.2
1,0 angle+ 1,-1 angle	526.21(5)	970(50)	-0.956	-0.9

d) Tanzi et al., PRA 98, 062712 (2018) - used for previous ³⁹K polarons

445.42(3)G 526.21(5)G $a_B \approx 18a_0$ $a_I \approx -64a_0$ $a_B \approx 50a_0$ $a_I \approx -65a_0$

tuneable interstate interactions a

benchmarking our system

protocol

- prepare a BEC in $|1,-1\rangle$ near interstate resonance (526G)
- rf injection to $|1,0\rangle$ to measure excitation spectrum
 - atom loss as the observable (after long times)

Christoph Eigen

•

benchmarking our system

protocol

- prepare a BEC in $|1,-1\rangle$ near interstate resonance (526G)
- rf injection to $|1,0\rangle$ to measure excitation spectrum

atom loss as the observable (after long times)

Christoph Eigen

narrow! little technical broadening (800 μ s pulse, $\lesssim 15\%$ transfer)

In weakly interacting limit (clock shifts):

 $\hbar\bar{\Delta} = 4\pi\hbar^2 an/m = gn$

benchmarking our system

protocol

- prepare a BEC in $|1,-1\rangle$ near interstate resonance (526G)
- rf injection to $|1,0\rangle$ to measure excitation spectrum

atom loss as the observable (after long times)

Christoph Eigen

narrow! little technical broadening (800 μ s pulse, $\lesssim 15\%$ transfer)

In weakly interacting limit (clock shifts):

$$\hbar\bar{\Delta} = 4\pi\hbar^2 an/m = gn$$

in situ image of impurities after injection

 $\otimes z$

protocol

- prepare a BEC in $|1,-1\rangle$ near interstate resonance (526G)
- rf injection to $|1,0\rangle$ to measure excitation spectrum
 - atom loss as the observable (after long times)

In weakly interacting limit (clock shifts):

$$\hbar\bar{\Delta} = 4\pi\hbar^2 an/m = gn$$

Strongly interacting Bose polarons

preliminary!

exploring the polaron spectrum

natural units? $k_n = (6\pi^2 n)^{1/3}$ $E_n = \hbar^2 k_n^2 / (2m)$

preliminary!

$$k_n = 8.7 \mu m^{-1}$$
, vary *a*

$$1/(k_n a)$$

$$(2n)^{1/3}$$
 $E_n = \hbar^2 k_n^2 / (2m)$

Tempere, Bruun, Massignan, Enss, Schmidt, Demler, Grusdt, Gurarie, Giorgini, Parish, Levinsen, Lewenstein, Devreese, Naidon, Schmelcher, Busch, ...

Strongly repulsive Bose polarons

preliminary!

nature of dimer-like peak?

vary density

Strongly repulsive Bose polarons

preliminary!

nature of dimer-like peak?

vary density

both peaks shift and broaden!

> novel manybody state!?

> > |1,0>

preliminary!

fix $a = 3.6(2) \times 10^3 a_0$

Strongly repulsive Bose polarons

Cetina et al. Science **354**, 96 (2016) and Skou et al. Nat. Phys. **17**, 731 (2021)

$$N(\phi) = N_0 - A\cos(\varphi - \varphi_c)$$

$$\underbrace{t_{\text{hold}}(\mu s)}_{\bullet} \quad 0 \quad 15 \quad 0 \quad 0 \quad 0 \quad 16 \quad 0 \quad 0 \quad 16 \quad 0 \quad 0 \quad \pi/2 \quad \pi \quad 3\pi/2 \quad 1/(k_n + q)$$

$$phase, \varphi$$

Christoph Eigen

preliminary!

 $1.9(1) \times 10^3 a_0$

23 µs

(a,a) = 1.3

Strongly repulsive Bose polarons

$$N(\phi) = N_0 - A\cos(\varphi - \varphi_c)$$

Strongly repulsive Bose polarons

$$N(\phi) = N_0 - A\cos(\varphi - \varphi_c)$$

preliminary!

Christoph Eigen

preliminary!

 $E = -\hbar \mathrm{d}\varphi_c/\mathrm{d}t$

Christoph Eigen

simple theories (no free parameters!)

dimer

shifted mean-field

variational ansatz

theory: Tempere, Bruun, Massignan, Enss, Schmidt, Demler, Grusdt, Gurarie, Giorgini, Parish, Levinsen, Lewenstein, Devreese, Naidon, Schmelcher, Busch, ...

 $E = -\hbar \mathrm{d}\varphi_c/\mathrm{d}t$

Christoph Eigen

preliminary!

simple theories (no free parameters!) dimer shifted mean-field variational ansatz theory:

Tempere, Bruun, Massignan, Enss, Schmidt, Demler, Grusdt, Gurarie, Giorgini, Parish, Levinsen, Lewenstein, Devreese, Naidon, Schmelcher, Busch, ...

preliminary!

 $E = -\hbar \mathrm{d}\varphi_c/\mathrm{d}t$

Christoph Eigen

simple theories (no free parameters!) dimer shifted mean-field variational ansatz theory:

Tempere, Bruun, Massignan, Enss, Schmidt, Demler, Grusdt, Gurarie, Giorgini, Parish, Levinsen, Lewenstein, Devreese, Naidon, Schmelcher, Busch, ...

preliminary!

Christoph Eigen

Outlook next steps on Bose polarons

quantitatively compare spectra and ◆ interferometry measurements to state-ofthe-art theory

access to quasi-particle residues?

effective mass?

finite temperature

Christoph Eigen

•

•

•

further explore strongly interacting Bose polarons: formation dynamics i. vary bath properties - universal $(E_n, k_n, ...)$? ii. $|1,0\rangle$ vs. $|1,-1\rangle$ bath - $a_{\rm B}$ ratio is 2.8! bipolarons? iii. Camacho-Guardian et al. PRL **121**, 013401 (2018)

Thank you!

Christoph Eigen

Quantum gases, fundamental interactions and Cosmology, Pisa, October 28^{th,} 2022

RSITY OF BRIDGE

